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Abstract The coordinated operation of controllable loads,

such as air-conditioning load, and distributed generation

sources in a smart grid environment has drawn significant

attention in recent years. To improve the wind power uti-

lization level in the distribution network and minimize the

total system operation costs, this paper proposes a MILP

(mixed integer linear programming) based approach to

schedule the interruptible air-conditioning loads. In order

to mitigate the uncertainties of the stochastic variables

including wind power generation, ambient temperature

change, and electricity retail price, the rolling horizon

optimization (RHO) strategy is employed to continuously

update the real-time information and proceed the control

window. Moreover, to ensure the thermal comfort of cus-

tomers, a novel two-parameter thermal model is introduced

to calculate the indoor temperature variation more pre-

cisely. Simulations on a five node radial distribution net-

work validate the efficiency of the proposed method.

Keywords Demand side management, Air-conditioning

load, Battery energy storage system, Rolling horizon

optimization

1 Introduction

With the development of smart grid, demand side

management (DSM) has been considered as an effective

way to improve energy efficiency and optimize grid oper-

ation. DSM allows customers to adjust their energy con-

sumption based on certain price signals or incentive

schemes [1], so as to accomplish specific grid-level

objectives, such as peak load reduction and frequency

regulation. In summer, residential air-conditioning loads

(ACLs) contribute to an increasing proportion of residen-

tial demand. To deal with the short term but sharp peak

demand caused by the ACLs, enormous investments have

to be made on upgrading the power infrastructure. In recent

years, many DSM techniques have been proposed to re-

shape the energy consumption profiles of residential

appliance loads. These techniques can be categorized into

two classes: the price-based DSM schemes (also known as

indirect load control) [2–4] and incentive-based DSM

schemes (or direct load control) [5, 6].

In addition to the DSM schemes, distributed renewable

energy sources have also been widely deployed in
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distribution networks [7]. As one of the most promising

renewable energy sources, wind power has gained wide-

spread application in recent decades [8]. However, wind

power generation is variable and stochastic in nature,

which has negative impacts on the grid (e.g. power quality

and protection settings). To satisfy the system operational

constraints, in some cases wind power needs to be curtailed

[9], which reduces wind power utilization to some

extent.

In the literature, many efforts have been made to

improve wind power penetration level while accomplishing

peak load reduction in distribution networks. In [10], the

authors presented an approach to minimize the expected

operational cost of the microgrid and power losses while

accommodating the intermittent nature of renewable

energy resources. In [11], energy storage was utilized to

increase wind power penetration level and curtail peak load

with revenue optimization taken into consideration. In [12],

the authors proposed a direct load control scheme for the

ACLs based on the distributed imperialist competitive

algorithm to minimize total operation cost over the whole

dispatch horizon. In [13], the authors exploited the thermal

characteristics of buildings to compensate for the renew-

able power fluctuations and reduce the renewable energy

curtailment. In [14], the authors proposed a method to

minimize the interconnection point power flow fluctuation

by controlling the distributed controllable loads and

renewable resources. In [15], the authors coordinated

demand response programs to reduce conventional energy

storage systems for the large scale integration of renewable

energy resources. In [16], the authors developed model

predictive control application for load management under

high wind penetration, which effectively realized load

shifting and real-time load balance. In [17], the authors

reported a novel methodology of sizing energy storage

systems to accommodate high penetration of variable

energy resources to maintain power system stability.

By reviewing the literature, we find that many of the

existing works focus on improving wind power penetration

levels combined with optimal allocation of energy storage

systems. Few works have attempted to establish an accu-

rate ACL model to accommodate the intermittent renew-

able resources, especially small wind turbine resources at

community group level, while taking the forecasting errors

into account. Therefore, the major contribution of this

paper is to propose a coordinated control scheme for wind

generation units, battery energy storage systems (BESSs),

and controllable ACLs to minimize system operation cost

while reducing the system peak load. The proposed control

scheme is modelled as a mix integer linear programming

(MILP) problem, and rolling horizon optimization (RHO)

is applied to alleviate initial prediction uncertainties.

Meanwhile, in order to minimize customers’ thermal

discomfort, an advanced two-parameter thermal inertia

model is applied to more precisely model the thermal

transition process of the indoor environment.

This paper is organized as follows. In Section 2, the

modelling of thermal appliances is presented. In Section 3,

MILP-based control model is proposed. The performance

of proposed scheme is verified by simulation on a five node

radial distribution network. In Section 4, the simulation

studies are performed. Finally, Section 5 concludes this

paper and future work is described.

2 Thermal modelling

2.1 Two-parameter thermal model

A full understanding of the dynamic thermal behavior of

an air conditioned household is required if a DSM

scheme is to maintain residents’ thermal comfort. Different

thermal models have been developed and applied to gain

information about the thermal process of a household and

characterize its thermal energy consumption [18]. A one-

parameter thermal model, shown in Fig. 1a, has been

widely used in many previous smart home management

studies [19, 20]. In this one-parameter model, the authors

assume that the heat gain/loss of a house is only related to

internal and ambient temperature difference, and the

building envelope equivalent thermal resistance. It neglects

any thermal capacitance effect associated with the walls.

After turning on a room heating system (e.g. central heat-

ing), a thermal transient phenomenon occurs on the wall–

room system, until it reaches a final equilibrium state

[21].

A more complex two-parameter thermal model consid-

ering the thermal capacitance of walls is presented in

Fig. 1b [22]. The thermal process of a house is composed

of two components. One component is the thermal mass

inside the house and the other is the thermal mass of the

walls with a notably different thermal capacity. According

to the research in [23], the house indoor air temperature

change can be significantly different when taking thermal

capacity of the walls into account. Since the thermal

Wall
rT

ambT

eqR

(a) One parameter model

ambT

ambT

Wall rT

waR wrR
wT rT

(b) Two parameter model

rTambT

Fig. 1 Schematic of thermal models
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models’ complexity can pose significant impact on the

accuracy of calculating cooling energy, the more complex

and accurate model in [22] is chosen here.

Compared with the thermal models in [19, 22], we

innovatively improve the model performance by calculat-

ing air conditioner coefficient of performance (COP)

shown in (5), which defines the ratio of cooling or heating

energy supplied by the air conditioner over its consumed

electrical energy. The efficiency of this novel two-param-

eter thermal model has been shown in our previous pub-

lished works [12, 18, 24]. The dynamic two-parameter

thermal model can be explained below:

dTr tð Þ
dt

¼ 1

Ma � Cpa

dQgain a tð Þ
dt

� dQex w r tð Þ
dt

� dQac tð Þ
dt

� �

ð1Þ
dTw tð Þ
dt

¼ 1

Mw � Cpw

dQgain w tð Þ
dt

þ dQex w r tð Þ
dt

� �
ð2Þ

dQgain a tð Þ
dt

¼ Tamb � Tr

Req

ð3Þ

dQex w r tð Þ
dt

¼ Tw � Tr

Rwr

ð4Þ

dQac tð Þ
dt

¼ COP � Pac ð5Þ

dQgain w tð Þ
dt

¼ Tamb � Tw

Rwa

ð6Þ

whereTr(t) is indoor air temperature of the house at time t (�C);
Tw(t) is wall temperature of the house at time t (�C); Cpa and
Cpw are heat capacity of the air and the wall (J/kg��C);Qgain_a

is heat gain which the ambient brings to indoor air (J);Qgain_w

is heat gain which the ambient brings to the wall (J);Qex_w_r is

heat exchange between indoor air and indoor walls (J); Qac is

air conditioner cooling energy (J);Ma andMw are the mass of

indoor house air andwalls(kg); Tamb(t) is ambient temperature

at time t (�C); Req is house envelope equivalent thermal

resistance;Rwr is equivalent thermal resistance between house

indoor air and wall inner surface; COP is coefficient of per-

formance of air-conditioner; Pac is rated power of air condi-

tioner (kW); Rwa is equivalent thermal resistance between the

ambient and wall outer surface.

Equations (1) and (2) refer to indoor air temperature and

wall temperature change rate. Equations (3)–(6) represent the

heat gain change rate that the ambient brings to the indoor air,

heat gain change rate between indoor air and walls, air con-

ditioners cooling energy change rate, and heat gain change

rate that the ambient brings to the wall respectively.

According to [21], these parameters listed above can be

easily estimated from the physical data of a building.

Alternatively, it is also possible to use a parameter iden-

tification technique to obtain their values.

2.2 Thermal model linearization

To calculate indoor air and wall temperature variations

more conveniently, the thermal dynamic model can be

linearized. The whole operation time period t is split into

N time steps, and t refers to 24 hour in this paper.

Assuming that N is large enough, the ambient temperature,

the wall temperature, and indoor air temperature are

assumed constant within any time step [19]. Elaborate

description about this linearization process can be found in

[24]. The linearization is expressed in (7)–(10):

Tr tð Þ ¼ 1� 1

Ma � Cpa � Req

� �
� Tr init

þ 1

Ma � Cpa � Req

� Tamb init

þ Tw init � Tr init

Ma � Cpa � Rwr

� Sac init �
Qac

Ma � Cpa
; t ¼ 1

ð7Þ

Tr tð Þ ¼ 1� 1

Ma � Cpa � Req

� �
� Tr t � 1ð Þ

þ Tamb t � 1ð Þ
Ma � Cpa � Req

þ Tw t � 1ð Þ � Tr t � 1ð Þ
Ma � Cpa � Rwr

� SacðtÞ �
Qac t � 1ð Þ
Ma � Cpa

; 8t 2 ½2;N�

ð8Þ

Tw tð Þ ¼ Tw init þ
Tamb init � Tw init

Mw � Cpw � Rwa

þ Tr init � Tw init

Mw � Cpw � Rwr

; t ¼ 1

ð9Þ

Tw tð Þ ¼ Tw t � 1ð Þ þ Tamb t � 1ð Þ � Tw t � 1ð Þ
Mw � Cpw � Rwa

þ Tr t � 1ð Þ � Tw t � 1ð Þ
Mw � Cpw � Rwr

; 8t 2 ½2;N�
ð10Þ

where Tr_init is indoor air temperature of the house at initial

time (�C); Tamb_init is ambient temperature at initial time

(�C); Tw init is wall temperature of the house at initial time

(�C); Sac_init and Sac(t) are operation status of air condi-

tioners at initial time and at time t.

Equations (7) and (9) are included for accurately cal-

culating the indoor and wall temperature at the initial time

step within the operating time horizon.

3 MILP-based rolling horizon optimization model

The participation of end users in demand response

programs can effectively accommodate renewable energy

integration in distribution systems. In general, loads within

residential buildings can be classified in two categories:

uncontrollable loads (e.g. lighting, refrigerator), and
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controllable loads (e.g., water heater, air conditioner). In

this paper, we primarily consider air-conditioning loads in

cooling mode as the controllable load. We study the control

of aggregated ACLs through direct load control to achieve

a certain grid-level objective, while ensuring that the room

temperatures remain within the residents’ thermal comfort

range. In this section, a MILP-based RHO model is pro-

posed to control the ACLs to improve the wind power

penetration level and reduce system peak load. Participat-

ing customers’ electricity cost is minimized on the premise

of satisfying relevant distribution network device con-

straints and customers’ thermal comfort constraints.

Figure 2 depicts a schematic of the network configura-

tion studied in this paper. In this network, the net feed-in-

tariff for wind resources is lower than the electricity retail

rate. Therefore, it is economically favorable for the system

to consume local renewable energy as much as possible.

Considering the variable nature of wind power, a BESS is

directly charged by the wind turbines to smooth the power

output available to end users. When the BESS is unable to

fully supply the demand, customers need to buy electricity

from the external grid to meet their electricity requirement.

We assume that there is no direct power flow from the

external grid to charge the battery. Conversely, the BESS

could sell surplus power to the grid when customers are at a

low demand level. The wind turbine and BESS are regu-

lated by a micro source controller (MC). The ACL group is

regulated by a controllable load controller (LC). MC and

LC are further regulated by a microgrid control center

(MGCC). For better depicting the power flow directions of

system devices, the MC and LC are omitted in this fig-

ure but will be mentioned in the Case Study Section.

Currently, we utilize an AC microgrid to organize wind

turbine and BESS and we will design a DC microgrid

where small wind turbines and BESSs have parallel con-

nection [25] in future work to improve energy efficiency.

3.1 Objective function

The objective function is represented as (11), aiming to

minimize the system operation costs. The net cost in this

distribution network is decided by the real-time power

exchange between external grid and demand side, and real-

time electricity retail price with net feed in tariff. In this

case, the objective is formulated to minimize the total

operation cost over all nodes and entire time steps.

min
XN
t¼1

XN
i¼1

Pg buyi tð Þ �Cbuyi tð Þ �Pg selli tð Þ �Cselli tð Þ
� �

� s

ð11Þ

where Pg_buyi(t) and Pg_selli(t) represent the amount of

power bought from external grid and sold to external grid

at node i at time t; Cbuyi(t) and Cselli(t) represent electricity

purchase and selling price at node i at time t; s is defined as

the time step during which the parameters are assumed as

constants.

It should be noted that the decision variables in (11) are

Pg_buyi(t) and Pg_selli(t). These variables are time varying

and determine the net cost in the distribution network over

the whole time period.

3.2 Constraints

Objective (11) is subjected to following constraints.

3.2.1 Load balance constraints

The power flow between the distribution network and

the external grid must match the local load balance at any

time. This means the sum of the uncontrollable load and

air-conditioning load is equal to BESS discharge power

and power bought from external grid. Moreover, the

amount of power bought from grid should not exceed grid

maximum power capacity. Power sold to the grid should be

less than the battery maximum discharge capacity. These

constraints can be mathematically expressed as follows

(12)–(14):

Puncontro load tð Þ þ Pac � Sac tð Þ ¼ Pbat tð Þ þ Pg buy tð Þ ð12Þ

0�Pg sell tð Þ�P
max discharge
bat ð13Þ

0�Pg buy tð Þ�Pgmax ð14Þ

where Puncontro_load(t) is uncontrollable load at time t (kW);

Pbat(t) is power flow from battery to consumers at time

t(kW); Pg_buy(t) is power bought from grid at time t (kW);

Pg_sell(t) is power sold to the grid at time t (kW);

ACL
groupBESS

W

External grid

MGCC

Pw

Pbat

Pg_sell

Pg_buy

W BESSWind turbine; Battery energy storage system

Micro grid control center

Fig. 2 Simplified system network configuration
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Pbat
max_discharge is maximum discharge power from battery

(kW); Pgmax is maximum grid power capacity (kW).

3.2.2 Wind power constraints

The output of the wind turbine largely depends on wind

speed. In general, generated power increases as the cube of

wind speed until it reaches rated speed. Beyond rated speed

the wind turbine will generate a fixed amount of power

while ever wind speed remains below the cut-off speed. At

the other end of the scale, if wind speed is lower than cut-in

speed or higher than cut-off speed, there would be no wind

power generation. The wind power generation model is

given in (15):

Pw tð Þ ¼
1

2
qpR2v3w tð Þcp vc � vw tð Þ� vr

Prated vr � vw tð Þ� vf
0 vw tð Þ� vc [ vw tð Þ[ vf

8><
>: ð15Þ

where Pw is forecast wind turbine power (kW); q is outdoor

air density (kg/m3); R is blade radius of wind turbine (m);

cp is efficiency coefficient of wind turbine; vw, vc, vr and vf
are wind speed, cut-in wind speed, rated wind speed and

cut-off wind speed (m/s) respectively; Prated is rated power

of wind turbine (kW).

3.2.3 BESS constraints

The state of charge (SoC) limits and rated power con-

straints of the BESS are considered below,

SoC tð Þ ¼
Pw t� 1ð Þ �Pbat t� 1ð Þ �Pg sell t� 1ð Þ
� �

� neffi � s
EBESS

þ SoC t� 1ð Þ
ð16Þ

0� SoC tð Þ� 1 ð17Þ

0�Pbat tð Þ�P
max discharge
bat ð18Þ

where SoC(t) is battery state of charge level at time t (%);

neffi is battery use efficiency during charge and discharge

scheme; s is time interval between time t and time t ? 1

(hour); EBESS is battery capacity (kWh).

For simplicity, battery use efficiency neffi is assumed to

be constant at 0.95 over the whole charging/discharging

cycle. In a real scenario, neffi is closely related to battery

SoC level. Due to the limited page length requirement, this

discussion is beyond this paper’s scope.

3.2.4 ACL group thermal comfort constraints

The thermal comfort constraint for occupants is descri-

bed in (19), where the lower and upper thermal comfort

levels are presented in terms of temperatures. It is assumed

that air-conditioners are operating at rated power once

switched on. Air conditioners’ status is represented by the

binary integer: when air conditioners are ON, Sac = 1,

otherwise, Sac = 0. The lower and upper bounds for the

walls temperature are formulated in (20):

Tmin
r � Tr tð Þ� Tmax

r ð19Þ

Tmin
w � Tw tð Þ� Tmax

w ð20Þ

Sac tð Þ ¼
1 ON

0 OFF

(
ð21Þ

where Tr
min and Tr

max are lower and upper limit of indoor air

temperature; Tw
min and Tw

max are lower and upper limit of

wall temperature.

3.3 Rolling horizon optimization

Considering the uncertainties associated with electricity

price, ambient temperature and wind speed prediction, a

RHO strategy has been employed. By performing RHO

strategy, model inputs are updated at each time step.

Therefore, deviations from the initial forecast can be

readily accounted for and the effects of prediction errors

can be mitigated. The proposed MILP control model is

implemented for a 24-hour time period, with time steps of

15 minutes. The main RHO procedures are given below.

1) At the 1st time step, the parameters including

electricity price, ambient temperature, and wind power

outputs are determined based on day-ahead forecast

data. The MILP model calculates and generates a set

of parameters (e.g., Tr and Tw) based on the minimum

operation cost objective.

2) At the next time step, cost function is optimized utilizing

the MILP model based on updated input parameters,

including real-time price (RTP), newly forecast ambient

temperature, updated future wind power output, previ-

ous step generated data Tr, etc., and generates a new set

of parameters for next control window

3) At each time step, move forward the control windows,

repeat the above procedure until the last time step of

the planning horizon is finished.

Detailed procedures of the RHO strategy are shown in

Fig. 3. It is assumed in this paper that new forecasts are

available every 15minutes in advance. Theflowchart in Fig. 4

gives an overview of MILP-based RHO control scheme.

4 Case studies

The suburb of Randwick in Sydney has a 4.8 m/s

average wind speed on site and is considered to be a good

location to install small wind turbines for community
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group use. In 2010, the government installed a Skystream

2.4 kW wind turbine to educate the community about

renewable energy alternatives and reducing carbon emis-

sions [26]. It is expected more small wind turbines would

be installed in this suburb to serve the community. Under

this circumstance, this paper aims to provide pioneer

research, for any interested stakeholder, on coordinating

residential side controllable load and micro sources to

improve renewable energy penetration levels and curtail

peak load demand. The main objective of this section is

to investigate the performance of the proposed control

scheme under day-ahead control scenario and rolling

horizon control scenario. Case studies are based on a five

node radial distribution network with small wind turbines

and Li-Ion batteries installed in the community group.

The proposed MILP control scheme is conducted using

MATLAB software combined with the Mosek tool box

[27]. The simulation program is executed on a 4 core,

64-bit DELL Desktop with Intel Core i5-2400 CPU and

RAM 4 Giga-byte.

4.1 Day ahead control

4.1.1 Experimental setup

1) The system network configuration is shown in Fig. 5.

2.4 kW Skystream wind turbines and 5 kWh Li-Ion

batteries are installed near the community group

households. As mentioned in Section 3, the capacity

of small wind turbines and Li-Ion BESSs are aggre-

gated to be controlled and regulated by micro source

controllers (MC) at each community group. Air-

conditioning controllable load in each group are

gathered and managed in controllable load controller

(LC). Local MC and LC are further regulated by

decentralized micro grid control center (MGCC) for

exchanging information with upper layer distribution

management system (DMS). Total capacity of small

wind turbines, BESSs, and ACL groups are given in

Table 1.

0:00— 0:15 0:15— 0:30 0:30— 0:45 ……. 12:00—12:15 …….

0:00— 0:15 0:15— 0:30 0:30— 0:45 ……. 12:00—12:15 …….

Rolling 1

Rolling 2

0:00— 0:15 0:15— 0:30 0:30— 0:45 ……. 12:00—12:15 ……. 23:45—24:00

Rolling 3

0:00— 0:15 0:15— 0:30 0:30— 0:45 ……. 12:00—12:15 ……. 23:45—24:00

Rolling 24

23:45—24:00

23:45—24:00

Interval that has elapsed

Interval that will be implemented

Fig. 3 Representation of rolling horizon optimization process

Employ MILP model to minimize
distribution network operation cost

Output current optimal solution:

Start

Initial data input: day-ahead forecasted

Y

Input updated
forecast data and

the new set of
parameters

N

Output overall optimal solution

, , ,  etc.buy amb wC t T t P t

_ _ , , , ,  , etc.ac r w g buy g sellS t T t T t P t P t

Rolling horizon optimization
termination?

as the new set of parameters

End

Fig. 4 Flow chart of MILP-based rolling horizon optimization

control scheme

BESS

MC

LC
LC

B
ESS

M
C

BESS

M
C

BESS

MC

LC

BESS

MC

LC

DC

A

AC

LV
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Fig. 5 Configuration of radial distribution network with five nodes
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2) Wind speed measurement is collected from day-

ahead wind data [9]. Based on the wind speed, wind

power output can be calculated by (15). Cut in wind

speed, rated wind speed and cut off wind speed for

Skystream wind turbine respectively are 3.5 m/s,

9 m/s and 25 m/s.

3) The five ACL groups are assumed to have distinct

building environments and different thermal comfort

requirements. Table 2 lists the information of the five

ACL groups. In this research, the aggregation of

thermal loads is simplified to treat households in each

group with same building environment and thermal

comfort preferences. Two methods can be used in

future work to aggregate thermal loads. One is

historical data based modelling [28]. It requires the

specified type of household model to run for a long

duration (e.g. a typical summer) so that seasonal

nature of heating and cooling by householders can be

captured. Another method is Monte Carlo simulation

[29]. By assuming uncertainties in different house-

holds’ parameters (e.g. width, length and building

materials) to closely simulate real-life conditions,

Monte Carlo simulation is performed by repeated

sampling of stochastic parameters to generate hetero-

geneous operating scenarios.

4) The ambient temperature, electricity purchase price,

and selling price for a typical summer day in Sydney

[30, 31] are shown in Fig. 6, which is used for the

forecasted day-ahead data in our research. It should be

noted that only summer season data is used here for

conveniently testing air conditioners operation status

in a day. For real-time data, it is generated by

forecasting methods. Here, we randomly generate

three profiles of Gaussian noisy variables with small

deviations and add them on the day-ahead temperature

profile, electricity purchase price profile and wind

speed profile respectively. The day-ahead data and

real-time data used in the rolling horizon optimization

are sent from DMS to MGCC, and from there relayed

to local MC and LC. It is worth noting that selling

price here refers to the net feed-in-tariff for wind

resource. The electricity retail price is always higher

than selling price. The peak electricity retail rate

period is 17:00–21:00. Ambient temperature peak time

in one day occurs from 13:00 to 16:00.

4.1.2 Simulation results

Figures 7 and 8 indicate the scheduled air conditioner’s

operation status and indoor air temperature in the five ACL

groups during one day. Since ACL groups have different

building characteristics and thermal comfort preferences,

the air conditioners have different operation status in one

day. As indicated in Fig. 8, the five groups’ room tem-

perature is well controlled within the pre-set indoor tem-

perature comfort zones. Peak load demand occurs during

late afternoon when householders get back to home from

work. As it is shown in Fig.7, air conditioners in five ACL

groups are pre-opened to keep the house cool before peak

load demand periods and shut down during peak load

periods. By selectively turning off air conditioners at cer-

tain time, the peak load demand of this system is reduced to

a lower level without compromising customers’ thermal

comfort.

Figure 9 outlines the power flow of the BESSs to con-

sumers and corresponding SOC profiles. It is observed that

Fig. 6 Ambient temperature and day-ahead electricity price

Table 1 Aggregated devices’ parameters on each node

Node ACL group

households

Prated

(kW)

Ebess

(kWh)

Pbat
max_discharge

(kW)

1 80 126 300 280

2 85 145 300 270

3 92 128 350 320

4 72 104 280 240

5 90 162 260 240

Table 2 ACL groups’ information

ACL

group

AC

capacity

(kW)

House length/

width/height

(m)

Wall

thickness

(m)

Tmin
r ð�CÞ Tmax

r ð�CÞ

1 3 20/12/3.2 0.24 22 27

2 4 20/12/3.2 0.24 23 26

3 4 18/12/3.2 0.24 22 26

4 2.8 15/12/3.2 0.24 23 27

5 3.5 18/12/3.2 0.24 23 28
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the five BESSs discharge power at a relatively high rate

during periods where electricity retail prices are high

(6:00–10:00 and 17:00–22:00). BESSs are charged by wind

turbines during low electricity retail price periods

1:00–6:00 and 11:00–16:00. It should be noted that wind

power generation during these periods is completely stored

by the BESSs without any curtailment. Therefore, the wind

power utilization level is greatly improved by the proposed

control method.

Figure 10 reports the power exchanges between the

community group and external grid. According to the

analysis in Section 3, the best operational mode for

proposed system is to consume renewable generation

directly from local micro sources. It can be clearly seen

that the peak electricity purchase occurs in the period

between 10:00–16:00, when the battery operates in charge

mode. Due to high electricity demand between

17:00–20:00, local renewable resources are not enough to

meet the requirements and are supplemented with the

external grid. The simulation results imply that as long as

the distributed renewable energy can be consumed locally

through an appropriate control scheme, it won’t impact on

system stability. On the contrary, it helps support grid.

The total calculation time for the benchmark system is

27.02 seconds, which is fast enough for 15 minutes time

Fig. 8 Room temperature change in five groups

Fig. 10 Power bought from external grid in five groups

Fig. 9 BESS operation conditions

Fig. 7 Air conditioners operation status in five groups

62 Dongxiao WANG et al.

123



step control window. It should be noted that under the cost

minimization objective, all the variables (e.g.Sac(t), Tr(-

t) and Tw(t)) are acquired by the Mosek tool box except the

actual cost amount. In order to show the cost effectiveness

of the proposed control scheme, we compare the system

operation cost in our system with the situation that all the

electricity is bought from external grid. By consuming the

local power generation from wind turbines instead of

buying electricity from external grid, the cost savings for

one day in our system is $765.89, which accounts for

31.4% of original system cost $2436.6 (i.e., all the elec-

tricity is bought from external grid).

4.2 Rolling horizon optimization

Next, we validate the effectiveness of the RHO strategy

on alleviating the day-ahead prediction errors. Based on the

same network configuration in Fig. 5, continuous real-time

information is updated and the control window is pro-

ceeded. The updates of the wind speed, ambient tempera-

ture, and electricity price on 15-minute basis are shown in

Fig. 11. Two randomly selected groups are used to show

the difference with day-ahead and real-time controls.

As shown in Fig. 12a, air conditioners in group three

and group five are switched on more frequently under the

real-time scenario and operated for a longer time period.

This is because the actual ambient temperature is slightly

higher than the day-ahead forecast data, and longer oper-

ating time is therefore needed under this condition. It can

be clearly seen that in Fig. 12b, the indoor temperatures are

kept within the customers’ pre-set temperature limits under

both scenarios, indicating that the customers’ thermal

comforts are respected. The results also show that the

system operation costs in the real-time control are higher

than those in the day-ahead stage. This is because longer

air conditioner operation time consumes more electricity

from the external grid.

Fig. 11 15-minute ahead data update
Fig. 12 Air conditioners operation status and indoor temperature

change
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By utilizing the forecasted day-ahead data and real-time

data, we can compare the control outcomes under the two

different scenarios. The result indicates the application of

RHO scheme shows a more accurate control effect. With

the wide deployment of bidirectional smart metering

among end users, proposed methodology can effectively

utilize real-time information of electricity pricing, fore-

casted weather condition, and residents’ thermal prefer-

ences to optimize the system operation.

To deal with the uncertainties brought by real-time data

prediction, future work will compare another two existing

techniques to validate the efficiency of the RHO scheme.

One is a scenario-based approach [32], in which the pos-

sible uncertainties are realized by generating multiple

scenarios. Scenario-generation methods include Monte

Carlo sampling, moment matching principles and other

methods motivated by stability analysis. The limitation of

this method is the significant increase in the computation

burden and scale. Another method is interval optimization

[33], in which confidence intervals in terms of upper and

lower bounds are used to represent the uncertainty spec-

trum. While this method does not need assumed probability

distribution for uncertainties, it needs to carefully select the

uncertainty intervals.

5 Conclusion

A MILP-based RHO control scheme is proposed in this

paper. The objective of the proposed model is to improve

wind power utilization and minimize the total operation

costs. Interruptible ACLs are scheduled without signifi-

cantly sacrificing the customers’ thermal comfort. In order

to mitigate the negative effects brought by the uncertainties

associated with some variables, the RHO strategy is

employed.

The proposed control scheme is tested on a five node

radial distribution network. Two cases in Section 4 validate

the effectiveness of the proposed method. The simulation

results prove that the wind power penetration level is

guaranteed, and the system operation costs are also mini-

mized while different operational constraints are satisfied.

Meanwhile, the results show that the RHO strategy can

effectively update the real-time information and re-sched-

ule the resources based on the day-ahead decisions.

Future work would focus on the following aspects: 1)

Consider the battery life influences caused by frequent

charging and discharging of renewable power. It can be

achieved by setting the battery operational constraint of

depth of discharge (DOD) and locating in a suitable envi-

ronment. 2) Design a DC microgrid for renewable energy

and battery with parallel connection instead of current AC

microgrid to improve energy use efficiency. 3) Employ

historical data based modelling and Monte Carlo simulation

to aggregate controllable thermal loads. 4) Compare the

rolling horizon optimization scheme with scenario-based

approach and interval optimization to validate its efficiency.
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