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Abstract In this paper, a mixed integer linear programming

(MILP) formulation for robust state estimation (RSE) is pro-

posed. By using the exactly linearized measurement equations

instead of the original nonlinear ones, the existing mixed integer

nonlinear programming formulation for RSE is converted to a

MILP problem. The proposed approach not only guarantees to

find the global optimum, but also does not have convergence

problems. Simulation results on a rudimentary 3-bus system

and several IEEE standard test systems fully illustrate that the

proposed methodology is effective with high efficiency.

Keywords State estimation, Robustness, Leverage point,

Mathematical programming, Mixed integer linear
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1 Introduction

Power system state estimation (SE) is a core function of

energy management system (EMS) [1]. As a data filter, SE

can provide reliable data to EMS, thereby improve the

safety of power network operation. With the development

of smart grid, SE will play an increasingly important role in

power system operation and control. The model and

implementation of SE were firstly proposed by Schweppe

and Wildes in [2–4] in 1970. From then on, various SE

models have been proposed, among which the weighted

least square (WLS) approach and the fast-decoupled SE

(FDSE) approach [5] are the most popular SE methods; but

WLS and FDSE are very sensitive to bad measurements,

i.e. bad data (BD). To suppress the effect of bad mea-

surements on the estimation value of WLS or FDSE, the

largest normal residual (LNR) test [1] or other BD identi-

fication approaches based on residual [6, 7] are always used

to detect and identify any existing bad measurements, but

these methods cannot effectively identify conforming bad

measurements and leverage bad measurements [1].

For retaining unbiased estimation despite the existence

of different types of bad measurements, many robust state

estimation (RSE) approaches have also been proposed,

including the weighted least absolute value (WLAV) esti-

mation [8–12], the quadratic-linear (QL) estimator [13, 14],

and the quadratic-constant (QC) estimator [15, 16], etc.

Recently, the maximum normal measurement rate (MNMR)

estimator, the maximum exponential square (MES) estimator

and the maximum exponential absolute value (MEAV) esti-

mator have been suggested in [17], [18] and [19], respec-

tively, showing good performance in suppressing the effect of

bad measurements.

Mathematically, traditional SE models boil down to

solve an optimization problem that is nonlinear and non-

convex in general. Thus, several issues are inevitably

concerned: � The global optimum cannot be guaranteed

theoretically, whereas a local optimum is meaningless for

SE; ` Iterative algorithms are generally required for

solving the nonlinear programs, the process may become

time-consuming as the number of iterations increases and

in certain severe circumstances, the iterative algorithms

may fail to converge; ´ Leverage bad measurements will

affect the estimation performance at certain extent. In lit-

erature, some research work has been devoted to address

these issues. For example, a backtracking and trust region
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based method is proposed to enhance the convergence

properties of SE in [20]. In [21], a novel RSE approach

using mixed integer nonlinear programming (MINP) for-

mulation is proposed. Since it is not susceptible to leverage

bad measurements, this approach shows strong robustness

even in pathological cases. However, the above three

problems have not yet been comprehensively solved due to

the intrinsic non-convexity and nonlinearity of traditional

SE models.

Reference [22] proposes a factorized approach for WLS,

further giving rise to a bilinear state estimation approach

[23]. Both of the approaches actually imply an exact lin-

earization scheme of measurement equations. Motivated by

this, we propose a mixed integer linear programming

(MILP) formulation for RSE. The main idea is to use the

exactly linearized measurement equations instead of the

original nonlinear ones in the MINP model. Since the

global optimum of MILP can be efficiently obtained by

employing mature solvers, such as CPLEX, this approach

has a very good prospect of online application.

Main contributions of our paper are twofold: � A

methodology for obtaining the global optimum of SE is

proposed, and a MILP model for RSE is presented; ` A

mixed integer quadratic programming (MIQP) formulation

for comprehensive SE is proposed.

The rest of this paper is organized as follows: traditional

SE models are shortly reviewed in Section 2. Section 3

proposes a MILP formulation for RSE and a MIQP for-

mulation for comprehensive SE. Case studies on a rudi-

mentary 3-bus system and several IEEE benchmark

systems are given in Section 4. Finally, conclusions are

drawn in Section 5.

2 Short reviews on traditional SE models

2.1 Traditional nonlinear measurement equation

The state variables of power systems generally refer to

the voltage magnitudes and the phase angles of all buses

(except for the reference bus). For traditional SE, the

relationship between the state variables and measurements

can be described by the following nonlinear measurement

equation

z ¼ hðxÞ þ e ð1Þ

where, z is a m-dimensional measurement vector, usually

including the power flows, bus power injections, bus

voltage magnitudes, etc.; x the n-dimensional state vector

(voltage magnitudes and phase angles) with n = 2N - 1;

N the number of buses; h : Rn ! Rm the nonlinear vector

function mapping the state vector to the measurement

vector; e is a m-dimensional measurement error vector with

variance R (an m 9 m diagonal matrix). The details about

the measurement equation can be found in [1].

2.2 Traditional SE models

Based on (1), most of the existing SE models can be

unified and boiled down into a general nonlinear optimi-

zation model as

Min(or Max) JðxÞ ¼
Xm

i¼1
f ðriÞ

s.t. z ¼ hðxÞ þ r
ð2Þ

where r is a m-dimensional residual vector; ri the ith

component of r; and f (ri) a certain function of the residual

ri, depending on different SE models.

Various solvers can be employed to solve the nonlinear

optimization problem. However, from the mathematical

point of view, two key issues should be attended to. Firstly,

(2) is a nonlinear and non-convex optimization problem in

general because of (1). Thus, there may be multiple local

optimums and it is not easy to obtain the global optimum

with gradient-based solvers in theory (such as the Gauss-

Newton method or interior point method). Secondly, as the

model is nonlinear, iterative algorithms are required.

Consequently, solving SE problem may have convergence

issue. These inherent drawbacks might limit the applica-

tions of existing SE methods based on (2).

2.3 MINP model

The MINP formulation of RSE proposed by [21] is

given by

Min. Jðx; bÞ ¼
Xm

i¼1
bi

s.t.
hiðxÞ� zi þ tþi þ Mbi

hiðxÞ� zi � t�i � Mbi

(
i ¼ 1; 2; . . .;m

ð3Þ

where zi and hi are the ith components of the measurement

vector z and h, respectively; tþi =t�i upper/lower tolerance

for measurement i; M an arbitrarily large positive number;

bi binary variable for measurement i. For bad measure-

ment, bi = 1, else bi = 0; and b ¼ ½b1; b2; . . .; bm�T 2 Rm.

For details, please refer to [21].

Apparently, in the MINP model, a tolerance range is

associated with each measurement and an estimation value

of state vector is chosen to maximize the number of esti-

mated measurements that remain within tolerance [21].

Reference [21] points out that MINP is not susceptible to

leverage bad measurements and it shows strong robustness

even in pathological cases.

Mathematically, the aforementioned (in the introduc-

tion) drawbacks of MINP model stem from its nature of
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nonlinearity. That means, if the nonlinear measurement

equations can be transformed to linear ones, then the MINP

model will be converted to MILP model, and the above

drawbacks can be overcome. This motivates us to develop

a MILP formulation for RSE.

3 Proposed MILP formulation for RSE

3.1 Linear measurement equation

As mentioned above, the approaches in [22] and [23]

essentially boil down to an exact linearization scheme of

measurement equations. It is achieved by introducing an

auxiliary state vector:

y ¼ fUi;Kij; Lijg ð4Þ

where y 2 RNþ2b is the auxiliary state vector; N the number

of buses; b the number of branches; Ui = vi
2 the square of

voltage magnitude; and Kij = vivj cos hij and Lij = vivj -

sin hij the contribution of branch ij (from bus i to bus j) to

y.

At the same time, an auxiliary measurement vector is

defined as

~z ¼ fUi;Pij;Qij;Pi;Qi; I2
ijg ð5Þ

where ~z 2 Rm is the auxiliary measurement vector; Pij and

Qij the power flow measurements of branch ij (from bus i to

bus j); and I2
ij the square of current magnitude of branch ij

(from bus i to bus j).

Based on the auxiliary state vector and the auxiliary

measurement vector, (1) can be converted to

~z ¼ By þ ~e ð6Þ

where B 2 Rm�ðNþ2bÞ is the constant Jacobian matrix and

~e 2 Rm is the auxiliary noise vector. The details can be

found in [22] and [23].

Comparing (6) with (1), it can be found that the original

nonlinear measurement equation is converted to be a linear

one through the introduction of auxiliary state vector and

auxiliary measurement vector. If (6) is used for the mod-

eling of SE, then the issues of traditional SE models (such

as global optimum and convergence problems) might be

solved.

3.2 MILP model

1) First linear stage

According to [21], each auxiliary measurement (normal

or bad data) can be represented by a pair of inequality

constraints:

Biy� ~zi þ ~tþi þ Mbi; i ¼ 1; 2; . . .;m

Biy� ~zi � ~t�i � Mbi; i ¼ 1; 2; . . .;m

(
ð7Þ

where ~zi is the ith component of ~z; Bi the ith row of B; and

~tþi =~t
�
i the upper/lower tolerance for ith auxiliary

measurement.

According to the formulation methodology of MINP, the

criteria for the estimation of the auxiliary state vector can

be selecting a state vector y which make as few auxiliary

measurements as possible being ignored, thus the following

model can be got as

Min: Jðy; bÞ ¼
Xm

i¼1
bi

s.t.
Biy� ~zi þ ~tþi þ Mbi

Biy� ~zi � ~t�i � Mbi

(
i ¼ 1; 2; . . .;m

ð8Þ

Compared with traditional SE methods based on (2)

(including MINP model), (8) is a MILP problem, thus it

possesses the following advantages: � the global optimal

solution can be guaranteed mathematically; ` there is no

convergence problem for (8); ´ it can effectively suppress

bad measurements (including leverage bad measurements),

which will be proved by the tests in the next section.

Eq. (8) can be efficiently solved using CPLEX. As soon

as (8) is solved, the estimation value of the auxiliary state

vector can be gotten, and then the method proposed in [22,

23] can be used to obtain the estimation value of the ori-

ginal state vector described by (1). However, a simple and

convenient alternative nonlinear transformation and an

alternative second linear stage will be presented below.

2) Nonlinear transformation

An alternative nonlinear transformation is given as

~u ¼ ~gðyÞ ð9Þ

where ~u ¼ fvi; h
ðcÞ
ij ; hðsÞij g 2 RðNþ2bÞ is the pseudo-measure-

ment vector obtained by nonlinear transformation, vi ¼
ðUiÞ0:5; hðcÞij ¼ arccosðKij=ðvivjÞÞ; hðsÞij ¼ arcsinLij =ðvivjÞÞ:

Through the above nonlinear transformation, the bus

voltage magnitudes of all the buses as well as the phase

angle differences between both ends of all the lines (two

values for each line) can be obtained. The next task is to

estimate the bus voltage angles of all the buses from the

angle differences of all the lines, which will be completed

in the second linear stage.

3) Second linear stage

An alternative second linear model is given as

hb ¼ Ah ð10Þ

where hb ¼ fðhðcÞij þ hðsÞij Þ=2g 2 Rb is the pseudo- mea-

surement vector; h ¼ ½h2; h3; . . .; hN �T 2 RN�1 the voltage

angle vector (bus 1 is set as the reference bus); and A ¼
½aij� (1 B i B b, 1 B j B N - 1) the reduced branch-bus
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incidence matrix (without the column corresponding to the

reference bus). Then A ¼ ½aij� is a b � ðN � 1Þ matrix

with

aij ¼
1 if bus j is the sending terminal of branch i

�1 if bus j is the receiving terminal of branch i

0 otherwise

8
<

:

However, since hb is obtained by the nonlinear trans-

formation of MILP, (10) does not hold in general. Thus, we

can alternatively regard hb as one type of special ‘‘mea-

surements’’ with noises and h as an unknown state variable

vector. Then we have a fictional measurement equation as

hb ¼ Ah þ s ð11Þ

where s is the b-dimensional noise vector.

Apparently, h can be obtained by solving SE problem,

the WLS problem is used here with the model as

Min JðhÞ ¼ ðhb � AhÞTWhðhb � AhÞ ð12Þ

where Wh is the weighted matrix.

Without loss of generality, assume Wh = I. To mini-

mize (11), we have

ATAh ¼ AThb ð13Þ

As the gain matrix in (13) always has a very small

condition number, it can be directly solved by using the

Cholesky decomposition and conventional forward/back

substitutions; note that (12) is a quadratic programming

(QP) problem, and it also can be solved by CPLEX.

To summarize, the overall procedure of the proposed

MILP algorithm is presented as follows.

Step 1 (forming matrix B and A): Form the constant

Jacobian matrix B and the reduced branch-bus incidence

matrix A.

Step 2 (solving MILP): Solve the MILP (8) by CPLEX

software.

Step 3 (nonlinear transformation): Obtain all the bus

voltage magnitudes and the phase angle differences

between both ends of all the lines by (9).

Step 4 (solving QP): Solve (11) by CPLEX software.

Step 5: END.

Note that Kij and Lij is relaxed in the first linear stage of

MILP, thereby affecting the estimation accuracy of MILP.

To solve this problem, the two-stage algorithm presented in

[21] can be employed: � to identify and eliminate bad

measurements by the overall algorithm of MILP given in

Table 1; ` regarding the estimation value of MILP as the

initial value, to process WLS algorithm on the polished

measurements. For ease of expression, we call the above

method MILP?WLS, which contains an additional WLS

estimation following the run of MILP. In this way, the

three problems of traditional SE models might be com-

prehensively solved.

Remarks are as follows.

1) In order to further improve the computation efficiency

of (8), bi can be viewed as a continuous variable within 0 to

1, and then the original MILP problem is converted to be a

linear programming (LP) problem, thereby greatly

improving the computational efficiency. By solving this

LP, an estimation value of bi close to 1 is an indication of

the corresponding measurement being bad measurement,

while a value of bi approaching 0 implies a normal

measurement.

2) Reference [24] suggests a comprehensive RSE

approach that simultaneously considers bad measurement

identification, parameter estimation and topology errors

identification. When (6) are applied to the generalized SE

model presented in [24], only the inequalities correspond-

ing to the measurements related to suspicious parameters

are nonlinear, while all other inequalities are linear.

The uncertainty of the suspicious parameters can be

represented by a pair of linear inequality constraints as

p̂k � pk þ tþk þ Mbk; k ¼ 1; 2; . . .;mp

p̂k � pk � t�k � Mbk; k ¼ 1; 2; . . .;mp

(
ð14Þ

where pk is the kth suspicious parameter; p̂k is its estimated

value; tk
?/tk

- upper/lower tolerance for kth suspicious

parameter; mp the number of the suspicious parameters;

and bk binary variable, for wrong parameter, bk = 1, else

bk = 0.

Suppose the topology status of the lth link is suspicious,

the uncertainty of this suspicious link can be represented by

� Mbl �Ui � Uj �Mbl

� Mbl � Lij �Mbl

� Mð1 � blÞ�Pij �Mð1 � blÞ
� Mð1 � blÞ�Qij �Mð1 � blÞ

8
>>><

>>>:
l ¼ 1; 2; . . .;ms

ð15Þ

where i and j are the sending terminal and the receiving

terminal of the lth link, respectively; ms the number of the

Table 1 The network data of the 3-bus system

Line Resistance Reactance Total susceptance bc

From bus To bus

1 2 0.01 0.03 0

1 3 0.02 0.05 0

2 3 0.03 0.08 0
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suspicious links; and bl binary variable, for open link,

bl = 1, else bl = 0.

Then a comprehensive RSE model can be obtained as

Min:
Pm

i¼1 bi þ
Pmp

k¼1 bk þ
Pms

l¼1 bl

s:t:

~zi � ~t�i � Mbi �Biy� ~zi þ ~tþi þ Mbi; i ¼ 1; 2; . . .;m

pk � t�k � Mbk � p̂k � pk þ t�k þ Mbk; k ¼ 1; 2; . . .;mp

�Mbl �Ui � Uj �Mbl

�Mbl � Lij �Mbl

�Mð1 � blÞ�Pij �Mð1 � blÞ
�Mð1 � blÞ�Qij �Mð1 � blÞ

9
>>>=

>>>;
; l ¼ 1; 2; . . .;ms

bi; bk; bl ¼ 0 or 1

8
>>>>>>>>>><

>>>>>>>>>>:

ð16Þ

Note (16) is not a MILP problem, but a MINP problem.

However, since the nonlinearity only involves quadratic

terms, it is actually a MIQP problem that can also be

efficiently solved using CPLEX. Specifically, if only bad

measurements and topology errors are considered, the

resulting model is still a MILP problem, since no

nonlinearity will be involved.

3.3 Observability analysis

In this subsection, the network observability analysis of

MILP is discussed. Because the reduced branch-bus inci-

dence matrix A retains full column rank, the observability

condition is naturally satisfied in the second linear stage of

MILP. Hence, we only need to discuss the observability

condition of the first stage. Since the measurement errors

have no effect on the observability analysis,the observ-

ability analysis for MILP can be simplified to consider the

following measurement equation

~z ¼ ~zR

~zA

� �
¼ BRR BRA

BAR BAA

� �
yR

yA

� �
ð17Þ

where yR ¼ fUi;Kijg; yR 2 RNþb; yA ¼ fLijg; yA 2 Rb;

~zR ¼ fUi;Qij;Qig the auxiliary measurement vector asso-

ciated with reactive power, ~zA ¼ fPij;Pig is the auxiliary

measurement vector associated with active power, I2
ij is not

used here; and BRR, BRA, BAR and BAA the corresponding

Jacobian submatrices. Nonzero elements of BRR and BAA

are composed of susceptance or 1, while that of BRA and

BAR are composed of conductance.

In observability analysis, the system observability is gen-

erally independent of the branch parameters. Thus, without

loss of generality, we assume the impedance of each branch to

be j 1.0 p.u., and the conductance to be 0. This yields BRA = 0

and BAR = 0. Then (17) can be simplified to be

~zR

~zA

� �
¼ BRR 0

0 BAA

� �
yR

yA

� �
ð18Þ

According to the expression of B, it is apparent that if BRR

holds full column rank, then BAA must be of full column

rank, provided P, Q measurements come in pairs. Therefore,

the observability condition of MILP is that BRR is of full

column rank, provided that P, Q measurements come in

pairs. Unobservable lines and their corresponding

measurements should be removed in estimation by MILP.

Note that the dimension of yR is N ? b, larger than that

of the state vector associated with the reactive problem in

the traditional SE models. Thus the observability condition

of MILP is more rigorous than that of the traditional SE

models. However, the measurement status in current power

systems is usually good enough to guarantee the observ-

ability condition of the proposed MILP. This has been

verified by a great number of trials on various benchmark

systems in our tests. To check whether the observability

condition is satisfied or not, a number of conventional

numerical approaches can be used [25–28].

4 Case studies

In this section, numerical experiments are carried out to

evaluate the performance of the proposed model and

algorithm. The test systems include a rudimentary 3-bus

system and seven benchmark IEEE systems. All tests are

performed on a laptop, with an Intel(R) Core(TM) i5, 2.60

GHz CPU and 2 GB RAM.

4.1 Case 1: 3 bus system

1) Correctness test

Consider a rudimentary 3-bus system shown in Fig. 1.

The network data and measurements (in p.u.) are given in

Table 1 and Table 2, respectively. Bus 1 is set as the ref-

erence bus. The true value of the complex phasor voltages

Fig. 1 One-line diagram and measurement configuration of a 3-bus

system
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for the three buses are 1\0, 0:9732\�0:0217 and

0:9431\�0:0482, respectively.In the test, WLS, MINP,

MILP and MILP?WLS are independently executed based

on the measurements shown as Table 2, the estimation

results given by the above four SE approaches are shown as

Table 4. As can be seen from Table 3, the estimation

values of MINP and MILP are correct, but the accuracy is

not high enough; while the estimation results given by

WLS and MINP?WLS are the same and are very close to

the true value. Note in this test, no nonlinear iterations are

needed by MILP, while WLS needs four nonlinear itera-

tions (the convergence precision is 1e-6 in all the tests)

and MINP needs seven, MILP?WLS needs three nonlinear

iterations. The computation efficiency of MILP?WLS is

more than ten times as high as that of MINP for this test.

2) Robustness test

Furthermore, the reactance of branch 1–3 is reduced to

1/10 of its original value so as to create a leverage point,

and Q13 is intentionally changed (by adding 10% error) to

simulate bad measurement, while other measurements

shown as Table 3 keep the same, then WLS (with the

largest normal residual test for bad measurement identifi-

cation, denoted by WLS?LNR), MINP, MILP and

MILP?WLS are independently executed. For WLS, after

the first estimation of WLS, the LNR (larger than the

threshold 3.0) corresponds to P2, eliminate P2 and run

WLS again; after the second estimation, the largest normal

residual (larger than the threshold 3.0) corresponds to Q31.

Apparently, WLS?LNR cannot correctly identify bad

measurements when leverage point exists. However, the

bad measurement Q31 is correctly identified by MINP,

MILP and MILP?WLS even leverage point exists, illus-

trating the good robustness of MINP, MILP and

MILP?WLS. In terms of the computation efficiency, the

computation efficiency of MILP?WLS is more than

twelve times as high as that of MINP for this test.

3) Global optimality test

This test is performed for verifying the global optimality

of MILP. As aforementioned, the conventional SE methods

based on (2) are non-convex and the global optimum

cannot be guaranteed to be found, especially for heavily

loaded, stressed systems. The proposed MILP, however,

can theoretically guarantee the global optimality. To

demonstrate this, we test WLS and the proposed MILP

with another group of measurements (given in Table 4).

One might argue that such measurements are rare in

practice; however, such situation can occur with voltage

collapse.

The estimation results are shown in Table 5. The tra-

ditional WLS using flat start converges after 18 iterations.

However, it can be seen from Table 6 that WLS converges

to a local minimum instead of to the global optimum,

making the estimation result inacceptable; whereas the

proposed MILP successfully finds the unique global opti-

mum, showing its capability of guaranteeing the global

optimality. As for MILP?WLS, because of the good initial

value provided by MILP for WLS, its estimation value is

closer to the true value compared with the estimation value

Table 2 Measurements of the 3-bus system

No. Type Value
ffiffiffiffi
R

p
ii

No. Type Value
ffiffiffiffi
R

p
ii

1 v1 1.0040 4e-3 7 P13 1.1720 8e-3

2 v2 0.9680 4e-3 8 Q13 0.6650 8e-3

3 P12 0.8880 8e-3 9 P31 -1.1360 8e-3

4 Q12 0.5640 8e-3 10 Q31 -0.5740 8e-3

5 P21 -0.8770 8e-3 11 P2 -0.4930 1e-2

6 Q21 -0.5310 8e-3 12 Q2 -0.3010 1e-2

Table 3 The estimated results given by WLS, MINP, MILP and

MILP?WLS

Bus i Estimation value

WLS/

MILP?WLS

MINP MILP

vi (p.u.) hi (rad) vi (p.u.) hi (rad) vi (p.u.) hi (rad)

1 0.9987 0 0.9931 0 0.9932 0

2 0.9731 -0.0217 0.9675 -0.0217 0.9675 -0.0217

3 0.9430 -0.0481 0.9370 -0.0483 0.9371 -0.0482

Table 4 Another group of measurements of the 3-bus system

No. Type Value
ffiffiffiffi
R

p
ii

No. Type Value
ffiffiffiffi
R

p
ii

1 v1 1.0000 4e-3 7 P13 19.9930 8e-3

2 v2 0.7549 4e-3 8 Q13 11.4821 8e-3

3 P12 9.1845 8e-3 9 P31 -9.3618 8e-3

4 Q12 6.1364 8e-3 10 Q31 15.0958 8e-3

5 P21 -7.9643 8e-3 11 P2 -0.3277 1e-2

6 Q21 -2.4761 8e-3 12 Q2 -0.5105 1e-2

Table 5 The estimation results of WLS and MILP

Bus

i

True value Estimate value of

nonlinear WLS

Estimate value of

MILP

vi

(p.u.)

hi (rad) vi (p.u.) hi (rad) vi

(p.u.)

hi (rad)

1 1.0000 0 0.9941 0 1.0000 0

2 0.7551 -0.2876 -0.7450 -16.0000 0.7551 -0.2877

3 0.7705 -1.5370 -0.7698 315.7542 0.7704 -1.5373
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of MILP, illustrating that MILP?WLS can also find the

global optimum.

4.2 Case 2: IEEE bus systems

In this case, numerical tests are carried on seven

benchmark systems, including IEEE 9, 14, 30, 39, 57, 118,

300-bus systems. For comparison, the traditional WLS,

MILP and MILP?WLS are tested. In the tests, WLS is

solved by the Gauss-Newton method, while MILP is solved

by CPLEX. The measurements are created using load flow

results with additional small Gaussian noises. The standard

deviation of noise is set to be 0.001.

1) Estimation accuracy test

The maximum deviations between the estimation results

(by WLS, MILP and MILP?WLS) and the corresponding

true states are presented in Table 6. In Table 6, Dvk k (p.u.)

and Dhk k (rad) denote the maximum deviation of the voltage

magnitudes and the maximum deviation of the angles,

respectively. It can be seen that the estimation values of

MILP are always correct; and the estimation values of WLS

and MILP?WLS are always the same, they are closer to the

true value compared with the estimation values of MILP.

With the standard deviation of noise decreasing, all the

maximum deviations approach to zero, implying that the

estimate values approach to the true states.

2) Robustness test

As for robustness, we take the IEEE-300 bus system as

example. In the test, the reactance of branch 1–5 is reduced

to 1/10 of its original value so as to create a leverage point,

and 4 correlated measurements are set as bad measure-

ments. Then the proposed MILP?WLS is used to identify

the bad measurements. Test results show that all the bad

measurements are correctly identified by MILP?WLS. For

the purpose of comparison, two other estimators are also

tested on the same problem (including the WLS?LNR and

the WLAV). Both the two estimators fail to correctly

identify the bad measurements due to the existence of

leverage point. These test results illustrate strong robust-

ness of the proposed methodology.

3) Computational efficiency

As for the computational efficiency, Table 7 gives the

number of measurements as well as CPU time of MINP

and MILP for different IEEE benchmark systems. Note that

the computational efficiency of the MINP model (by using

polar coordinate) is quite low and not suitable for online

application. In contrast, Table 7 indicates that the compu-

tation efficiency of our MILP model is very high.

Furthermore, Fig. 2 illustrates that the computation time of

MILP model grows approximately and linearly with the

increase of system scale, showing a very good prospect of

online application.

In the next test, the MILP model is slightly modified to

incorporate topology errors. Then, 10 link errors and 20 bad

measurements are set on the IEEE 300 bus system for test.

After estimation, all the link errors and bad measurements

are correctly identified. The total estimation time is 2632 ms,

which is acceptable for online application. This test indi-

cates that the generalized estimation using MILP model is

capable of detecting/rejecting bad measurements and

topology errors simultaneously. For the comprehensive SE

considering bad measurements, topology and parameter

errors, a MIQP formulation is required and the estimation

Table 6 The maximum deviations of the estimation results

Systems MILP WLS/MILP?WLS

Dvk k Dhk k Dvk k Dhk k

IEEE 9 1.0e-3 1.5e-3 2.9e-5 7.8e-5

IEEE 14 2.1e-3 3.1e-3 6.9e-5 1.4e-5

IEEE 30 2.4e-3 3.0e-3 2.5e-4 3.6e-5

IEEE 39 3.7e-3 4.1e-3 8.5e-5 5.9e-5

IEEE 57 4.0e-3 5.1e-3 5.4e-5 9.5e-5

IEEE 118 4.2e-3 4.3e-3 5.9e-5 4.1e-4

IEEE 300 5.9e-3 4.8e-3 6.3e-5 6.2e-4

Table 7 Number of measurements and CPU time of MINP and

MILP for different IEEE bus systems

Name of

systems

Number of

measurements

CPU time by

MINP (ms)

CPU time by

MILP (ms)

IEEE 9 60 567 63

IEEE 14 119 1416 118

IEEE 30 251 2175 145

IEEE 39 298 2939 173

IEEE 57 480 8632 411

IEEE 118 1067 29781 1144

IEEE 300 2533 102295 2495

Fig. 2 Relationship of CPU time and system scale
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algorithm for SE in the second-stage may need further

investigation. We leave this issue to the future work.

5 Conclusions

In this paper, MILP formulation for RSE is proposed. It

can be easily solved by using mature software such as

CPLEX. Numerical experiments illustrate its strong

robustness and high efficiency of the proposed methodol-

ogy, showing great promise to online applications.
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