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Abstract In part I of this two-part paper, a three-dimen-
sional Lagrangian smooth particle hydrodynamics method
has been used to model the flow of self-compacting concrete
(SCC) with or without short steel fibres in the slump cone test.
The constitutive behaviour of this non-Newtonian viscous
fluid is described by a Bingham-type model. The 3D simu-
lation of SCC without fibres is focused on the distribution of
large aggregates (larger than or equal to 8 mm) during the
flow. The simulation of self-compacting high- and ultra-high-
performance concrete containing short steel fibres is focused
on the distribution of fibres and their orientation during the
flow. The simulation results show that the fibres and/or heav-
ier aggregates do not precipitate but remain homogeneously
distributed in the mix throughout the flow.

Keywords 3D simulation · Self-compacting concrete ·
Non-Newtonian viscous flow · Smooth particle hydrody-
namic (SPH) · Short steel fibres

1 Introduction

Computer modelling or simulation is nowadays an indispens-
able tool for solving complex engineering problems. It can
replace expensive experimental tests in order to save time,
effort and materials. Due to the need for highly durable struc-
tures, self-compacting concrete (SCC) with its distinctive
flow-ability, passing ability and segregation resistance has
been developed, and is increasingly replacing conventional
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vibrated concrete in the construction industry. The mixture
of SCC is strongly dependent on the composition and char-
acteristics of its constituents both in its fresh and hardened
states. The prediction of its filling behaviour is very difficult
especially in the presence of reinforcing steel and in form-
works of complex shapes. However, an understanding of the
behaviour and the flow characteristics is crucial to achieving a
high quality SCC. The most cost-effective way to gain such
an understanding is by performing numerical simulations,
which will enable us to fully understand the flow behaviour
of SCC with and without steel fibres and to reveal the dis-
tribution of larger aggregate particles and of fibres and their
orientations inside the formworks.

As an SCC mix consists of particles of different sizes
and shapes, it is simpler and more appropriate to use mesh-
less particle based numerical techniques to simulate the
flow. A range of SCC mixes with 28-day cube compressive
strength between 35 and 160 MPa has been modelled using a
Lagrangian smooth particle hydrodynamics (SPH) method.
Other computational strategies that have been tried for parti-
cle suspensions include the immersed boundary method [1],
and the fictitious domain method [2].

SCC mixes of varying strengths and performance were
developed to meet the flow-ability, passing ability and seg-
regation resistance criteria using the slump cone flow, J-ring
and L-box tests [3]. In normal strength SCC (compressive
strength in the range 30–80 MPa) which do not usually con-
tain any steel fibres, it is the distribution of large coarse aggre-
gate particles (size 8 and 10 mm) that needs to be monitored
during the flow in order to ensure there is no segregation
of these particles from the paste. The simulation of these
SCC mixes will therefore emphasise the distribution of large
aggregate particles of different sizes throughout the flow in
the 3D configurations. On the other hand, the simulation of
high strength SCC mixes (compressive strengths in the range
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Fig. 1 Horizontal spread of SCC Mix 1 (a) and Mix 3 (b) without fibres

100–160 MPa) which contain between 0.5 and 2.5 % by vol-
ume steel fibres will focus on the distribution of fibres and
their orientations during the flow in 3D configuration. A two-
dimensional or axisymmetric simulation of such mixes [4]
is rather misleading because all the fibres appear in a single
plane. The accurate picture can only be gained by using the
three-dimensional flow simulation which shows the actual
distribution of fibres and their orientations during the flow.

In the work presented here, a novel but simple method-
ology has been developed to simulate the flow of SCC con-
taining (a) coarse aggregate particles of various sizes, and
(b) steel fibres. A comparison between the experimental and
simulation results is encouraging, thus improving our under-
standing of the flow and filling behaviour of SCC and pro-
viding an insight into the distribution of fibres and their ori-
entations during the flow.

2 Development of mixes

An extensive laboratory study was conducted in Cardiff
University to produce different grades of normal and high
strength SCC mixes with and without fibres (with nominal
28-day cube compressive strengths of 35, 45, 60, 80, 100, 140
and 160 MPa) using a particular type of steel fibre, 30 mm
long Z560 Dramix fibres with crimped ends, for mixes with
steel fibres [3,5]. Four of these will be presented in this paper.

A SCC mix has on the one hand, to be as fluid as possible
to ensure that it fills the formwork under its own weight,
but on the other, it has to be a stable mixture to prevent the
segregation of solids during the flow [6]. In other words, it
has to flow as a homogeneous viscous fluid. Therefore, SCC
mixes are designed to satisfy flow-ability and cohesiveness
(i.e. resistance to segregation) criteria using the slump cone
test. In this test, the time for the SCC mix to spread to a
diameter of 500 mm (t500) after the cone filled with the mix

has been suddenly lifted is recorded, as well as the diameter of
the spread when the flow stops. The resistance to segregation
is checked visually.

The passing ability of a SCC mix is tested using the J-ring
and the L-box apparatus [7]. A SCC mix meets the passing
ability test when it flows through the spaces between the rods
without any of the large aggregate particles or fibres being
blocked.

The addition of steel fibres improves the mechanical prop-
erties and the ductility of SCC in much the same manner as
in vibrated concrete. However, the fibres greatly impair the
workability of SCC because of their elongated shape and
large surface area. The amount of fibre added to a SCC mix
is therefore limited and depends on the fibre type used and
the composition of the SCC mix. The maximum amount of
fibre needs to be determined in such a way as to cause the
least decrease in the workability, whilst maintaining good
flow and passing ability. In order to make the best use of the
fibres, they need to be homogeneously distributed in the mix
without clustering [8].

The mixes so produced are shown in Figs. 1 and 2 and
designated 1–4 in Table 1. They all satisfied the flow-ability
and passing ability criteria and showed no visible signs of
segregation.

The plastic viscosity of each mix was calculated using the
micromechanical procedure described in [9] and the plastic
viscosity of the homogeneous paste. This procedure is based
on the rheology of concentrated suspensions [10–14] and it
is known to predict accurately in a stepwise manner the plas-
tic viscosity of heterogeneous SCC mixtures beginning with
the plastic viscosity of the homogeneous cement paste. The
measurement of the plastic viscosity of heterogeneous SCC,
especially those containing steel fibres using the rheome-
ters often gives inaccurate results with a large scatter. In the
micromechanical procedure [9], concrete is treated as a two-
phase suspension in which the solid phase is suspended in a
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Fig. 2 Horizontal spread of SCC Mix 2 (a) and Mix 4 (b) with fibres

Table 1 The mix constituents of Mixes 1–4

Constituents Mix 1 Mix 2 Mix 3 Mix 4

Cement (kg) 500 500 543.5 543.5

Micro-silica (kg) 75 75 214 214

Ground granulated blast furnace slag (GGBS) (kg) – – 311.5 311.5

Limestone powder <2 mm 200 200 – –

Coarse aggregates (kg) (crushed limestone) <10 mm 833 833 – –

Sand<2 mm 700 700 – –

Quartz sand (kg)

9–300 μm – – 470 470

250–600 μm – – 470 470

Water (kg) 138 138 188 188

Fibres (30 mm long with crimped ends, volume fraction) – 0.5 % – 2.5 %

Super-plasticiser/water 0.14 0.14 0.28 0.28

Water/(cement+micro-silica+GGBS) 0.24 0.24 0.18 0.18

Density (kg/m3) 2454.0 2480.7 2242.4 2381.4

Flow spread (mm) 805 760 910 850

t500 (s) 2.20 3 3 3

Plastic viscosity (Pa s) 9.77 42.1 3.1 54.3

Compressive strength (MPa) 80 100 140 160

viscous liquid phase. The plastic viscosity of the initial liquid
phase ηc0 (cement, water and super-plasticiser) can be mea-
sured accurately using a rheometers [15–18]. The increase
in the plastic viscosity of the paste induced by the addition
of the solid phase particles is then predicted in stages from
a two-phase suspension model. In the first stage, the solid
phase is the finest solid material, e.g. micro-silica in the vis-
cous fluid phase (i.e. the paste). In the second stage, the next
finest solid is suspended in the viscous fluid phase formed by
the two-phase suspension from the first stage. This procedure
is continued until all the solid phase constituents have been
added. The viscosity of the two-phase suspension is given by
the product of the viscosity of the liquid phase and a func-

tion that depends on the volume fraction of solid phase and
the shape of the particles. The addition of fibres increases
the plastic viscosity further. By treating the fibres as rigid
slender bodies that only undergo rigid body translation and
rotation in the viscous SCC fluid and estimating the resis-
tance offered by the viscous concrete to these motions, the
effect of a dilute concentration of steel fibres (volume frac-
tion less than 3 %) on the plastic viscosity is calculated. In
this manner, the plastic viscosity of the fibre-reinforced SCC,
designated η is given by

η = ηNF

{(
1 − φ f

) + π φ f l2
d

3ln (2ld)

}
(1)
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Fig. 3 Slump cone test
boundary conditions (P
pressure, vn normal velocity, vt
tangential velocity, and c f the
dynamic coefficient of friction).
Pressure vanishes on a free
surface. Note that the condition
that the normal pressure gradient
vanishes on rigid surfaces is
only needed in the solution of
the pressure Poisson Eq. (10)
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where ηNF is the plastic viscosity of the viscous concrete
mix without fibres calculated in stepwise manner from a two-
phase suspension model as explain above [9], φ f is the fibre
volume fraction, and ld is the length to diameter ratio of the
fibre.

3 Simulation of flow: governing equations

In view of its shear rate-dependent response, SCC can be
regarded as a non-Newtonian incompressible fluid. Its rhe-
ology is best described by a Bingham type model which
contains two material properties, the yield stress τ0 and the
plastic viscosity η. It is known however that the yield stress
of SCC mixes is very low (around 200 Pa) in comparison
with normal vibrated concretes (thousands of Pascal) and
remains nearly constant over a wide range of plastic viscosi-
ties [9]. From a practical computational point of view, it is
expedient to approximate the bi-linear Bingham constitutive
model with a kink at γ̇ = 0 by a scalar continuous function
[19]

τ = ηγ̇ + τ0

(
1 − e−mγ̇

)
(2)

in which m is a very large number m = 105. This smooth
function is practically indistinguishable from the original bi-
linear relation. Equation (2) is applicable to each of the three
independent shear components of the stress tensor.

The Bingham type constitutive model of the mixes is cou-
pled with the Lagrangian continuity and momentum equa-
tions to model the flow of SCC mixes. The isothermal,
Lagrangian form of mass and momentum conservation equa-
tions are:

1

ρ

Dρ

Dt
+ ∇ · v = 0 (3)

Dv

Dt
= − 1

ρ
∇ P + g + 1

ρ
∇ · τ (4)

where ρ, t, v, P, g and τ represent the fluid particle density,
time, particle velocity, pressure, gravitational acceleration,
and shear stress tensor, respectively. Below we shall consider
flows in which the density is constant, so that the first term
in Eq. (3) vanishes.
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Table 2 Volume fractions of aggregates larger than or equal to 8 mm in Mix 1 and the particles representing them in the 3D simulation of slump
cone test

Mix 1 Particle diameter (mm) Density (kg/m3) Volume fraction (%) Number of particles Assigned volume/ particle (mm3)

Particles <8 mm <8 mm 2,332.4 74 19,750 195.79

Aggregates ≥8 mm 10 2,800 15 1,575 597.42

8 2,800 11 2,256 305.88

Total – 2,454 100 23,581 –

Fig. 4 Schematic sketch of
particle representation when
simulating large aggregate
distribution

10mm

8mm

Particles representing large aggregates

Particles representing viscous paste

< 8 mm

Fig. 5 Fibre orientations at
time steps tn and tn+1

For a non-Newtonian fluid, the shear stress is generally
written as:

τ = 2μ (γ̇ ) d ≡
(

η + τ0

γ̇

(
1 − e−m γ̇

))
d, (γ̇ > 0)

(5)

where d is the rate of deformation and μ is the effective
plastic viscosity which is a function of shear rate. In Eq. (5),
γ̇ is the shear rate which is defined in general by the second

invariant of the rate of deformation d, γ̇ =
√

1
2

(
tr d2

)
.

4 Numerical modelling

A projection method based on the predictor-corrector time
stepping scheme has been adopted to track the Lagrangian
non-Newtonian flow [20–22]. The prediction step is an
explicit integration in time without enforcing incompress-
ibility. Only the viscous stress and gravity terms are consid-
ered in the momentum Eq. (4) and an intermediate particle
velocity v∗

n+1 is obtained as:

v∗
n+1 = vn +

(
g + 1

ρ
∇ · τ

)
�t (6)

Then the correction step is performed by considering the
pressure term in Eq. (4):

vn+1 − v∗
n+1

�t
= −

(
1

ρ
∇ Pn+1

)
(7)

where vn+1 is the corrected particle velocity at the time step
n+1.

The intermediate velocity v∗
n+1 is usually not divergence-

free but this condition is imposed on the corrected veloc-
ity vn+1 by enforcing the incompressibility condition from
Eq. (3):

∇ · vn+1 = 0 (8)

Hence the intermediate velocity can be projected on the
divergence-free space by writing the divergence of Eq. (7),
using (8), as

∇ ·
(

1

ρ
∇ Pn+1

)
= ∇ · v∗

n+1

�t
(9)

Since the density of particles remains constant in the present
simulations, Eq. (9) can be rewritten as:

∇2 Pn+1 = ρ

�t
∇ · v∗

n+1 (10)

where ∇2 is the Laplacian.
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Fig. 6 Horizontal flow of SCC Mix 1 after 0.2 s in 3D configuration showing the large aggregates. Cone lift rate a 0.15 m/s and b 1 m/s

Once the pressure is obtained from Eq. (10), the particle
velocity is updated by the computed pressure gradient (see
Eq. (7)):

vn+1 = v∗
n+1 −

(
1

ρ
∇ Pn+1

)
�t (11)

And finally, the instantaneous particle position is updated
using the corrected velocity:

xn+1 = xn + vn+1�t (12)

The time step �t is chosen based on the relevant stability
conditions for the given problem. In the case of Bingham-
type SCC fluid flow, the time step is primarily controlled by
the effective plastic viscosity. Therefore, the time step size is

generally decided by:

�t = min

(
α1r0

Vmax
,
α2r2

0 ρ

μ

)
(13)

where r0 is the initial particle spacing, Vmax is the maximum
particle velocity, and α1 and α2 are the coefficients usually in
order of 0.1. These coefficients depend on the choice of SPH
kernel functions and the nature of the engineering applica-
tion.

5 SPH discretisation of the governing equations

The SPH is a Lagrangian particle-based numerical method.
It was used by many researchers to solve various engineer-
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Fig. 7 Horizontal flow of SCC
Mix 1 at 500 mm flow diameter
in 3D configuration showing the
large aggregates. Cone lift rate a
0.15 m/s and b 1 m/s

ing problems [23–30]. Due to the Lagrangian nature of SCC
and large deformations and the fact that SCC contains parti-
cles of different sizes, SPH is an ideal computational method
to represent with a good margin of accuracy its rheological
behaviour [23]. The SPH approximation involves discretis-
ing the entire domain of the problem into a limited number of
particles N , and then approximately calculating all the field
variables on these particles. These variables and their gradi-
ents are generally interpolated from values at a discrete set
of particles by using the following standard approximations:

φ (x) =
N∑

b=1

VbφbWb (x) (14)

∇φ (x) =
N∑

b=1

Vbφb∇Wb (x) (15)

Equations (14) and (15) state that the value of any function
(or its differential) at any position is approximated using the
average of the values of the function at all the particles within
the support domain (particles b = 1, 2, . . .N ) of that particle
weighted by the smoothing or kernel function Wb(x).

Here, Vb is the volume of material assigned to a given
particle. For particles representing heavier and/or larger con-
stituents in the viscous continuum, the assigned volume is
equal to the ratio of actual mass to the density of continuum.
The accuracy of the approximation depends on the choice of
the differentiable kernel function, especially on its closeness
to the Delta function.

The cubic spline function given by Eq. (16) was used in
this study because of its stability, accuracy and compact sup-
port. Among many different types of kernels, research shows
the tendency of bell shaped cubic spline kernel to outperform
other shapes in regions of smooth data [31]

W (x) = c

hd

⎧⎪⎨
⎪⎩

1 − 3
2ξ2 + 3

4ξ3 if ξ ≤ 1
1
4 (2 − ξ)3 if 1 < ξ ≤ 2 ; ξ = ‖x‖

h

0 if ξ > 2

(16)

where d is the number of dimensions of the problem, c is
a scaling factor to normalize the kernel function, and h the
length parameter which has a similar interpretation to the
element size in the finite element method.
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Fig. 8 Horizontal flow of SCC
Mix 1 after 17 s in 3D
configuration showing the large
aggregates. Cone lift rate (a)
0.15 m/s and (b) 1 m/s

Fig. 9 Diametrical
cross-sections a–c of slump flow
after 17 s for Mix 1

The standard SPH approximations as given by Eq. (14) and
(15) do not accurately reproduce or approximate the function
φ (x) and ∇φ (x). Therefore corrected SPH equations were
developed to address these issues [32]. For instance, the cor-

rected form of the gradient of the velocity at a given point
‘a’ is given by,

∇va =
∑

b∈Ma

Vbvb ⊗ ∇̃W̃b (xa) (17)
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Fig. 10 Histogram of larger aggregate distribution (≥8 mm) in Mix 1 along several diametrical cross-sections a–c after 17 s flow time in the slump
test

where W̃ indicates that the kernel function is corrected to sat-
isfy the consistency conditions [32,33], b is the neighbouring
particle within the support domain Ma , and ∇̃ above indicates
that the gradient is corrected to reproduce linear consistency.
The gradient correction used here is adopted from the mixed
kernel and gradient correction, discussed in [33].

Now adopting the corrected SPH interpolation proce-
dures, all the relevant equations can be formulated into SPH
approximations. Three terms in the mass and momentum
conservation equations need to be defined in the SPH for-
mulation:

The divergence of velocity in Eq. (3) can be written as,

(∇.v)a =
N∑

b=1

Vbvb · ∇̃W̃b (xa) (18)

where a and b are the reference particle and its neighbour,
respectively. In the above equation ∇̃W̃ is the corrected gra-
dient of the corrected kernel

The gradient of pressure in Eq. (4) can be described by,

∇ Pa =
N∑

b=1

Vb Pb∇̃W̃b (xa) (19)

Hence, the Laplacian in the pressure Poisson Eq. (10) can
be formulated using the divergence and gradient operators of
the SPH formulation to give:

∑
b∈Ma

VbVa∇ Pb. ∇̃W̃a (xb) = ρa

�t

∑
b∈Ma

Vbvb. ∇̃W̃b (xa)

(20)

The above pressure equation can be solved using any suit-
able iterative method. In the present implementation a pre-
conditioned conjugate gradient method is used. In addition to
the numerical procedure and governing equations described
above, a suitable method to treat the boundary conditions has
to be developed.

Table 3 Volume fraction of fibres in Mixes 2 and 4, the number of
particles representing them and their assigned volumes

Mix 2 Mix 4

Total number of particles 23,581 23,581

Volume fraction of fibres (%) 0.5 2.5

Number of fibres 118 590

Number of fibre end particles 236 1180

Assigned volume/particle (mm3) 366.20 381.52

6 Initial configuration and boundary conditions

When solving the momentum and the continuity equa-
tions, appropriate initial and boundary conditions need to be
applied. Three types of boundary conditions need to be con-
sidered in the simulation of slump cone test; a zero pressure
condition on the free surface, Dirichlet boundary condition at
the wall of the cone, and Neumann conditions on the pressure
gradient (this zero pressure gradient is used only for solving
the pressure Poisson equation), as illustrated in Fig. 3. The
initial conditions depend on how fast the cone filled with the
SCC mix is lifted and the mix discharged on to the base plate.
Two rates of cone lift will be considered; 0.15 and 1 m/s. The
part of the mix not in contact with the cone surface during the
lifting of the cone is a free surface with P = 0, but the part
in contact is subject to sliding frictional resistance (Fig. 3d).

Four arrays of rigid dummy particles placed outside the
wall of the cone were used to implement the wall bound-
ary conditions with space ro between the arrays, where ro is
the initial particle spacing. To represent the sliding frictional
resistance boundary conditions along the cone wall and the
bottom plate, a dynamic coefficient of friction between the
SCC mix and steel equal to 0.55 Ns/m.

7 Treatment of aggregates

An essential requirement of a SCC mix is that heavier aggre-
gate particles do not segregate from the paste during the flow.
To investigate this, all aggregates larger than or equal to 8 mm
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Fig. 11 Horizontal flow of Mix 2 in 3D configuration after 0.2 s. Cone lift rate a 0.15 m/s, b 1 m/s

in size have been modelled as separate particles suspended
in the viscous paste containing the remaining particles less
than 8 mm in size.

Sieve analysis was first performed to determine the grad-
ing curve of aggregate particle sizes within a given sample.
According to the sieve analysis of the Mix 1 (Table 1), the
volume fractions of aggregates 10 and 8 mm in size were 15
and 11 %, respectively (Table 2). (The volume fractions were
calculated from the measured mass fractions). The volume
fraction of particles less than 8 mm in size which form the
paste was therefore 74 %.

The number of particles used to represent the volume of
cone contents sets a lower limit on the volume element that

can be distinguished from the homogeneous mass, i.e. the res-
olution of the modelling technique. In the simulations below,
a total of 23,581 particles have been used to represent the
volume of mix in the cone (5.498 × 106 mm3) giving a res-
olution of 233.15 mm3 if all particles have the same density
as the viscous continuum. The resolution may be somewhat
different if the particles have different densities (see Table 2
below). Thus, in Mix 1 the large aggregates that can be dis-
tinguished from the homogeneous mass must have a volume
exceeding this minimum. It is for this reason that only the
aggregates of size 8 mm and above have been chosen.

In order to be able to monitor the velocity vectors and
positions of aggregates of different sizes, as well as those
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Fig. 12 Horizontal flow of Mix
2 in 3D configuration after 3 s.
Cone lift rate a 0.15 m/s, b 1 m/s

of the fluid particles representing the paste, the particles are
represented by distinct colours as shown in Fig. 4.

Further, the following steps were taken during the numer-
ical simulations.

• All particles representing the mix were generated ran-
domly.

• Particles representing the paste as well as the large aggre-
gates form a homogeneous mass and have the same con-
tinuum properties except for their assigned volumes.

• The masses of the SPH particles representing the various
aggregate particles in the SCC mix were calculated based
on their respective volume fractions in the mix.

• Particles representing the large aggregates according to
their assigned volumes were tagged (and colour coded
as shown above) throughout the simulation in order to
monitor their velocity vectors and positions.

8 Teatment of fibres

A number of computational modelling strategies have been
attempted to model the distribution of fibres and their orienta-

tion during the flow. For instance, numerical techniques such
as the discrete element method [34] or the lattice Boltzmann
technique [35] can be used to model the SCC fluid flow with
fibre suspensions. These numerical techniques or computa-
tional methodologies have their own merits and drawbacks in
solving SCC flow with suspended fibres. However, it would
seem natural, simpler and more appropriate to use meshless
particle based Lagrangian numerical techniques to simulate
the flow and to monitor the distribution of fibres and their
orientation during the flow.

The fibre dynamics in the viscous SCC is captured
separately by using Russell’s slender body approximation.
According to this approximation, the resistance to the free
translational and rotational motion of a slender body in a vis-
cous fluid is given by the force vector F = ζd in terms of the
rate of deformation vector d, with ζ = 2π η l

ln(2ld )
. Here, l is the

length of the slender body, ld its aspect ratio, and η is the vis-
cosity of the fluid without fibres. Next, a random distribution
of fibres of equal length in the viscous fluid is considered
and an ensemble average (replaced by a volume average for
uniform random distribution) of these force vectors in the
viscous liquid-fibre suspension performed to calculate the
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Fig. 13 Horizontal flow of Mix
2 in 3D configuration after 17 s.
Cone lift rate a 0.15 m/s, b 1 m/s

shear stress versus rate of deformation relation of an equiv-
alent isotropic viscous fluid-fibre mixture. In this manner,
the fibre motion in the viscous liquid is captured through an
increase in the viscosity of the equivalent viscous liquid with
fibres in it. Details may be found in [9]. This viscosity is
given by Eq. (1)

As the effect of fibre motion on the flow field has been
captured through an increase in the viscosity of the liquid-
fibre suspension, the fibres can be treated simply as passive
markers that move and orient according to the fluid motion.
This is an important advantage of the SPH methodology pro-
posed by Kulasegaram and Karihaloo [36] for monitoring the
fibres during the flow.

The key points of this methodology as shown in Fig. 5 are
the following.

– There are two particles that represent the ends of a
fibre. These particles are imagined to be connected by
a virtual rigid link. The assigned volume of the fibre
is equally divided between them. These particles are
tagged throughout the simulation process and the distance
between them is maintained equal to the fibre length.

– Both fibre and fluid particles behave as a homogeneous
mass and have the same continuum properties except their
assigned volumes.

– Fibre end particle position is mainly dictated by the fluid
flow of the homogeneous SCC. It is therefore feasible
to assume that the positions of the fibre end particles are
largely controlled by the fluid particles surrounding them.

– Fibres are generated randomly, maintaining a constant
distance between their ends equal to the fibre length L0.
The distance Ln+1 at a subsequent time step tn+1 between
the particles representing the ends of a fibre was calculated
and forced to be equal to L0 within an acceptable error.

The key steps involved in enforcing the constant distance
between the pair of particles representing a fibre can be
summarised as follows [36], once the particle positions are
updated using Eq. (12) from time step tn to tn+1,

Step 1: Check whether the distance (Ln+1) between the
pair of particles representing each and every fibre is equal
to the fibre length (L0) within an acceptable error.
Step 2: If |Ln+1 − L0| > 10−5 for a certain fibre, then
equal and opposite penalty forces FP proportional to
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Fig. 14 Horizontal flow of Mix 4 in 3D configuration after 0.2 s. Cone lift rate a 0.15 m/s, b 1 m/s

|Ln+1 − L0| are introduced in Eq. (6) on the pair of par-
ticles representing that fibre along the vector connecting
this pair of particles.
Step 3: The Eqs. (6, 7, 10, 11, 12) are now solved again
sequentially to determine the positions of all the particles.
Step 4: Steps 1 to 3 are repeated until the pairs of par-
ticles representing all the fibres satisfy the condition
|Ln+1 − L0| < 10−5.

Based on the formulation detailed above, suitable numeri-
cal schemes which integrate the Lagrangian SPH approxima-
tions of the governing equations with the rheological Bing-
ham type model for SCC have been developed. These numer-
ical schemes have been utilised to understand the behaviour
of SCC flow containing (a) coarse aggregate particles of var-
ious sizes, and (b) short steel fibres.

9 Simulation results

9.1 Slump cone test for SCC mixes without fibres

In this section, 3D numerical simulations of the slump cone
test of a typical SCC mix (Mix 1, Table 1) are presented
to investigate its flow characteristics and compared with the
test results. These simulations highlight the distribution of
the large aggregates in this mix (larger than or equal to
8 mm) in order to check whether these heavier aggregates
stay homogenously distributed in the viscous mix at all times
during the flow. The plastic viscosity of the SCC mix was first
calculated using the micromechanical model proposed in [9]
from the known plastic viscosity of the cement paste and
the volume fractions of the various second phase particles
(Table 1). As mentioned above, the yield stress of SCC is
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Fig. 15 Horizontal flow of Mix
4 in 3D configuration after 3 s.
Cone lift rate a 0.15 m/s, b 1 m/s

low (200 Pa) and practically constant over a wide range of
plastic viscosities [37].

In the 3D simulations the volume of the mix in the cone
was simulated by 23,581 particles. Two simulations were
performed; one in which the cone was lifted at a slow speed
equal to 0.15 m/s, and the second in which the cone was lifted
at a quicker rate equal to 1 m/s. All the material parameters
of the mix, namely the yield stress, the plastic viscosity are
those of Mix 1 in Table 1. The results of these simulations
are shown in Figs. 6, 7 and 8.

It can be observed from the simulations illustrated in
Figs. 6, 7 and 8, that the larger aggregates do indeed stay
homogenously distributed in the mix at all times during the
flow. The flow spread to a diameter of 500 mm in 2.2 s,
exactly as in the in the slump cone test in the laboratory.
Equally importantly, the surface of the spread after 2.2 s
looks smooth as a ‘pan cake’ identical to that observed in
the laboratory test on this mix (Mix 1, Fig. 1). The only free
variable that we altered in the simulation to get this exact fit

was the dynamic coefficient of friction between the SCC mix
and steel of the cone wall and of the base plate. The value
which gave this excellent agreement with the test result was
equal to 0.55 Ns/m.

The speed of lifting the cone does indeed affect the shape
of the slump at early stage of flow (at 0.2 s flow time as seen
in Fig. 6). A slightly larger flow diameter associated with the
higher speed of lift was observed at the initiation of the flow;
however, the effect of the lifting rate on the flow diameter
diminishes after a few seconds of flow time.

By cutting the simulated slump flow by diametrical planes
(A, B and C as illustrated above in Fig. 8a) after 17 s flow
time, the statistics of the large aggregates (≥8 mm) along
these sections can be investigated.

Figure 9 shows how the aggregates are distributed in the
diametrical cross-sections after 17 s flow time with no visible
settlement of the larger aggregates (≥8 mm).

That the larger aggregates are indeed distributed in an
identical manner along these three sections can be ascer-
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Fig. 16 Horizontal flow of Mix
4 in 3D configuration after 17 s.
Cone lift rate a 0.15 m/s, b 1 m/s

tained by performing a statistical analysis of these aggre-
gates to estimate the best fit probability density function
(PDF) which in this case turns out to be the Weibull dis-
tribution function amongst the many distribution functions
that were tried. It can be seen from the histograms in Fig. 10
that the larger aggregate distribution is almost identical along
the three cross-sections (Fig. 8a).

Here, the simulation was stopped at 17 s because of the
excessive computational time involved. It should however
be noted that the mix itself has not yet stopped flowing; it
has only spread to a diameter of just over 600 mm after 17 s,
whereas it will only stop to flow when this diameter is 805 mm
(see, Mix 1, Table 1).

9.2 Slump cone test for mixes with fibres

To investigate how the short steel fibres will distribute and
orient themselves during the flow, the slump cone tests of two
mixes with fibres (Mixes 2 and 4 in Table 1) were simulated.
In these simulations, the total number of particles used was
also 23,581. The short steel fibres were treated as explained

above. The number of fibres in each of these mixes was cal-
culated from their volume fraction (0.5 % in Mix 2 and 2.5 %
in Mix 4) (see Table 3). The plastic viscosity of these mixes
is of course much higher than that of mixes without fibres
(see Table 1). Apart from the different plastic viscosities of
the mixes, their yield stress (200 Pa) and the dynamic coef-
ficient of friction with the steel wall of the cone and the base
plate (0.55 Ns/m) are the same as for an SCC mix without
fibres.

Figures 11, 12, 13, 14, 15 and 16 show the distribution of
fibres and their orientation during the flow of Mixes 2 and 4,
respectively. The time for the mixes to spread to a diameter
of 500 mm (t500 = 3 s) matches exactly the time measured in
the laboratory (Table 1). The surface of the spread is smooth
and the fibres stay homogeneously distributed at all times
during the flow.

Again, the simulations of both mixes were performed at
two different rates of the cone lift, 0.15 and 1 m/s.

A two-dimensional or axisymmetric simulation of these
mixes would be misleading because it would show all the
fibres in a single plane. The three-dimensional flow simula-
tion which shows the actual distribution of fibres and their
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orientation during the flow gives a highly accurate picture of
their rigid body motion.

It can be seen from Figs. 11, 12, 13, 14, 15 and 16 that
the speed of lifting the cone does also affect the shape of the
slump at early stage of flow (at 0.2 s flow time as seen in
Figs. 11 and 14). However, the difference in the flow diam-
eters at the two rates is negligible.

The proposed method can be effectively applied in the
numerical simulation of SCC flow to analyse the filling
behaviour of these highly viscous fluids. The numerical
results confirm that the 3D SPH methodology is capable
of predicting accurately the flow of SCC with and without
fibres.

In the numerical simulations presented for both SCC with
coarse aggregates and SCC with fibres, the total number of
SPH nodal particles used was 23,581. This number of parti-
cles was chosen to obtain the results with adequate accuracy
in a reasonable time. These simulations were carried out on
a PC with 2 GHz (XP850 Intel Core CPU) processor and the
time taken for simulating the flow of SCC with homogeneous
mass distribution or with various coarse aggregates for 2.2 s
was approximately 40 h. In the case of SCC flow with fibres
the time taken for simulating the flow for 3 s was approxi-
mately 65 h. The time taken for the simulation of SCC flow
with fibres was longer than that of SCC with coarse aggregate
particles by 15–20 %. This is due to the iterative computa-
tion performed in the simulation of SCC flow with fibres
to enforce the constant fibre length between particles repre-
senting fibre end points. In the numerical simulations shown
above, to ensure that the front of the SCC flow has a smooth
profile, the velocities of the particles obtained by Eq. (11)
were smoothed by the following equation

v̄ (xa) =
N∑

b=1

VbvbWb (xa) (21)

where v̄ (xa) is the smoothed velocity of particle ‘a’. This
velocity was then used in Eq. (12) to calculate the updated
position of particle ‘a’. In a similar manner all the particle
velocities and positions were smoothed and updated. This
smoothing procedure also adds to the total computational
time taken by the numerical simulations.

10 Conclusions

A corrected Lagrangian SPH method has been used to simu-
late the flow of SCC mixes of varying strengths and perfor-
mance, some of which contain short steel fibres. A suitable
Bingham model [4] has been coupled with the Lagrangian
momentum conservation and continuity equations to model
the flow. The mix characteristics of the SCC mix have been
fully incorporated implicitly through the plastic viscosity,

which has been calculated using the micromechanical model
described in [9].

The simulation of SCC mixes without fibres followed the
distribution of aggregates of different sizes (8 and 10 mm)
throughout the flow, while those of the SCC mixes with fibres
focused on the distribution of fibres and their orientations
during the flow. A comparison between the experimental and
the simulation results is very encouraging. The developed
numerical methodology is able to capture the flow behaviour
of SCC mixes and to provide insight into the distribution of
large aggregates and of fibres and their orientations during
the flow.

The lengthy computational time that the SPH simulations
take can be regarded as a weakness of the SPH method. But
it can be significantly reduced either by using high specifica-
tion serial computers or by using high performance parallel
computers. Since the particle methods such as SPH method
are eminently suited for parallelisation, larger 3D configu-
rations can be simulated within a reasonable computational
time by the developed algorithms after appropriately paral-
lelising them.
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