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Abstract This paper presents the concept of controlling

distributed electric loads with thermal energy storage as a

passive electric energy storage system (PEESS). Examples

of such loads include different types of thermostatically

controlled appliances (TCAs) such as hot water heaters, air

conditioners, and refrigerators. Each TCA can be viewed as

a thermal cell that stores electricity as thermal energy. A

centralized control mechanism can be used to control the

timing of each thermal cell to consume electric energy so

that the aggregated electricity consumption of the thermal

cells will vary against a baseline consumption. Thus, when

the aggregated consumption is higher than the baseline, the

PEESS is charging; otherwise, the PEESS is discharging.

The overall performance of a PEESS will be equivalent to

that of a battery energy storage device. This paper presents

the configuration and formulates the control of a PEESS.

The modeling results demonstrate the feasibility of

implementing the PEESS.

Keywords Energy storage, Demand response, Load

management, Thermostatically controlled appliances,

Distributed control, Smart grid

1 Introduction

Large-scale integration of intermittent renewable energy

resources has revived interest in developing energy storage

technologies [1–4], which traditionally have been used

mainly as backup resources. Energy storage technologies

include various kinds of batteries, flywheels, compressed

air energy storage, pumped-hydro power plants, and ther-

mal energy storage (TES). Among these, TES technology

[5] is attracting increasing attention because of its low cost,

technological maturity, and relatively easy grid integration

process. So far, TES development has been focused on

stand-alone thermal storage units that consume electricity

and store thermal energy for later use, such as ice, molten

salt, and chilled water storage systems.

What has not been considered is a TES system that

aggregates distributed electric load with thermal storage

capability for electricity storage. Extensive studies have

been done for directly and indirectly controlled demand

response (DR) programs using thermostatically controlled

appliances (TCAs) for energy [6–13] and ancillary [14–18]

services. In the past, DR programs were used to control

TCA loads such as water heaters or air conditioning units,

mainly for peak shaving, load shifting, or emergency load

shedding. The control commands were sent to each unit via

one-way communication networks and were open-loop

control by nature. There was no resource optimization to

minimize the impact on user comfort and equipment life-

time. As a result, the efficiency, availability, observability,

and controllability of such DR programs are poor, greatly

limiting the use of the TES capability of the TCA units.

Recent deployments of the smart grid two-way communi-

cation network have enabled close-loop direct load control

applications that require sending control signals to and

receiving status from end devices. Recent studies [16–18]

have demonstrated that, if properly controlled, aggregated

distributed electric-thermal loads function as well as a bulk

energy storage device such as battery or flywheel energy

storage, broadening their applications to services that pre-

viously could only be provided by generators. However,

these studies focused on DR with little consideration of

Received: 26 July 2013 / Accepted: 22 October 2013 / Published

online: 30 November 2013

� The Author(s) 2013. This article is published with open access at

Springerlink.com

N. LU, M. VANOUNI, Electrical and Computer Engineering

Department, North Carolina State University, Raleigh, NC, USA

(&) e-mail: nlu2@ncsu.edu
M. VANOUNI

e-mail: mvanoun@ncsu.edu

123

J. Mod. Power Syst. Clean Energy (2013) 1(3):264–274

DOI 10.1007/s40565-013-0033-z



treating the operation of the distributed TCA resources as

an energy storage system. As a result, the controller design

and operation do not take a uniform approach, limiting the

TCA’s potential for providing multiple services and

requiring different controller designs for providing differ-

ent services.

This paper presents the concept of controlling distrib-

uted electric loads with TES as a passive electric energy

storage system (PEESS). Fig. 1 shows an example of the

PEESS configuration.

Loads with thermal storage capability include different

types of TCAs such as hot water heaters, air conditioners

(a/c), and refrigerators. Each TCA is a thermal cell that

converts electricity into thermal energy controlled by an

operating temperature range, similar to the high and low

water levels in a reservoir. A centralized controller controls

the timing (when and for how long) of each thermal cell’s

electrical energy consumption. Note that unlike battery

energy storage with bi-directional energy conversion

devices, the thermal energy stored in the PEESS cannot be

converted back to electricity. Instead, the PEESS varies its

electricity consumption against a baseline to release power

to or absorb power from the grid. Thus, when the aggre-

gated consumption is higher than the baseline, the PESSS

is charging; when the consumption is lower than the

baseline, the PEESS is discharging. As a result, the overall

performance of the PEESS is equivalent to that of a battery

energy storage device.

The PEESS technology has several advantages [2] over

active energy storage technologies:

1) No additional storage media are needed and there is no

need for energy conversion devices to convert thermal

energy back to electric energy, resulting in fewer

conversion losses and fewer spatial, disposal, and

maintenance requirements.

2) The PEESS is flexible; it can be resized or regrouped

by committing or de-committing TCA units in differ-

ent control groups and located in different locations.

3) The PEESS offers robust performance (individual cell

failures will not significantly impact the overall

performance).

The disadvantages of the PEESS are as follows:

1) The PEESS is not an active power source and cannot

supply electricity when the power grid is down.

2) The PEESS requires a two-way communication

network.

3) The PEESS requires retrofits or new-designs of the

TCA loads so that the loads can be controlled and

monitored remotely.

4) PEESS implementation requires consumer permission

and acceptance.

Potential applications of the PEESS range from energy

intensive services (such as load shifting, peaking shaving,

and wind/solar leveling) to power intensive applications

(such as emergency load shedding, regulation, load fol-

lowing, and frequency regulation). Major control and

design considerations for implementing PEESS are con-

sumer comfort and safety and sufficient economic

incentives.

This paper is organized as follows. The modeling of the

PEESS and thermal cells is presented in Sect. 2, and the

control algorithm of the PEESS is illustrated in Sect. 3.

The modeling results are discussed in Sect. 4. The con-

clusions and future work are summarized in Sect. 5.

2 Modeling of the PEESS

This section discusses the modeling methodologies and

parameters of thermal cells and the PEESS.

2.1 PEESS and thermal cell models

A PEESS consists of many distributed electric loads

with thermal storage energy capability. Each load is

viewed as a thermal cell that converts electricity into
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Freezer

Fig. 1 Configuration of a thermal PEESS
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Fig. 2 Space heating unit as a thermal cell
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thermal energy by maintaining its operating temperature

within a temperature band. For example, a space heating

(SP) load controlled by a fixed thermostat will turn on

when the house temperature drops below 21 �C and turn

off when the house temperature rises above 23 �C, as

shown in Fig. 2. If the SP load is remotely controlled by

the PEESS controller so the SP unit can be turned on/off at

any time within the temperature band (21–23 �C), the SP

unit is converted into a thermal cell that can store elec-

tricity as thermal energy whenever needed. Note that the

customer can set a local override temperature band, e.g.,

(20–24 �C), so that the SP unit will be forced to turn on

when the house temperature drops below 20 �C and turn

off when the house temperature rises above 24 �C.

At time t, the power of a PEESS, PPEESS, is calculated as

PPEESSðtÞ ¼
XN

i¼1

uiðtÞPi ð1Þ

During a time period, s, the energy storage of the ith

thermal cell, Ei, and the PEESS, EPEESS, are calculated as

Ei ¼ Pis
son

i

son
i
þsoff

i

� �

EPEESSðtÞ ¼
PN

i¼1

Ei ¼
PN

i¼1

Pis
son

i

son
i
þsoff

i

� �

8
>><

>>:
ð2Þ

The operating temperature and on/off status of each

thermal cell can be predicted by

if uiðtÞ ¼ 1 TiðtÞ ¼ Tiðt � 1Þ þ DTon
i ðtÞDt

if uiðtÞ ¼ 0 TiðtÞ ¼ Tiðt � 1Þ þ DToff
i ðtÞDt

uiðt þ 1Þ ¼ uiðtÞ
if TiðtÞ ¼ Ton

i and uiðtÞ ¼ 0 uiðt þ 1Þ ¼ 1

if TiðtÞ ¼ Toff
i and uiðtÞ ¼ 1 uiðt þ 1Þ ¼ 0

TDeadband
i ¼ Ton

i � Toff
i

�� ��
TLowlim

i � TiðtÞ� T
Highlim
i

DTon
i ¼ TDeadband

i

son
i

DToff
i ¼ TDeadband

i

soff
i

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð3Þ

where N is the total number of cells; Pi is the rated power

of the ith cell (kW); uiðtÞ is the status of the ith cell at time t

(1-on, 0-off); TiðtÞ is the operating temperature of the ith

cell (�C); Dt is the time step (s); DTon
i ðtÞ is the temperature

change rate when the cell is on (�C/s); DToff
i ðtÞ is the

temperature change rate when the cell is off (�C/s); Ton
i is

the turn on temperature threshold of the ith cell (�C); Toff
i is

the turn off temperature threshold of the ith cell (�C); son
i is

the estimated turn on duration of the ith cell in s (s); soff
i is

the estimated turn off duration of the ith cell in s (s);

T
Highlim
i is the user defined maximum temperature of the ith

cell (�C); TLowlim
i is the user defined minimum temperature

of the ith cell (�C) and TDeadband
i is the temperature band

between Ton
i and Toff

i (�C).

2.2 Charging and discharging a PEESS

The charging and discharging processes of different

thermal cells are shown in Fig. 3.

The PEESS is not an active energy source because it has

no electricity conversion device to convert thermal energy

back to electricity. The charging or discharging of the

PEESS relies on setting a baseline energy consumption,

PBaseline
PEESS . Then, when the grid needs to deposit electricity in

the PEESS, thermal cells are turned ‘‘on’’ to increase power

consumption above PBaseline
PEESS . In this state, the PEESS is

charging. When the grid needs to withdraw power from the

PEESS, thermal cells are turned ‘‘off’’ to reduce the power

consumption below PBaseline
PEESS . In this state, the PESSS is

discharging. Thus, the performance of a PEESS is equiv-

alent to that of a battery energy storage device.

Theoretically, PBaseline
PEESS can be any value between the

maximum (PBaseline
PEESS ) and the minimum (PMin

PEESS) power

consumption. The charging and discharging power,

P
MaxCharge
PEESS and P

MaxDischarge
PEESS , are calculated as

PMax
PEESS ¼

PNmax�on

i¼1

Pi PMin
PEESS ¼

PNmust�on

i¼1

Pi

P
MaxCharge
PEESS ¼ PMax

PEESS � PBaseline
PEESS

P
MaxDischarge
PEESS ¼ PBaseline

PEESS � PMin
PEESS

8
>>><

>>>:
ð4Þ

where Nmax�on is the maximum number of cells that can be

turned on and Nmust�on is the number of cells that must be

on to meet their thermal storage constraints. Ideally,

Nmax�on ¼ N and Nmust�on ¼ 0.

As shown in Fig. 3, the state of charge (SOC) of the

PEESS is related to the TES capability left in each cell and

is calculated as

 

on
3T

off
2T

on
1T

on
3T

off
2T

on
1T

off
3T

on
2T

off
1T

off
3T

on
2T

off
1T

Fig. 3 Illustration of thermal cell settings
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SOC ¼
PN

i¼1 Pis
son

i

son
i
þsoff

i

� �
Ti � Ton

i

�� ��=TDeadband
i

� �h i

PN
i¼1 Pis

son
i

son
i
þsoff

i

� �h i ð5Þ

As an illustration, assume that a PEESS consists of two

thermal cells, both rated at 4.5 kW. One cell is a water

heater at 57.5 �C with an operating temperature between

50 and 60 �C. Another cell is an a/c in its cooling mode

that has its room temperature measured at 21 �C and a

thermostat setting between 20 and 22 �C. The ‘‘on’’ time of

the water heater is 15 min and the ‘‘off’’ time is 60 min,

and the a/c ‘‘on’’ time is 15 min and ‘‘off’’ time is 30 min.

For this PEESS, EPEESS is 2.4 kWh (normalized to an hour)

and the SOC is 59.4%. If the PBaseline
PEESS is set at 0 kW

(u1 ¼ u2 ¼ 0), the P
Charge
PEESS is 9 kW and P

discharge
PEESS is 0 kW. If

the PBaseline
PEESS is set at 4.5 kW (u1 ¼ 1; u2 ¼ 0 or

u1 ¼ 0; u2 ¼ 1), the P
Charge
PEESS is 4.5 kW and P

discharge
PEESS is

4.5 kW. If the PBaseline
PEESS is set at 9 kW (u1 ¼ u2 ¼ 1), P

Charge
PEESS

is 0 kW and P
discharge
PEESS is 9 kW.

2.3 Metrics to evaluate the performance of the thermal

cells

Because each thermal cell is an appliance, its operation

is limited by both technical constraints and user comfort

constraints.

2.3.1 Number of switching cycles

Normally, an appliance operates up to a certain number

of switching cycles in its lifetime. Therefore, the number of

switching cycles, Si, can be a measure of the thermal cell

lifetime, similar to the way battery lifetime can be mea-

sured by the number of battery cycles. To avoid overuse of

any individual cell, a cell can be relieved from duty if its

daily maximum number of switch cycles limit, S
Highlim
i , is

reached.

2.3.2 Temperature override

The consumer can set maximum and minimum operat-

ing temperatures, T
Highlim
i and TLowlim

i , locally as hard

operation constraints. Once the operating temperature

violates T
Highlim
i or TLowlim

i , the appliance is forced to turn

on/off regardless of the remote control commands to meet

the consumer comfort and safety constraints. Note that to

function as a thermal cell, [TLowlim
i T

Highlim
i ] must enclose

[Ton
i Toff

i ] (sort constraints set at the central PEESS con-

troller), as shown in Fig. 4.

2.3.3 Response delay

The response delay, T
ResDelay
i , can be defined as the time

between when the central controller sends a command and

when a thermal cell executes the command. Response

delay is determined by communication delays, T
ComDelay
i ,

and control delays, T
ContrlDelay
i :

T
ResDelay
i ¼ T

ComDelay
i þ T

ContrlDelay
i ð6Þ

2.3.4 Denial of services

The thermal cell may not respond to a command for a

number of reasons: 1) customer override, 2) communica-

tion errors or delays, or 3) violation of T
Highlim
i or TLowlim

i .

2.3.5 Minimum off/on time

Some appliances require a minimum on time, sminon
i , or

minimum off time, sminoff
i , to avoid damage to their parts.

For example, some single-phase compressor motors in a/c

units need to stay off for a few minutes before they can be

turned on again.

2.4 Metrics to evaluate the performance of the PEESS

The PEESS is a system that consists of hundreds of

thousands of distributed thermal cells. Therefore, the per-

formance of the PEESS relies on the communication and

control network settings.

2.4.1 Communication network requirements

To function similar to a bulk energy storage device, each

thermal cell in a PEESS must be able to communicate its

operating status to the central controller and receive com-

mands from the central controller to provide the required

power output while meeting its own operational con-

straints. Therefore, a two-way communication network

between the central controller and each thermal cell is

required. Depending on control mechanisms and commu-

nication network constraints, one can pick from the fol-

lowing options:

1) Broadcast control commands to each thermal cell

every time step

2) Send switching commands only to the requested cells

Lowlim
iT

Highlim
iT

on
iT

off
iT

Cooling

on
iT

off
iT

Lowlim
iT

Highlim
iTHeating

off
iT

on
iT

on
iT

off
iT

Fig. 4 Local and central controller temperature settings
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3) Receive a status report from each thermal cell at every

time step

4) Receive a status report from each thermal cell at every

k time steps

A forecaster located at the central controller of the

PEESS can calculate the temperature change rates Dson
i ðtÞ

and Dsoff
i ðtÞ for each cell to predict its operating status

based on (3). Thus, the need for communication will be

significantly reduced without diminishing overall system

performance, as demonstrated in [18].

2.4.2 Control time step

The control time step, Dt, is determined by the com-

munication network bandwidth, the kind of service the

PEESS provides, and the allowable temperature overshoots

in thermal cells. Because of the distributed nature of a

PEESS, the minimum Dt is normally determined by the

speed at which the communication network can pass the

signal from the central controller to each thermal cell. A

control time step of 1-min is normally selected for energy

and load balancing services. Assuming that each thermal

cell in a PEESS has a minðson
i ; soff

i Þ longer than 20-min, the

temperature overshoot in a thermal cell caused by the

control time step setting is approximately 5% TDeadband
i :

2.4.3 Control target

If there is a control signal, PSig, that a PEESS must fol-

low, the target output of the PEESS, P
Target
PEESS, is calculated as

P
Target
PEESS ¼ PBaseline

PEESS þ PSig ð7Þ

2.4.4 Ramp rate

The PEESS ramp rate is mainly determined by response

delays, T
ResDelay
i . By design, T

ResDelay
i should be less than Dt

such that each thermal cell of the PEESS will execute the

on/off command sent by the central controller within Dt.

Thus, the PEESS can ramp up or down to any capacity in

Dt as long as the distribution networks connecting all these

thermal cells are uncongested. For example, if the PEESS

control is on a 1-min basis, the control delays should be

within 1 min for the PEESS to ramp up and down to any

control target in 1 min.

2.4.5 Fade time

If all the thermal cells reach their thermal storage limits

or deplete their thermal storage, the PEESS can no longer

follow the charging or discharging command. The period

during which the PEESS can no longer follow the com-

mand, TFade, is called fade time, and can be used to eval-

uate the control performance of the PEESS.

2.4.6 Control errors

When some cells fail to respond to the control command

because of communication errors, consumer override, or

operational constraints, the PPEESS will not produce a

desired output. The control error is calculated as

DP ¼ PPEESS � P
Target
PEESS ð8Þ

3 Controller design of the PEESS

The control logic of a PEESS is shown in Fig. 5. At each

time step, the centralized controller receives a control

signal, PSig and superimposes it on PBaseline
PEESS to get a target

power output, P
Target
PEESS, at time t. The thermal cell forecaster

will forecast the cell operating temperature, TForecast
i , and

determine the cell on/off status, uForecast
i . Then, the fore-

caster will calculate the forecast power output, PForecast
PEESS , at

t. The difference between P
Target
PEESS and PForecast

PEESS will deter-

mine how many additional cells will need to be turned on

or off based on a priority list to make PPEESS ¼ P
Target
PEESS and

adjust uForecast
i to ui. The forecaster will adjust its forecasts

based on real measurements received from each thermal

cell every k time steps.

Baseline ( )PEESSP t

( )SigP t

Target ( )PEESSP t

+

-

Thermal Cell 
Forecaster

( )PEESSP tΔ Priority 
List

( 1)iu t +

Cell 1 Cell 2 Cell i Cell N

Actual ( )iT t Actuall ( )iu t

Water Heater

Local Controllers

Measurement 
Updates

Freezer

Central Controller

PEESS

Fig. 5 Flow chart of the central controller control logic
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3.1 Prioritization of thermal cells

An important method for optimizing the use of thermal cells

is to rank them based on the switching index, I, which deter-

mines how close the cell is to being fully charged or depleted.

Ioff
i ¼ Ti � Toff

i

�� ��=TDeadband
i

Ion
i ¼ Ti � Ton

i

�� ��=TDeadband
i

�
ð9Þ

The smaller the value, the higher the priority the cell is

to be turned on/off.

In the example given in Sect. 2.2, the water heater and

a/c switching indexes are calculated as

Ioff
WH ¼ 135�140j j

140�120
¼ 0:25

Ion
WH ¼ 135�120j j

140�120
¼ 0:75

Ioff
AC ¼ 70�69j j

71�69
¼ 0:5

Ion
AC ¼ 70�71j j

71�69
¼ 0:5

8
>>><

>>>:
ð10Þ

Therefore, if both devices are ‘‘on,’’ the water heater

will have the priority to be turned ‘‘off’’; if both devices are

‘‘off,’’ the a/c will have the priority to be turned ‘‘on.’’

3.2 Thermal cell forecaster

There are two general methods to forecast the thermal

cell temperature changes. One is to use thermal equivalent

models introduced in [18] and another is to use measure-

ment data to calculate the temperature change rate for each

cell using (3). Simulation results in the following sections

demonstrate that the second method is sufficient as long as

the forecaster can receive field measurements in an interval

that is short enough to capture the cycling behavior (pref-

erably, shorter than 0:5 min ðson
i ; soff

i Þ).

3.3 Local controller

The local thermal cell can be controlled by a circuit as

shown in Fig. 6.

If a consumer wants to make sure comfort will not be

compromised, the consumer can make the central control

settings [Ton
i Toff

i ] or [Toff
i Ton

i ], depending on whether the

appliance is in heating or cooling mode, within

[TLowlim
i T

Highlim
i ]. An override button can also disable the

remote control of the thermal cell. When communication

with the central controller fails, a cell will retain its pre-

vious switching status until the local setting,

[TLowlim
i T

Highlim
i ], is violated.

4 Modeling results

In the rest of this paper, 1,000 SP units (rated at 6 kW)

in their heating modes are modeled to illustrate the thermal

PEESS control mechanism. Set Tþ to be 23 �C and T� to

be 19 �C, then, Tdeadband is 4 �C. Consumer thermostat

thresholds, [TLowlim
i T

Highlim
i ], are set at (17–25 �C). Mean

values of thermal capacitances, C, thermal resistances, R,

and heat gains, Q, of the SP model used in this simulation

are set to 3,599.3 J/�C, 0.1208 �C/W, and 400 W, respec-

tively. The R, C, and Q parameters are randomized for

different HVAC units to create load diversity. For more

details about the SP thermal model, please refer to [18].

Ideally, this PEESS system has a maximum power output

of 6 MW and minimum power output of 0 MW. The TES

capability of each thermal cell (each household) varies with

respect to outdoor temperatures and the thermal charac-

teristics of the house. Assuming an average son
i of 30 min

and soff
i of 45 min, the storage capacity of the PEESS is

approximately 6 � 1;000 � 30=75 ¼ 2;400 kWh. The cen-

tral controller broadcasts a control command every 1 min

(Dt ¼ 1 minÞ and receives a status update every 15 min

(k = 15). Assume no communication delays and a random

4% communication outage rate. The minimum turn off

time is 5 min for each SP unit.

4.1 Baseline

An aggregated baseline output of the PEESS, PBaseline
PEESS ,

must be provided too so that deviations from the baseline

output can be defined as charging or discharging power

from the PEESS.

One way to create a baseline load is to model all par-

ticipating SP units in an uncontrolled mode using the next-

day outdoor temperature forecast. In an uncontrolled mode,

each SP unit cycles based on Ton
i and Toff

i without being re-

sequenced by the PEESS controller. The obtained aggre-

gated HVAC power output is averaged to an hourly

PBaseline
PEESS , as shown in Fig. 7. Note that the baseline load

profile varies with respect to outdoor temperatures,

TDeadband
i , and the number of SP units. In general, more SP

units and wider TDeadband
i provide greater storage capacity

Remote Control from the
central controller

Local Controller for a water heater unit

Highlim
i iT T>

Lowlim
i iT T<

Turn off when

Turn on when

220/240 Volt

Override

Fig. 6 Flow chart of the local controller control logic
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and charging and discharging power range. Please refer to

[18] for more details on setting up a baseline load.

The advantage of having a baseline load is that it allows

the service provided by the PEESS to be measurable. Thus,

one can bid PBaseline
PEESS into the energy market and provide

load balancing services by varying its output against

PBaseline
PEESS . One can set up different baseline loads to achieve

preferred control objectives. For example, if more regula-

tion up services are expected from 1 a.m. to 5 a.m., PBaseline
PEESS

can be set at a lower value, e.g., 2,500 kW; if more regu-

lation down services are expected, PBaseline
PEESS can be set at a

higher value, e.g., 3,000 kW.

4.2 Charging and discharging

A PEESS is charged and discharged by varying the

aggregated output against the baseline output. As shown in

Fig. 8, the PEESS charges for an hour (PPEESS ¼ 1 MWÞ;
then discharges for an hour (PPEESS = -1 MW). The

temperatures of the thermal cells will rise when the PEESS

is charging and drop when discharging. Because the central

controller forecasts each cell’s operating temperature and

then determines the on/off status of each cell using (3), the

actual operating temperatures of the cells may exceed the

upper or lower bounds of the operating temperature range,

as shown in Fig. 9.

Real measurements are used to update the forecasted

temperatures every 15 min in this case so that the forecast

errors will remain tolerable. As shown in Fig. 10, at

825 min, the forecasted temperature deviates from the

actual temperature by 0.4 �C and is corrected by mea-

surements. Similarly, updates also happen at 810, 840, 855,

870, etc.

One can update the forecaster more often if the control

performance deteriorates. As introduced in Sect. 2.3, a pair

of local temperature thresholds, [TLowlim
i T

Highlim
i ], which

enclose [Ton
i Toff

i ] (as shown in Fig. 4), are set to guarantee

that the user comfort and safety constraints are maintained.

Figure 11a shows the SOC of the PEESS during the

charging and discharging and Fig. 11b shows that the

number of times each cell switches will increase when the

Fig. 7 Create a baseline load

Fig. 8 Charging and discharging of a PEESS

Fig. 9 Temperature profiles of thermal cells in a PEESS during

charging and discharging

Fig. 10 Using measured cell temperatures to update the forecasted

cell temperatures
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charging power increases. This shows how the charging and

discharging services will influence the appliance lifetime.

4.3 Load balancing

In this case, the control signal, PSig, is the load following

signal, which is scaled to 1-min signals and normalized to

±1 MW. Please refer to [1] for the definition of load fol-

lowing signals. The target control signal, P
Target
PEESS (as shown

in Fig. 12), is calculated using (7).

The following observations are made from simulation

results:

1) The PEESS load profile, PPEESS , follows the target

output, P
Target
PEESS, very well, as shown in subplot 1, Fig. 13.

2) As shown in subplot 2, Fig. 13, indoor temperatures of

each cell are kept within the high and low limits set by

customers.

3) Each SP unit is switched on/off approximately 14–20

times per day in the ‘‘Baseline’’ case. To provide the

±1 MW load following service, each SP unit will be

switched 10 more times on average, as shown in

subplot 3, Fig. 13.

A more detailed analysis of using TCAs to provide load

balancing services can be found in [18].

4.4 Load balancing

In this case, the goal is to balance a feeder load profile.

If a load serving entity (LSE) can control its hourly con-

sumption precisely, the LSE can bid a baseline load,

PBaseline
f , into the day-ahead market. This will eliminate its

demand bid uncertainties in load scheduling and allow the

LSE to hedge the price volatilities in the real-time market.

In addition, any consumption that the LSE can manage to

Fig. 11 SOC of the PEESS and number of times per day the 1,000 SP units switch

Fig. 12 Baseline loads and control signal
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reduce or increase against the baseline consumption can be

used to provide energy or ancillary services. If a feeder is

connected to distributed renewable energy resources

(RES), the load-balancing algorithm can also be used to

smooth the RES outputs.

Three cases are modeled. In the first case, the feeder

hourly load profile, PBaseline
f , is calculated as the actual

hourly mean of the feeder load, Pf , to simulate a perfect-

forecast case. In the other two cases, the PBaseline
f is cal-

culated by adding or subtracting 5% random forecast errors

from the perfect-forecast PBaseline
f to represent the over-

forecast and the under-forecast cases, as shown in Fig. 14.

The control signal for the PEESS loads is calculated as

PSig ¼ Pf � PBaseline
f ð11Þ

The modeling results are shown in Figs. 15 to 17. The

following observations are made from the simulation

results:

1) As shown in subplot 1, Fig. 15, in the perfect-forecast

case, the PEESS can compensate for the feeder load

fluctuations well (with one overshoot at 13.8) without

being turned on and off very frequently (as shown in

Fig. 17). The room temperatures are maintained within

the desired range (subplot 1, Fig. 16).

2) As shown in subplots 2 and 3, Fig. 15, in the over-

forecast or under-forecast cases, the PEESS has

multiple overshoots or undershoots from PBaseline
f in

hour 13. This is because the maximum aggregated

power of the PEESS is only 6 MW. Assuming that the

‘‘on’’ duration is 30 min and ‘‘off’’ duration is 45 min,

the PEESS acts similarly to a 2.4 MWh battery energy

storage device. The PEESS thermal storage capacity is

depleted once house temperatures reach their upper or

lower bounds (subplots 2 and 3, Fig. 16). The number

of switches of the under- and over-forecast cases is

also too high compared with the perfect-forecast case,

as shown in Fig. 17.

3) As shown in Fig. 17, the SOCs of the PEESS can go

beyond 0 and 1. This is because the Toff
i and Ton

i are

only a pair of soft constraints in the PEESS controller;

the hard constraints are TLowlim
i and T

Highlim
i and are set

by the consumers. The results show that, when

providing load balancing services, it is essential to

use a shorter forecasting window (a couple of hours)

so that the PBaseline
f will be adjusted to maintain the

SOC of the PEESS within a desired range. Note that

this consideration is universal for any energy storage

system that has a storage limitation.
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Fig. 15 Feeder load profiles for the three cases

Fig. 16 Impact of different forecasting accuracies of the feeder

baseline load on room temperature profiles
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5 Conclusions

This paper presents the concept of controlling distrib-

uted electric loads with thermal energy storage capability

as a PEESS. The results demonstrate the feasibility of using

advanced control and communication technology to

implement a PEESS that schedules and dispatches dis-

tributed electro-thermal loads as well as active energy

storage devices such as batteries. The number of loads

needed for a PEESS can be 5%–10% of the total loads, but

the influence on flexible grid operation can be significant.

By deploying PEESSs in different locations, the LSEs and

grid operators not only eliminate the uncertainties intro-

duced by DR programs, but also can control load variations

to compensate for the variation introduced by intermittent

energy resources such as wind or solar. Our future work

will focus on sizing different types of TCA loads for PE-

ESS applications and integrating active energy storage

such as battery systems to provide robust, reliable, high-

quality, and low-cost energy and ancillary services.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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