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Abstract We present a new contact algorithm that endows
the granular element method [1] with the ability to model
non-convex particles using non-uniform rational basis
splines. This significant extension allows for the represen-
tation of particle morphological features, namely, spheric-
ity and angularity, to their fullest extent, with local con-
tact rolling resistance and interlocking emanating directly
from grain geometry. Both particle elasticity and friction
at the contact level are treated implicitly and simultane-
ously, and the contact algorithm is cast into a mathemati-
cal programming-based contact dynamics framework. The
framework provides the advantages of implicit time integra-
tors (for e.g., stability and larger time steps) and ability to
handle both rigid and highly stiff particles. By allowing for
particle non-convexity, modeling flexibility is significantly
enhanced, to a level that is comparable with isogeometric
methods. As such, the transition from image data to particle
shapes is greatly streamlined. More importantly, increased
macroscopic strength in granular packings comprising of
non-convex particles is fully captured. All the above capabil-
ities are achieved under a very modest implementation effort.

Keywords Non-convex particles ·
Discrete element method · Granular element method ·
Contact dynamics · NURBS

K.-W. Lim · J.E. Andrade (B)
Division of Engineering & Applied Science, California Institute
of Technology, Pasadena , CA 91125, USA
e-mail: jandrade@caltech.edu

K. Krabbenhoft
Centre for Geotechnical & Materials Modelling, University
of Newcastle, Callaghan, NSW 2308, Australia

1 Introduction

The objective of this paper is to develop a new contact algo-
rithm that endows the granular element method (GEM) [1]
with the ability to model non-convex particles using non-
uniform rational basis splines (NURBS). This significant
extension allows for the representation of particle morpho-
logical features, namely, sphericity and angularity [2], to their
fullest extent, with local contact rolling resistance and inter-
locking emanating directly from grain geometry. Both par-
ticle elasticity and friction at the contact level are treated
implicitly and simultaneously, and the contact algorithm is
cast into a mathematical programming-based contact dynam-
ics framework. The framework provides the advantages of
implicit time integrators (for e.g., stability and larger time
steps) and ability to handle both rigid and highly stiff parti-
cles. By allowing for particle non-convexity, modeling flex-
ibility is significantly enhanced, to a level that is compara-
ble with isogeometric methods [3]. As such, the transition
from image data to particle shapes is greatly streamlined.
More importantly, increased macroscopic strength in granu-
lar packings comprising of non-convex particles is fully cap-
tured. All the above capabilities are achieved under a very
modest implementation effort.

Recent discrete simulation approaches include techniques
to represent complex particle morphology or shape, beyond
discs/spheres and ellipses/ellipsoids, which are based mostly
on the clustering or clumping technique [4,5] and polyhedra
approach [6–10]. Alternatives, which are essentially com-
binations of the aforementioned techniques, include spher-
opolyhedra [11,12] and potential particles [13,14]. All devel-
opment work to date, however, have focused almost exclu-
sively on the treatment of convex particles. Polyhedra have
the capability to handle non-convex particles, but are still lim-
ited in resolution and discrete models tend to be very blocky,
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a result of the primitive simplexes underlying the geometry
basis, as well as the complexity of the associated contact
detection algorithms [15]. As a result, the shape representa-
tion capabilities of polyhedra have not been fully realized. By
and large, clustering appears to be the most popular approach
taken to handle non-convexity due to its simplicity (see for
e.g., [16,17]), although in actual simulations, the number
of disks or spheres clustered to form a particle is usually
small to minimize computational cost. While simple, clus-
tering is unappealing because of its lack of continuity in the
curvatures and tangents on the particle boundaries, which
results in clustered particles appearing ‘clumpy’ at locations
where spheres overlap or clump, and the curvature at any
point on the resulting boundary always positive. The geo-
metrical anomalies associated with the clustering technique
prevents it from enabling higher fidelity contact mechanics
calculations without further numerical treatment.

While the influence of particle morphology on proper-
ties such as strength, permeability, etc. is well established
[2,18], it appears that grain-scale modeling and characteri-
zation efforts have remained compartmentalized, as exem-
plified by a relative lack of connection between real exper-
iments and numerical studies. In cases where discrete mod-
eling of real granular materials with non-trivial geometries
were attempted, crude discrete models with large geometri-
cal biases and significantly calibrated parameters have been
widely employed. Interestingly, the effects of geometrical
bias on grain-scale response from use of simplified geome-
tries are largely not discussed or quantified in the literature.
It appears that the current gap between grain-scale model-
ing and characterization technologies is quite large. While
imaging techniques are becoming increasingly sophisticated
[19–23], there continues to be a lack of effort to bring dis-
crete granular simulation technology closer to the engineer-
ing application level. The development to be discussed in this
paper may help in narrowing the gap between grain-scale
modeling and characterization.

Our earlier work on GEM has focused on particles geome-
tries that are angular but strictly convex. While GEM has
been shown to improve particle morphology representation
beyond disks and spheres, it was still limited in two ways.
First, the increase in rolling resistance of angular but con-
vex geometries relative to disks is limited. For instance,
rolling resistance provided by distributed contact reaction
over flat boundaries cannot be represented using strictly con-
vex shapes. Moreover, interlocking behavior between non-
convex particles, which contributes significantly to mobilized
strength and stability [16,17], is not accounted for. Second,
the generation of strictly convex NURBS shapes is very diffi-
cult and restrictive from a modeling perspective. This is even
more so when dealing image data of real particle shapes and
obtaining strictly convex boundaries through a fitting proce-
dure is not possible in most cases. We emphasize that this

difficulty is not due to the limitation of NURBS itself but
rather the need to deal with contact algorithms for NURBS,
which were undeveloped in GEM at the time. A contact algo-
rithm capable of dealing with general non-convex NURBS
particles, to be described in this paper, would eliminate the
above two limitations. As a result, a more faithful represen-
tation on the contact force distributions over particle bound-
aries is obtained and the image data-to-analysis pipeline (see
for e.g., [24]) is significantly streamlined.

In this work, we target applications with realistic mate-
rial properties and deformation regimes in which standard
DEM either performs poorly or simply fails; namely, in gran-
ular systems comprising of rigid or highly stiff particles and
subjected to quasi-static or dynamic flow conditions. In the
context of these applications, we build upon two important
developments that allow us to extend GEM to handle non-
convex particles:

• We extend a variational formulation of granular contact
dynamics (CD) recently developed for convex particles
[25–28]. This particular formulation, which is employed
in this paper, is appealing because it provides a way for CD
to be easily implemented and solved using off-the-shelf
mathematical programming solvers. The most prominent
advantage of this formulation is its automatic inclusion
of the quasi-static limit, enabling quasi-static modeling
without the need for adjusting damping parameters or time
step. The advantages of CD over DEM in the context of
our current applications, as well as their differences, have
been discussed in [28].

• We generalize the node-to-surface approach typically used
in the contact treatment of finite element models [29] to
a ‘knot-to-surface’ approach to enable the contact treat-
ment of non-convex particles described using NURBS.
The latter is similar to that of a recent approach used in
the contact treatment of frictionless bodies in isogeomet-
ric analysis [30]. The key difference and novelty here is on
the simultaneous treatment of contact elasticity and fric-
tional contact within the aforementioned CD formulation,
as well as the ability to perform contact calculations for
granular systems, which contain a large number of parti-
cles.

This paper describes the details on how each of the above
items are implemented and is structured as follows. First, we
describe the contact problem and summarize the variational
formulation of the general contact problem for frictional par-
ticles in Sect. 2. Then, we lay out the implementation details
of the proposed contact algorithm in Sect. 3. Finally, we
present two numerical examples in Sect. 4 to demonstrate
the effects of non-convexity before conclusions are drawn
in Sect. 5. For clarity of presentation and implementation
details, we limit our discussion to the two-dimensional case.
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An extension of the method to the three-dimensional setting
is outlined in the Appendix at the end of this paper.

Remark 1 Isogeometric analysis is a computational mechan-
ics technology that uses basis functions emanating from com-
puter aided geometric design (CAGD), such as B-splines,
NURBS, and T-splines. It has been shown that isogeometric
analysis provides more precise and efficient geometric rep-
resentations [3]. The advantages of isogeometric basis func-
tions for the representation of particle morphology in discrete
simulations have been discussed in [1,31].

2 Governing equations for frictional particles

The formulations from [25–28] carry forward completely to
the non-convex case without any change. As such, simplicity
of implementation is retained. Here, we present a summary
containing only those key equations required for the com-
pleteness of presentation. Quantities that are particular to the
contact problem of non-convex particles are noted. Where
necessary, we point the reader to the appropriate references
for further details.

2.1 General contact problem definition

We consider a general two-particle contact problem, with the
particles in question to be potentially contacting at the initial
time t0. Referring to Fig. 1, let Wi be the set of potential
contacts associated with particle i and denote by I ∈ Wi a
particular contact point in the set. Following a master-slave

Fig. 1 Illustration of the problem of contact between two particles (�i

and � j ) at time t0. See text for a description of the associated quantities

approach to describe the contact problem [29], a contact point
on the slave particle � j is denoted by x while the contact
point on the master particle is defined to be the closest point
projection of x onto the boundary of the master particle:

ȳ ≡ ȳ(x) = min
y∈�i

‖x − y‖ (1)

As shown in Fig. 1, the contact plane at a potential contact
point I is described on the master boundary �i by the normal
n0 and tangent t0 at point ȳ. The gap at time t0 is then defined
as

g0(x) = (x − ȳ(x))T n0 (2)

with the non-penetration constraint requiring that g ≥ 0. The
above convention is similar to that used in the definition of
contact problems in the finite element method (FEM) [29].
The computation of the signed gap values and related contact
quantities within the proposed contact algorithm is described
in the next section.

2.2 Notation for general multi-particle system

To facilitate the variational formulation of the governing
equations, we first set the notation for the general multi-
particle system that will be used throughout this paper. A par-
ticle i has mass mi and mass moment of inertia J i . The posi-
tion and rotation of the particle are denoted by xi = (xi , yi )T

and αi , respectively, and their corresponding translational
and rotational velocities by vi = (vi

x , v
i
y)

T and ωi . We intro-
duce the following matrix or vector quantities that cover gen-
eral n-particle systems:

M = diag(m1, m1, . . . , mn, mn)

J = diag(J 1, . . . , J n)

x = (x1, . . . , xn), v = (v1, . . . , vn)

α = (α1, . . . , αn),ω = (ω1, . . . , ωn)

g =(g1, . . . , gN ), p=(p1, . . . , pN ), q =(q1, . . . , q N ),

(3)

where M is the diagonal matrix containing the particle
masses and J is the diagonal matrix containing the parti-
cle mass moments of inertia. The kinematical quantities are
the vectors of particle translations x and rotations α, and their
corresponding velocities v and ω. The contact quantities are
given by the vectors p, q and g, which are the contact nor-
mal forces, shear forces and gap values, respectively, each at
N number of contacts.

A quantity, which at the initial time is denoted by �0,
would then be denoted at time t0 + �t by �. For example,
x0 and v0 are the known positions and velocities at time t0
while x and v are the corresponding quantities at time t0+�t .
With this notation, an increment of a quantity will be denoted
by �� = � − �0.
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2.3 Discrete update equations

Under the discretization of the equations of motion using the
θ -method [32], the resulting discrete update equations for
translation and rotations are given by:

M̄�x = f̄ 0 = f ext + M̄v0�t

J̄ω0�t = m̄0 (4)

In the above, the matrices M̄ and J̄ contain the scaled particle
masses and mass moments of inertia, respectively:

M̄ = 1

θ�t2 M

J̄ = 1

θ�t2 J (5)

The effective translational force vector f̄ 0 contains the exter-
nal load vector f ext, which we have assumed to be constant
(for e.g., due to gravity). The vector m̄0, with ω0 being the
angular velocities, is the vector containing the external rota-
tional moments, which may be applied on the particles.

The translational and angular velocities are calculated,
respectively, as

v = 1

θ

[
�x
�t

− (1 − θ)v0

]

ω = 1

θ

[
�α

�t
− (1 − θ)ω0

]
, (6)

where 0 ≤ θ ≤ 1. The stability properties of the θ -method
are well known: for θ = 1

2 an unconditionally stable and
energy preserving scheme is recovered, for θ > 1

2 the scheme
is unconditionally stable and dissipative, and for θ < 1

2
stability depends on the time step. In the context of binary
collisions, the algorithmic energy dissipation that occurs for
θ > 1

2 can be related to the physical dissipation associated
with impact and thus to the restitution coefficient. Indeed, as
shown in [25], a value of θ = 1

2 corresponds to an elastic col-
lision while θ = 1 reproduces a perfectly inelastic collision.

2.4 Variational formulation of contact problem

Following the formulation procedure as described in [25–
28], the resulting discrete mixed force-displacement problem
including contact constraints takes the form:

min
�x,�α

max
p, q

{
1
2 �xT M̄�x − �xT f̄ 0

}

+
{

1
2 �αT J̄�α − �αT m̄0

}

+
{
�xT (N0 p + N̂0 q) − gT

0 p − �αT
(

Rq
0 q + R p

0 p
)}

−
{

1

2
pT C N p + 1

2
�qT CT �q

}

subject to ‖q‖ − μ p ≤ 0, p ≥ 0 (7)

With a slight abuse of notation, we have denoted the vector
containing the absolute values of the shear forces by ‖q‖. The
matrix N contains all the normals associated with potential
contacts n = (nx , ny)

T while the matrix N̂ has the same
form contains entries t = (−ny, nx )

T , i.e., the tangent vector
defined as the 90◦ counterclockwise rotation of n. We note
the presence of the term with incremental shear �q = q−q0,
which requires the tracking of shear forces at contact points
and makes the problem history-dependent.

In Eq. (7), the matrix Rq
0 contains the contribution of the

total angular momentum balance from the tangential forces
and contains entries RT

i I n0 where Ri I is the moment arm
vector extending from the centroid of particle i to the con-
tact point ȳ. The matrix R p

0 contains the contribution of the
total angular momentum balance from the normal contact
forces and contains entries −RT

i I t0. Both RT
i I n0 and −RT

i I t0

are signed moment arms and their signs depend on whether
the associated contact force induces a positive (clockwise)
or negative moment on the particle. A similar description
applies to the slave particle using its contact normal −n0 and
tangent −t0. The matrices C N and CT contain the compli-
ances 1/kN and 1/kT on the diagonal, where kN and kT are
the normal and tangential contact stiffnesses, respectively.
Finally, the Coulomb criterion is imposed with μ = tan φ

being the effective inter-particle friction coefficient and φ

is the effective friction angle at the scale below the particle
angularity level.

2.5 Optimality conditions

Following the approach in [25], the first-order KKT con-
ditions associated with Eq. (7) comprise of linear moment
balance:

M̄�x + N0 p + N̂0q = f̄ 0 (8)

balance of angular momentum:

J̄�α − Rq
0 q − R p

0 p = m̄0 (9)

sliding friction conditions:

‖q‖ − μ p + s = 0, s ≥ 0 (10)

diag(s)λ = 0,λ ≥ 0, (11)

where s is the slack vector, introduced to enforce equality,
and kinematics:

NT
0 �x + μλ = g0 + C N p (12)

N̂0�x − (RqT
0 + R pT

0 )�α = sgn(q)λ + CT �q, (13)

where sgn is the signum function. The kinematics in Eqs. (12)
and (13) pertain to the associated sliding rule, which leads to
an apparent dilation proportional to the friction coefficient μ.
However, as described in [25], this dilation can be viewed as
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an artifact of the time discretization which, with the excep-
tion of a few pathological cases, is gradually reduced as the
time step is reduced. Moreover, it was shown in [25] that the
dilation, even for rather large time steps, is negligible over
a range of common conditions including both instances of
highly dynamic and relatively unconfined flows as well as
confined quasi-static deformation processes.

2.6 Force-based problem

Finally, it is possible to cast Eq. (7) in terms of the following
force based problem:

minimize
1

2
rT M̄

−1
r + 1

2
tT J̄

−1
t + gT

0 p

+ 1

2
pT C N p + 1

2
�qT CT �q

subject to r + N0 p + N̂0q = f̄ 0

t − Rq
0 q − R p

0 p = m̄0

‖q‖ − μ p ≤ 0, p ≥ 0,

(14)

where t are the dynamic forces associated with the rotations,
i.e., torques.

2.7 Static limit

Omitting the dynamic forces r and t from Eq. (14) gives rise
to the following static problem which is valid in the limit of
�t tending to infinity:

minimize gT
0 p + 1

2
pT C N p + 1

2
�qT CT �q

subject to N0 p + N̂0q = f̄ ext

Rq
0 q + R p

0 p = 0

‖q‖ − μ p ≤ 0, p ≥ 0

(15)

The above principle is useful for quasi-static problems gov-
erned by an internal pseudo-time rather than physical time.
Examples include common soil mechanics laboratory tests
such as triaxial tests, quasi-static soil-structure interaction
problems such as cone penetration, and various applications
in the earth sciences where the time scales are such that
the deformations are of a quasi-static nature, e.g. [33,34].
We note that in the quasi-static formulation, the accuracy of
the scheme would then depend on the increment size of the
applied boundary conditions (for e.g., wall displacements or
stresses).

2.8 Solution procedure and computational complexity

We observe that Eqs. (14) and (15) are essentially stan-
dard quadratic programming problems. In this work, the
primal-dual interior-point solver in MOSEK [35] is used

for the solution of both problems. The solution and stor-
age costs associated with these problems are usually justi-
fied by the larger analysis steps that can be taken when using
implicit algorithms. This is more so for systems comprised
of rigid or highly stiff particles in which explicit solution
procedures perform poorly or simply fails. Moreover, large-
scale mathematical programming solvers with sparse stor-
age (for e.g., [35,36]) are becoming widely available and
increasingly efficient and robust. More recent solvers such
as MOSEK [35] also include multi-core or multi-threaded
capabilities.

The performance of the primal-dual interior-point method
in the context of our proposed contact dynamics formulation
has been described in detail in [25] and the following prop-
erties are summarized: (1) insensitivity of iteration count to
problem size, (2) arithmetic complexity that is equivalent to
standard Newton–Raphson schemes, and (3) highly robust
(almost never fails or stalls). The overall cost is therefore
comparable to implicit Newton–Raphson-type schemes used
in nonlinear finite element analysis. For details on the funda-
mental theory and implementation of interior-point methods,
we refer the reader to [37].

3 Contact algorithm

The CD formulation of either Eq. (14) or (15) described in
the previous section offers great simplicity and significant
effort reduction in contact implementation in that the only
required information are the signed gap values at the ini-
tial time g0. In this section, we describe the implementation
of the proposed contact algorithm for the general contact
problem described in Sect. 2.1 in the context of NURBS. We
describe each of the required components for implementation
followed by algorithm boxes to describe the procedures in
detail.

3.1 Non-uniform rational basis-splines (NURBS)

The literature on NURBS is extensive and relatively mature,
and our purpose here is not to present all of its elements but
rather those that are needed for completeness of presenta-
tion. For an exhaustive description of NURBS, the reader is
referred to [3,38–40]. The NURBS curve is defined paramet-
rically as

C(u) =
∑n

i=0 Ni, p(u)wi Pi∑n
j=0 N j, p(u)w j

, (16)

where u is the curve parameter, Ni,p is the i th B-Spline basis
function of degree p defined by the Cox-de Boor recursion
formula [41,42] as follows:
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Ni, 0(u) =
{

1 if u ∈ [ui , ui+1)

0 otherwise

Ni, p(u) = u − ui

ui+p − ui
Ni,p−1(u)

+ ui+p+1 − u

ui+p+1 − ui+p
Ni+1,p−1(u)

(17)

and wi ≥ 0 are the weights, which affect the effective con-
tribution of control point Pi on the overall shape of the curve
C(u). In the above, the degree p = 0, 1, 2, 3, etc. refers to
constant, linear, quadratic, cubic, etc., polynomials.

The key elements of NURBS are [40]:

1. A set of n + 1 control points Pi (0 ≤ i ≤ n),
2. A knot vector U of m + 1 knots (0 = u0 ≤ u1 ≤ · · · ≤

um−1 ≤ um = 1), and
3. A degree p satisfying m = n + o where o = p + 1 is the

order of the curve.

The number of knots m + 1 must be equal to the num-
ber of control points n + 1 plus the curve order p + 1. The
control points need not lie on the curve itself. Rather, con-
trol points act as a scaffold that controls the geometry [3].
Piecewise linear interpolation of the control points effectively
furnishes a control polygon bounding the geometry. In our
work, we describe all particle geometries using NURBS of
cubic degree p = 3.

The curve parameter is described through the knots in the
knot vector U of the B-Splines. The non-decreasing knots ui ,
i = 0, 1, ..., m partitions the parameter space into segments
of half-open intervals [ui , ui+1), which are also called knot
spans. The knot span can be of zero length since the knots
need not be distinct, i.e., they can be repeated. The number
of times a knot value repeats itself is called multiplicity k.
We use the non-periodic (or clamped) NURBS, in which the
knot vector takes the form

U = {0, 0, . . . , 0︸ ︷︷ ︸
p+1

, u p+1, . . . , um−p−1, α, α, . . . , α︸ ︷︷ ︸
p+1

} (18)

If the internal knots are uniformly spaced, the curve is infi-
nitely continuously differentiable in the interior of a knot
span, and (p−k)-times continuously differentiable at a knot.
If k = p, we say that the knot has full multiplicity; the mul-
tiplicity cannot be greater than the degree. Multiplicity of
knots provides a way to specify the continuity between seg-
ments. For example, a full multiplicity knot in the knot vector
(away from the ends) means that a kink or cusp is present in
the curve (see for e.g., Fig. 2). In general, the knots can be
unequally spaced.

Finally, we close the curve using the following approach:
the first and last control points are made coincident, i.e., P0 =
Pn and the two coincident and adjacent control points are
made collinear to maintain curvature continuity.

Remark 2 Polygonal bodies can be generated using NURBS
curves having degree p = 1 and full multiplicity k = p at

Fig. 2 Schematic illustration of
a NURBS curve. The curve
degree p is 3 (cubic). The knots
ui and weights w j are listed in
the vectors U and w,
respectively. The kink in the
curve is due to full multiplicity
k = p = 3 in which the
knot/parameter value u = 0.75
is repeated p = 3 times

Fig. 3 Linear elastic contact
law
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each internal knot. In this case, existing polyhedra-based con-
tact algorithms are fully applicable. In this paper, we focus
on the case of smooth non-convex bodies described using
NURBS, with p > 1 where the normals and tangents are
well-defined everywhere on the boundary.

3.2 Boundary knot positioning

We generalize the node-to-surface approach typically used
in the contact treatment of finite element models [29] to
a ‘knot-to-surface’ approach to enable the contact treat-
ment of non-convex particles described using NURBS. Fol-
lowing a master-slave approach, the contact points associ-
ated with the slave particle are represented by knots (i.e.,
parameter values) while the master boundary serves as the
constraint boundary for non-penetration of contact points.
This is necessary for computational tractability, as well
as for tracking the incremental slip and contact gain or
loss around non-convex boundaries of potentially contacting
particles.

While similar to nodal discretization in FEM, we empha-
size that the key difference here is that the positioning of
contact points by knots does not change the particle geome-
try; the knot or parameter value simply runs continuously
along the boundary. For simplicity, we have selected the
knot positions a priori and in sufficient number (between
40 and 60 in our examples here) to represent the particle
geometry and contact problem appropriately. More com-
plicated schemes such as the adaptive positioning of con-
tact points to reduce the number of knots, as well as more
advanced interface contact discretization strategies may be
possible; further research, however, is required to deter-
mine the feasibility of these ideas in the context of granular
simulations.

3.3 Contact elasticity

In this paper, we have only considered the case of linear
contact elasticity as shown in Fig. 3 but extension to non-
linear elasticity is entirely possible as is the consideration
of more complex contact models incorporating hardening,
viscous effects, etc.

The resulting scheme bears some similarity to standard
DEM schemes in that the consideration of a finite contact
stiffness implies the possibility for an elastically reversible
inter-particle penetration. The inclusion of contact elastic-
ity reproduces the more basic case of rigid particles in the
limit of the contact stiffness tending to infinity. Moreover,
in contrast to standard DEM, there are no algorithmic reper-
cussions from operating with a large or, in the extreme case,
infinite stiffness. Indeed, the same algorithm is used regard-
less of the contact stiffness, with perfect rigidity being a lim-
iting case that allows for certain simplifications. For exam-

ple, in the limiting case, both C N and CT in either Eq. (14)
or (15) are zero, and the associated quadratic terms drop
out from the formulation. In particular, this means that no
information of the shear forces needs to be carried over
from one time step to the next. As a result, contact stiff-
ness values that are representative of real materials (for
e.g., steel or rock) can be used without causing numerical
difficulties.

The static problem described by Eq. (15) reveals a number
of interesting properties related to the indeterminacy of force
networks in granular media. It is well known that rigid par-
ticles lead to a situation where the force network solution is
non-unique [43–46]. Setting C N = CT = 0 in Eq. (15) leads
to a linear program where global optimality may be achieved
by more than one set of forces. Conversely, for finite values
of C N and CT , the solution is unique, i.e. there is a unique set
of contact forces leading to the optimal value of the objective
function.

3.4 Implementation of contact algorithm

The key procedure required for the implementation of the
proposed contact algorithm is the closest point projec-
tion (CPP) as described in Algorithm 1. Here, the con-
tact points on the slave boundary are projected onto the
master curve, from which the signed gap values can then
be calculated. The minimization problem in Algorithm 1
can be solved using either gradient-based or derivative-free
constrained optimization procedures. Here, we choose the
derivative-free procedure since it is simpler and does not
require the evaluation of the derivatives of the objective
function. As a simple additional optimization, Algorithm
2 first isolates the spans that are nearest to a particular
contact point by checking that the dot product of normals
at a contact point and its corresponding closest-projected
point is negative. This means that only the spans on the
master curve that are within the direct sight of a contact
point on the slave boundary are used in the CPP opera-
tion. Combining the above two algorithms, Algorithm 3
describes the global procedure to determine all the signed

Algorithm CPP(C , x, si )

Input: Curve C , point x, span si i.e., endpoints ui and ui+1

associated with span i

Output: Knot value u∗ corresponding to closest projected

point on curve C

1: Solve for u∗ : minimize
u

f (u) subject to ui ≤ u ≤ ui+1

where f (u) = ‖C(u) − x‖
Algorithm 1: Closest point projection (CPP) algorithm
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Algorithm GET_SPANS(C i (u), C j (v))

Input: master C i (u) and slave C j (v) curves, each with a

preassigned discrete set of

knot values: ul , l = 1, . . . , ni and vk, k = 1, . . . , n j

Output: Container V containing the nearest spans on master

curve for each slave knot value

1: for k = 1, . . . , n j do {loop over knot values vk on slave

curve}

2: Spatial search to find nearest knot value ul on master

curve

3: Compute the dot product of normal vectors: d =
n(ul)

T
masternslave(vk)

4: if d < 0 then

5: Store in container the span corresponding to ul on

master curve

6: end if

7: end for{end slave knot values loop}

Algorithm 2: Algorithm to isolate nearest spans on master
curve

gaps over all particles, which are then stored in the vec-
tor g0 in either Eq. (14) or (15). The broad-phase contact
detection aspect of Algorithm 3 is standard (see for e.g.,
[15]).

By considering the knot spans as segments, our pro-
posed contact algorithm has essentially the same computa-
tional complexity as polyhedra-based approaches employed
in either CD [9] or finite element contact algorithms [29].
We note that for a given prescribed resolution, however,
NURBS has the advantage of carrying significantly less
geometric information compared to polyhedra, i.e., less
number of NURBS control points compared to number
of polyhedra nodes [1]. For quasistatic applications, fur-
ther efficiency enhancement to the proposed contact algo-
rithm can be achieved by taking advantage of temporal
coherence in which the configuration of particles from one
time step to the next changes little. In this case, an incre-
mental approach similar to that of [47] may be adapted
to minimize the number of nearest span computations
(Algorithm 2).

Remark 3 If the curves are locally convex, the separating
hyperplane algorithm described in [31] can be employed
as an additional refinement. For general smooth non-convex
bodies, however, there is no local convexity everywhere in
general. The proposed contact algorithm would handle this
situation effectively and robustly.

1: Run broad-phase contact detection

2: for all Potentially contacting pairs of NURBS curves do

3: Let one of the curves be the master C i (u) and the other

the slave C j (v),

each with a preassigned discrete set of knot values:

ul , l = 1, . . . , ni and vk, k = 1, . . . , n j

4: Run Algorithm 2: fill container V =

GET_SPANS(C i (u), C j (v))

5: for k = 1, . . . , n j do {loop over knot values vk on slave

curve}

6: Set x := C j (vk)

7: Get span on master curve closest to x from container

V , si (x)

8: Run Algorithm 1: compute u∗ = CPP(C i , x, si (x))

9: Set ȳ := C i (u∗)
10: Get normal n0 and tangent t0 vectors at ȳ

11: Compute gap g0(x) = (x − ȳ)T n0

12: end for{end slave knot values loop}

13: end for{end contacting pairs loop}

Algorithm 3: Algorithm to compute gap values for contact

4 Numerical examples

In this section, we present two examples that highlight the
effects of particle morphology on the macroscopic response
of granular assemblies, as well as the robustness of our pro-
posed method. In particular, we compare responses of assem-
blies with three levels of particle angularity: discs, angular
but (strictly) convex, and non-convex particles.

4.1 Biaxial compression

Biaxial compression simulations using the static limit formu-
lation in Eq. (15) are carried out on a rectangular assembly
of initial width W0 and initial height H0 containing 1,520
particles. First, an assembly with GEM non-convex parti-
cles is prepared using 16 different shapes. Then, two addi-
tional assemblies—one with angular convex GEM particles
and another with discs—are also prepared. The particles in
these assemblies are obtained by matching average particle
diameters of the 16 non-convex shapes. Effectively, spheric-
ity is kept constant and a comparison of effects of angularity
is made. The three assemblies with their corresponding par-
ticle shapes are shown in Fig. 4.

The non-convex and angular GEM assemblies have an ini-
tial porosity of approximately 0.152, while the disc assem-
bly has an initial porosity of approximately 0.176. The
higher porosity of the disc assembly points to the inability
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Fig. 4 Biaxial compression: initial and final (εa = 0.21) configurations with kN = 108
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Fig. 5 Biaxial compression: response with kN = ∞

Fig. 6 Biaxial compression: response with kN = 108
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Fig. 7 Biaxial compression: response with kN = 106

Fig. 8 Biaxial compression: response with kN = 105
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Fig. 9 Column drop test with inter-particle friction coefficient of μ = 0.5: comparison between non-convex and angular particles

of discs to match porosity by just simply matching aver-
age particle diameters. Indeed, a wider distribution of disc
sizes would be required in this case to match the initial
porosity of 0.152, which in turn would substantially increase
the number of particles. In this regard, the use of discs to rep-
resent particle geometry introduces an unavoidable geometri-
cal bias, which leads to packings with higher porosities [17].
Nevertheless, in this example, we retain the disc assembly
for comparison with the other two GEM assemblies. Two
inter-particle friction coefficients μ = 0.3 and 0.5 are used
to gauge the effect of inter-particle friction. The upper wall is
moved downwards while the applied stress on the right wall

σ3 is maintained at 125 units. A total of about 150 steps are
used to impose a total axial strain of approximately 0.21. The
left and bottom walls are stationary. All walls are frictionless.

To show the effects of particle elasticity, we perform
the tests with several values of particle elasticity: kN =
∞, 108, 106, 105. The tangential stiffness is set at kT =
2kN /3, which is within the range for a physically consistent
volumetric response in granular materials [26,48]. At every
time step, the current width W and current height H of the
assembly box are tracked, and the stresses σ1 and σ3 com-
puted using the contact forces of the particles impinging on
the top and right walls, respectively. The results in terms of
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Fig. 10 Column drop test with inter-particle friction coefficient of μ = 0.5: comparison between non-convex and disc particles

deviatoric stress σ1 −σ3 versus axial strain, εa = 1− H/H0,
and volumetric strain, εv = 1 − W H/(W0 H0), versus axial
strain are shown in Figs. 5, 6, 7 and 8. We see that the macro-
scopic response at kN = 108 is close to rigid. As kN is low-
ered, a more elastic initial response is observed in which the
sharp initial peak is progressively suppressed and the peak
response lowers slightly. At kN = 105, an initial slope in
the deviatoric stress becomes visible and the corresponding
volumetric strain response shows an initial compaction fol-
lowed by volume expansion. The deformed configurations of
the three assemblies for the case of kN = 108 are shown in
Fig. 4.

In all cases, we note the following observations. For a par-
ticular assembly, the macroscopic deviatoric stress reaches
a constant value that is independent of the elastic properties

while the rate of volumetric strain tends to zero, in agree-
ment with standard continuum plasticity theories. Comparing
across the three assemblies with different particle angularity
levels, however, we observe that the both the peak strength
and dilatancy increase with increasing angularity i.e. from
discs to non-convex. This latter observation is consistent with
experimental evidence of increased strength with increasing
angularity of the particles [2].

4.2 Column drop test

We consider a column with an initial height to width ratio
H0/L0 of approximately 1.68. The base supporting the col-
umn has a friction coefficient of μbase = 0.5 while a smooth
vertical wall, representing a symmetry boundary, is placed on

123



270 Comp. Part. Mech. (2014) 1:257–275

Fig. 11 Configurations of
columns with inter-particle
friction coefficient of μ = 0.5 at
step 1,600: approximate
dimensions relative to column
with non-convex particles

Fig. 12 Column drop test with inter-particle friction coefficient of μ = 0: comparison between non-convex and angular particles
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Fig. 13 Column drop test with inter-particle friction coefficient of μ = 0: comparison between non-convex and disc particles. We note that at step
3,200, the column with disc particles continues to flow; a final layer thickness of 1 particle is reached as the simulation is progressed

one side of the column. Three columns with 1520 particles
of increasing angularity - disc, angular but convex, and non-
convex, as shown at Step 0 in Figs. 9 and 10, are constructed
using particles from the sixteen different shapes described in
the biaxial test example. These particles are dropped into the
rectangular box forming the column and letting them settle
under gravity. Drop test simulations are then conducted by
removing one of the side walls of the box and letting the
column spread under gravity. The simulations are carried out
using the dynamic formulation in Eq. (14) with θ = 0.7 and
a time step of �t = 0.05 for two inter-particle friction coef-
ficients μ = 0.5 and μ = 0. We set the contact elasticity to
be kN = 108 and kT = 2kN /3 for all columns.

We compare the response evolutions of the angular GEM
and disc columns against the non-convex GEM column as

shown in Figs. 9 and 10. The final configurations of the three
columns for μ = 0.5 are shown in Fig. 11. The slopes of
the final spreads of the angular GEM and disc columns are
approximately 12◦ and 9◦, respectively. More prominently,
the slope in the non-convex GEM column is 17◦. This is a
5◦ and 8◦ increase from the angular GEM and disc columns,
respectively, which are quite significant. Relative to the non-
convex GEM column, the final spreads of the angular GEM
and disc columns are approximately 14 and 45 percent wider.
These observations are consistent with the increase of rolling
resistance with increasing angularity.

For the case of μ = 0, the response evolutions of the
angular GEM and disc columns as compared with the non-
convex GEM column are shown in Figs. 12 and 13, with the
final configurations of the GEM columns shown in Fig. 14.
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Fig. 14 Configurations of
columns with inter-particle
friction coefficient of μ = 0 at
step 3,200: approximate
dimensions relative to column
with non-convex particles. We
note that at this point in time,
the column with disc particles
continues to flow; a final layer
thickness of 1 particle is reached
as the simulation is progressed

At Step 3,200, the two GEM columns have stopped flowing
while the disc column continues to flow and as the simulation
is progressed, a final layer thickness of 1 particle is reached.
Essentially, without rolling resistance, the disc column sim-
ply ‘melts’ away. On the other hand, the GEM columns main-
tain a well-defined spread, even at zero inter-particle friction,
due to the rolling resistance provided by angular and non-
convex particles. As expected, the non-convex GEM column
has a smaller spread due to increased angularity in the non-
convex particles.

5 Conclusion

We have presented a new contact algorithm that enables the
GEM to model non-convex particles. Its implementation is
very simple, with the main operation being the closest point
projection. The overall simplicity of GEM is retained by
adopting a variational framework of contact dynamics, which
allows the use of realistic contact stiffnesses and the system
can be solved using reasonably large time steps. With this new
contact algorithm, GEM is able to represent, through Non-
Uniform Rational Basis Splines (NURBS), particle morpho-
logical features of sphericity and angularity to their fullest
extent. Modeling flexibility is also greatly enhanced, stream-
lining the image data-to-analysis pipeline.

Through numerical simulations of the biaxial compres-
sion and column drop tests, we demonstrated and high-
lighted the ability of GEM to capture the effects of increased
rolling resistance, associated with increased angularity in and
interlocking between non-convex particles, on the macro-
scopic response. These effects are manifested macroscopi-
cally through an increase in the mobilized shear strength and
dilatancy under biaxial compression, and a smaller spread
and higher angle of response under a column drop test. These
observations are consistent with reported experimental obser-
vations. The effect of geometrical bias from the use of discs to

match average particle diameter on packing porosity, which
in turn affects mobilized strength, is also noted.

In the present work, we have focused on the numerical
verification aspect of GEM. Future research on GEM would
include further algorithmic improvements on contact algo-
rithms and solution procedures, as well as on the extension
of non-convexity into the three-dimensional setting. At the
present state, however, GEM has sufficient capabilities to
allow for its application in lab-scale validation with experi-
ments similar to that described in [49], and this endeavor is
currently under preparation. While the comparison of numer-
ical and experimental micromechanical quantities remains
challenging due to system sensitivities and uncertainties, it
is expected that GEM would be able to provide access to
contact topologies, forces and kinematics that are unique to
natural granular media with realistic particle morphologies.
This would bring us a step closer toward the goal of complete
characterization of natural granular media for engineering
applications.

Appendix 1: Three-dimensional formulation

The two-dimensional formulation discussed in this paper
may be extended to three dimensions in a number of ways.
All appropriate physical constraints of the three-dimensional
contact problem can be found in [26] and hence, will not
be repeated here. The exception here is that we need to
deal with arbitrary-shaped three-dimensional particles in
which the closest-point projection operation and integra-
tion of rotational degrees of freedom need special atten-
tion.

A detailed discussion of closest-point projection algo-
rithms for NURBS surfaces is beyond the scope of this paper.
The design of an efficient closest-point projection for con-
tact operations in granular contact dynamics is currently in
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progress and will be reported as a separate publication. Here,
we simply note that the minimum distance problem given by
Eq. (1) and gap definition given by Eq. (2) remain unchanged
and computationally feasible. Generally, a two-stage opti-
mization procedure is required, first to isolate the potential
area of global minima, followed by a local optimization pro-
cedure to finalize the location of the closest point on the
master surface. Again, simplicity of implementation is main-
tained by casting the closest-point projection operation as a
constrained optimization problem. In this area, several ideas
from the realm of computer graphics may be applicable (see
for e.g. [50]).

Kinematically, the non-trivial difference between the
two- and three-dimensional case is a result of rotations
of arbitrary-shaped particles. In the following, we outline
one possible approach to integrate the rotational degrees of
freedom in three dimensions. Without loss of general-
ity, we consider the dynamic problem without contact
elasticity. Unless otherwise noted, all quantities pertain to
a single particle in the principal body frame.

The discretization of rotational equilibrium equations
using the θ -method gives

I
ω − ω0

�t
+ skew [ω] Iω = m0 (19)

with the update equation for the (body frame) rotational
degrees of freedom as (analogous to Eq. (6)b):

ω = 1

θ

[
α − α0

�t
− (1 − θ)ω0

]
(20)

and where I is the time-independent tensor of (principal)
inertia in the body frame, m0 are the external moments in
the body frame, and skew [ω] is the skew-symmetric matrix
defined by skew [ω] ω = 0. We observe that the rotational
equilibrium equations are nonlinear due to the presence of
the products of angular velocities. This nonlinearity can be
accounted for within the mathematical programming frame-
work proposed in this paper as follows. We first define the
(nonlinear) residual equations as

r(ω) = I
ω − ω0

�t
− skew [ω] Iω − m0 (21)

A truncated Taylor expansion about the kth iterate ωk

then gives the following iterative procedure for the (uncon-
strained) solution of ω

J |ωk
δω = r(ωk)

ωk+1 = ωk + δω, ωk=0 = ω0, (22)

where J = − ∂ r
∂ω

. To cast this iterative procedure along with
all the physical constraints of the problem as a quadratic pro-
gramming problem, we note from Eq. (20) that the variation
of ω is simply (since ω0 and α0 are fixed)

δω = δα

θ�t
(23)

which allows us to rewrite the iterative procedure in Eq. (22)
as

J̄
∣∣
ωk

δα = r(ωk)

αk+1 = αk + δα, αk=0 = α0, (24)

where J̄ is the effective tensor of inertia, calculated to be

J̄ = 1

θ�t
J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I1

θ�t2

−ω3(I2 − I3)

θ�t

−ω2(I2 − I3)

θ�t

−ω3(I3 − I1)

θ�t

I2

θ�t2

−ω1(I3 − I1)

θ�t

−ω2(I1 − I2)

θ�t

−ω1(I1 − I2)

θ�t

I3

θ�t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(25)

We see that Eq. (24)a has an identical structure to Eq. (9)
except now the problem needs to be solved incrementally
within each time step. The necessary modification to the for-
mulation then entails defining an incremental problem within
each time step and replacing the rotational equilibrium equa-
tions of the form given by Eq. (9) with Eq. (24)a.

We note several properties of the effective tensor of inertia
given by Eq. (25) in relation to the proposed mathematical
programming framework. First, the terms are functions of
the body frame angular velocities. Second, the effective ten-
sor of inertia is no longer diagonal. In the force-based prob-
lem described by Eq. (14), the inverse of the global moment
of inertia matrix is required. However, recognizing that the
global moment of inertia is now block diagonal, the inverse
of the global moment of inertia is another block diagonal
matrix, which is composed of the inverse of 3×3 blocks and
these can be calculated efficiently. Finally, the non-symmetry
of J̄ poses no problem since the associated quadratic term
for a non-symmetric matrix Q can be written as

δαT Q δα = 1

2
δαT ( Q + QT ) δα (26)

which implies that a non-symmetric matrix Q can be
replaced by 1

2 ( Q + QT ).
Computationally, a sequence of quadratic programming

problems is solved within a time step for the incremental
unknowns (δx, δα) until a prescribed tolerance is reached.
We note that we can formulate the translational problem
incrementally by simply replacing �x with δx; this is pos-
sible because the translational equilibrium equations already
have a linear structure. Finally, we need to update the ori-
entation of each particle. Here, a singularity-free quater-
nion approach [51] may be taken. We denote the quater-
nion vector representing the orientation of the particle as
z = (zi ), i = 1, . . . , 4. The required orientation matrix of
each particle can be calculated as a function of quaternion
values as
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A(z) =

⎛
⎜⎜⎜⎝

−z2
1 + z2

2 − z2
3 + z2

4 −2 (z1 z2 − z3 z4) 2 (z2 z3 + z1 z4)

−2 (z1 z2 + z3 z4) z2
1 − z2

2 − z2
3 + z2

4 −2 (z1 z3 − z2 z4)

2 (z2 z3 − z1 z4) −2 (z1 z3 + z2 z4) −z2
1 − z2

2 + z2
3 + z2

4

⎞
⎟⎟⎟⎠

(27)

In turn, the evolution of the quaternions can be expressed as
a singularity-free set of equations as

ż = � z, zT z = 1, (28)

where

� = 1

2

⎛
⎜⎜⎜⎝

0 ω3 −ω1 −ω2

−ω3 0 −ω2 ω1

ω1 ω2 0 ω3

ω2 −ω1 −ω3 0

⎞
⎟⎟⎟⎠ (29)

The general solution is given by

z = exp

⎛
⎝

t∫
t0

�[ω(s)] ds

⎞
⎠ z0 (30)

Here, several choices of updating z exist. One possible choice
is the generalized trapezoidal rule of the form

t∫
t0

�[ω(s)] ds ≈ �t [θ� + (1 − θ)�0] =: �t�θ , (31)

where we have used the same θ parameter as in Eq. (20). In
this case, one can update z as

z = exp (�t�θ ) z0 (32)

Efficient algorithms for the computation of matrix exponen-
tials can be found in [52].
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