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Abstract During the past two decades, several method-

ologies are endorsed to assess the compatibility of road-

ways for bicycle use under homogeneous traffic conditions.

However, these methodologies cannot be adopted under

heterogeneous traffic where on-street bicyclists encounter a

complex interaction with various types of vehicles and

show divergent operational characteristics. Thus, the pre-

sent study proposes an initial model suitable for urban road

segments in mid-sized cities under such complex situa-

tions. For analysis purpose, various operational and phys-

ical factors along with user perception data sets (13,624

effective ratings in total) were collected from 74 road

segments. Eight important road attributes affecting the

bicycle service quality were identified using the most

recent and most promising machine learning technique

namely, random forest. The identified variables are namely,

effective width of outside through lane, pavement condi-

tion index, traffic volume, traffic speed, roadside com-

mercial activities, interruptions by unauthorized stoppages

of intermittent public transits, vehicular ingress–egress to

on-street parking area, and frequency of driveways carry-

ing a high volume of traffic. Service prediction models

were developed using ordered probit and ordered logit

modeling structures which meet a confidence level of 95%.

Prediction performances of developed models were

assessed in terms of several statistical parameters and the

ordered probit model outperformed the ordered logit

model. Incorporating outputs of the probit model, a pre-

dictive equation is presented that can identify under what

level a segment is offering services for bicycle use. The

service levels offered by roadways were classified into six

categories varying from ‘excellent’ to ‘worst’ (A–F).

Keywords Heterogeneous traffic � Bicycle level of service �
Perceived satisfaction � Random forest � Ordered probit �
Ordered logit

1 Introduction

In response to the renewed appreciations of bicycle mode for

its environmental and health-related benefits, public officials

around the world are working to establish bicycle friendly

road infrastructures. Now, 30%–50% of households in a

developing country like India own a bicycle according to

census 2011. However, the road facilities in the country are

not developed with perceived satisfactions and safety of

bicyclists as the prime objectives. With the rapid urbaniza-

tion, motor vehicle use has tremendously increased, and thus

planners and engineers have been primarily focusing on safe

management of motorized traffic. On the contrary, non-

motorized modes are highly neglected, and transportation

infrastructures are facing challenges to accommodate on-

street bicyclists within the mainstream traffic. A thorough

understanding of operational characteristics of bicycle users

and prediction of the satisfaction levels perceived by them

are two important issueswhenmaking any plan of actions for

establishing bicycle friendly networks.

Several researchers have attempted to develop service

prediction models suitable for homogeneous traffic flow
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conditions only. This flow is composed of identical vehicles

where drivers follow the lane discipline. But the traffic flow

in developing countries like India is often characterized by a

diverse mix of heterogeneous vehicles, where motorized

two-wheelers, three-wheelers, cars, buses, and several non-

motorized vehicles ply with no-lane discipline. Bicyclists

are often forced to find their required space on the on-street

facilities which are predominated by motor vehicle users. In

this situation, bicyclists encounter a complex interaction of

several kinds of vehicles and generally feel unsafe,

unpleasant, and frustrated. The operational conditions of

bicyclists under this situation are significantly different

from those under homogeneous traffic conditions. Thus,

none of the models discussed earlier can be suitably applied

here to quantify bicyclists’ perceived satisfactions. In this

regard, the present study primarily focuses on (1) the

analysis of how various operational and physical factors

(roadway geometrics, built environment, traffic flow

parameters, etc.) is influencing perceived satisfactions of

bicyclists under mixed traffic flow conditions, (2) identifi-

cation of the important (significant) variables using a

promising technique, (3) development of service prediction

models using ordered probit and ordered logit techniques,

and (4) assessment of developed models for service pre-

dictions under prevailing conditions and subsequently,

report the better one for the present context.

In this study, required data sets were collected from 74

road segments of four Indian cities and were thoroughly

analyzed. Influencing variables were identified with the

help of a most recent and most promising machine learning

technique, namely random forest. It was also observed that

traffic volume followed by width of the outermost lane,

roadside commercial activities, on-street parking turnover

and pavement condition index, etc., has the highest influ-

ence on perceived satisfaction levels of on-street bicyclists.

Ordered probit and ordered logit modeling structures were

used to develop predictive models which would help

transportation engineering professionals while rating urban

road segments from a bicyclist’s perspective. Using outputs

of these models, necessary actions could be taken for the

betterment of bicyclists. Prediction performance of both

models was tested using several statistical parameters such

as Akaike’s information criterion (AIC) and pseudo-R-

squares (pseudo-R2), and it was observed that the probit

model has better performance in the present context. In

addition to the development of a reliable service prediction

model, this study introduces influences of two new

parameters such as interruptions by unauthorized stoppages

of intermittent public transits (pick-up vans, 3-wheeler

autos, etc.) and frequency of driveways carrying a high

volume of traffic which perhaps are not considered in any

previous such studies.

2 Review of literature

Several researchers in the field of transportation engineer-

ing have contributed significantly to explore the opera-

tional characteristics of bicyclists under homogeneous

traffic flow environment. Influencing variables are identi-

fied, and several service prediction models are proposed to

efficiently predict the users’ perceived satisfaction levels in

developed countries. Roadway segment index (RSI) model

[1], modified roadway condition index (modified RCI)

model [2], interaction hazard score (IHS) model [3],

bicycle stress level (BSL) model [4], bicycle suitability

rating (BSR) model [5], bicycle compatibility index (BCI)

model [6], and bicycle level of service (bicycle LOS or

BLOS) models [7–12] are some of the successful attempts

in this regard. RSI model [1] is a function of traffic volume,

number of lanes, speed limit, outside lane width, pavement

conditions, and location factors. It neglects the influences

of several other factors like percentage of heavy vehicles

and on-street parking turnover modified RCI [2] model is

the revised version of RSI model in which the authors have

modified location and pavement factors. In addition to this,

the authors have multiplied the lane width term with speed

limit to place greater weightage on narrow roads with high

traffic speeds. IHS model [3] has revealed the important

roles of roadside land use pattern and on-street parking

activity in perceived satisfactions of bicyclists. BSL model

[4] primarily reflects the importance of curb-lane in riding

quality of bicyclists, and considers curb-lane width, curb-

lane traffic volume and curb-lane traffic speed parameters

to predict the service quality. BSR model [5] is also a

modified version of RSI model which signifies important

roles of traffic volume and traffic speed in the bicycle

service quality.

BCI model [6] has revealed the important roles of

bicycle lane and right-turning vehicles in user satisfactions.

Several other researchers have also identified the key

variables that influence perceived satisfactions of bicy-

clists. Well-conditioned pavement surface and the provi-

sion of separate bicycle lane have significant positive

influence on the riding quality of bicyclists [7–9]. Bicycle

service assessment methodologies proposed in 2000 ver-

sion of Highway Capacity Manual (HCM) [10] are based

on the average travel speed, average delay, and hindrance.

However, HCM [11] considers a wide range of parameters

such as the number of through lanes, effective width of the

outside through lane, pavement conditions, mid-segment

demand flow rate, traffic speed, and the percentage of

heavy vehicles. A BLOS model developed from user’s

perspective concludes that bicyclists’ satisfaction is largely

determined by the width of the roadway on which bicycle

is ridden. Other factors included in this model are number
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of lanes, pedestrian volume, and number of encounters

[12]. Interaction with on-street pedestrians and non-mo-

torized vehicles has substantial negative influences on

riding quality of bicyclists [13]. With the provision of

bicycle lane facilities, bicyclists gain more confidence to

ride further from the edge of roadways because they feel

that motorists will observe and respect the bicycle lane line

as the boundary of bicycle zone [14, 15].

An investigation on factors influencing bicycling in an

Indian city, namely Bangalore, concludes that segregated

bicycle lanes and signals at intersections are two essential

requirements of a safe bicycling environment [16]. Recent

investigations on bicycle operations under heterogeneous

traffic flow conditions have concluded that the quality of

bicycling is largely influenced by vehicular traffic volume

[17, 18]. On-road bicyclists under such conditions

encounter a very complex interaction with several small to

big vehicles and subsequently have their quality of riding

to be largely influenced by the same. However, a detailed

investigation of factors influencing bicyclists’ perceived

satisfaction levels have not been carried out as yet. Existing

bicycle models are solely based on homogeneous traffic

flow conditions and do not consider the influence of several

potential variables, such as interruptions by unauthorized

stoppages of intermittent public transits and frequency of

driveways carrying a high volume of traffic. These vari-

ables, however, have considerable adverse effect on quality

of bicycling from an ordinary citizen’s point of view and

thus need thorough investigation. The present study thus

did a detailed investigation to identify all potential vari-

ables and developed a new reliable model for its applica-

tions under heterogeneous traffic flow environment.

3 Methodological approach

In this study, a perception survey of 154 participants was

carried out to assess their perceived satisfactions on studied

road segments under peak hour conditions. Participants

rated each of 74 segments with one of the descriptors in an

ordinal scoring system: ‘A’ = 1 = excellent, ‘B’ = 2 =

very good, ‘C’ = 3 = good, ‘D’ = 4 = fair, ‘E’ = 5 =

poor, or ‘F’ = 6 = very poor. The number of service

levels was kept as six for general correspondence with the

HCM [10, 11] and several other relevant studies. A wide

range of road geometric, traffic and built environmental

variables along with user-perceived ratings was analyzed

using random forest technique. Road attributes signifi-

cantly affecting the perceived service quality were identi-

fied and were ranked in descending order of their relative

importance in service quality predictions.

Ordered probit and logit modeling structures were

applied to establish the kind of relationship that does exist

among important road attributes and user-perceived service

levels. These analytical tools are probably the best choices

particularly when the response variable is a categorical

variable ordered in a meaningful way. For instance, the

user-perceived scores (output variable) collected in this

study varies from 1 (excellent service quality, ‘A’) to 6

(very poor service quality, ‘F’) in a very meaningful way at

a discrete interval of 1. Unlike interval scales, ordinal

scales have two unique features: a clear ordering of the

categories such as ‘A’ is superior to ‘B,’ and ‘B’ is superior

to ‘C’ and unobservable absolute distances among the

categories. Hence, when standard multinomial discrete-

outcome modeling techniques such as multinomial probit

and logit approaches are used to model the categorical data

set by considering them as nominal, it often results in

inaccurate and biased outputs. On the contrary, treating

ordered categorical variables as ordinal is advantageous in

terms of parsimoniousness, simpler interpretations, supe-

rior detection power, better flexibility, and more similarity

to the ordinary regression modeling.

As observed in this study, regression techniques were

not appropriate for modeling the ordered response vari-

ables. The reason is that such methods assume that for a

measured change in the explanatory variables (or some

transformation thereof), there is a measured linear change

in the dependent variable. Moreover, these methods pro-

duce a continuous estimate of the dependent variable,

which is different from what is reported by the participants

during the survey conducted in this study. Lastly, regres-

sion models cannot guarantee that the estimated LOS

responses will be bounded between 1 and 6 without arti-

ficially setting some upper and lower bounds exogenously.

These limitations led the researchers to investigate the

feasibility of using probit and logit regressions. These are

the classes of models which have the ability to predict the

probability of responses in each LOS category based on a

combination of explanatory variables. This property also

well allowed to model nearly 10,434 observations stored in

the database.

Modeling and interpretations of the ordered probit and

ordered logit models are noticeably similar. Nevertheless,

these methods differ in their error distribution. In the for-

mer method, the error term is assumed to be normally

distributed with a mean of 0 and a variance of 1.0; and in

the other one, the same is assumed to follow a Gumble

distribution. A logit model is often preferred to the probit

model as it needs lesser computational effort than the other.

But at present with improved computing power, compu-

tational efforts are negligible in most cases. Consequently,

the choice between these two methods has typically

become an analyst’s preference. Thus, this research has

tested the performance of both methods in solving the

present problem and reported the better one. The Statistical

92 S. K. Beura et al.

123 J. Mod. Transport. (2017) 25(2):90–105



Analysis System (SAS) modeling programs were used to

carry out probit and logistic transformations, and estimate

model parameters (coefficients, etc.). For continuous

functions, ordinary least squares (OLS) method is used

which estimates model parameters by minimizing the

square of the difference between actual and predicted

outputs (error). But this approach cannot be used to model

categorical responses as probability distributions do not

produce an error term which can be minimized. Thus, the

maximum likelihood estimation (MLE) method is used as

an alternate method. MLE estimates model parameters by

maximizing the likelihood that the predicted probability of

the event matches the actual one. The following subsection

gives a brief discussion on the random forest procedure

followed by discussions on the underlying principles of

ordered probit and ordered logit modeling structures.

3.1 Random forest technique

Random forest technique, proposed by Breiman [19], is one

of the most recent and most promising machine learning

techniques, well known for its capability to identify sig-

nificant variables from a set of them. In this method,

numerous trees are attempted by randomly selecting some

observations from the original data set with replacement,

and then searching over a randomly selected subset of

covariates at each split [20, 21]. To examine whether

attempted numbers of trees are adequate to reach reason-

ably stable outputs, the out-of-bag (OOB) error rate

parameter is used. The best number of trees has the mini-

mum error rate and a constant error rate nearby. In order to

identify the relative importance of each variable from a set

of them, a mean decrease Gini IncNodePurity diagram can

be produced using the R-package [22]. By using this dia-

gram, a node purity value for every variable (node of a

tree) can be determined by means of the Gini index [21].

The higher the value of node purity, the higher the

importance of a variable is. Breiman [19] can be followed

for further details on this technique.

3.2 Ordered probit modeling

An ordered probit-based service prediction model incor-

porates a continuous latent measure underlying each ser-

vice level (A–F) and explains which level of satisfaction

bicyclists perceive (on average) in a certain roadway

environment. The model is derived by defining an unob-

served variable, Zn, which is used as the basis for modeling

the ordinal ranking of service levels (A–F). The relation-

ship between a vector of independent variables, Xn, and the

perceived satisfaction of a bicyclist on any segment can be

written as follows to determine the perceptions of BLOS as

a linear function for each observation n (defined as each

participant’s evaluation of the 74 segments):

Zn ¼ aXn þ en; ð1Þ

where a represents the vector of coefficients estimated

using the standard MLE procedure, and en represents a

random disturbance term assumed to be independent and

normally distributed across all individuals.

Bicyclists’ preference of rating a certain roadway seg-

ment (i.e., observed BLOS or yn) from a sets of alternatives

j (j = 1, 2,…, 6) is computed by a stepwise function of

latent measures, Zn, as follows (with BLOS ‘A,’ ‘B,’ ‘C,’

‘D,’ ‘E,’ and ‘F’ corresponding to yn = 1, 2, 3, 4, 5, and 6,

respectively):

yn ¼

1 if Zn � l1
2 if l1 � Zn � l2
3 if l2 � Zn � l3
4 if l3 � Zn � l4
5 if l4 � Zn � l5
6 if Zn � l5

8
>>>>>><

>>>>>>:

; ð2Þ

where lj (j = 1, 2,…, 6) terms represent the thresholds

estimated jointly with a parameters.

Threshold parameters (lj) relate the dormant measures

Zn to bicyclists’ preference yn, in an ordered response

manner as shown in above equation. Here, l0 = -?,

l6 = ? ?, and -?\ l1\l2\ l3\l4\ l5\? ?.

The estimation problem then becomes one of determining

the probability that a particular bicyclist will perceive an

ordered response j on a certain roadway segment. A posi-

tive increase in the a term implies that an increase in X will

increase the probability of getting an excellent BLOS ‘A.’

Similarly, this increase also implies that the probability of

excellent BLOS ‘F’ is decreased. The probability that an

individual will select an alternative j (j = 1, 2,…, 6) for a

particular segment can be calculated as follows:

P y¼ 1ð Þ¼P Zn�l1ð Þ¼U l1�aXnð Þ;
P y¼ 2ð Þ¼P l1�Zn�l2ð Þ¼U l2�aXnð Þ�U l1�aXnð Þ;
P y¼ 3ð Þ¼P l2�Zn�l3ð Þ¼U l3�aXnð Þ�U l2�aXnð Þ;
P y¼ 4ð Þ¼P l3�Zn�l4ð Þ¼U l4�aXnð Þ�U l3�aXnð Þ;
P y¼ 5ð Þ¼P l4�Zn�l5ð Þ¼U l5�aXnð Þ�U l4�aXnð Þ;
P y¼ 6ð Þ¼P Zn�l5ð Þ¼ 1�U l5�aXnð Þ;

ð3Þ

where U(t), expressed below, is the cumulative normal

distribution of any variable t:

U tð Þ ¼ 1

2p

Z tj j

�1
e�

1
2
t2dt: ð4Þ
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3.3 Ordered logit modeling

The ordered logit modeling procedures are quite similar to

ordered logit modeling procedures. In this case, a bicyclist’s

preference of rating a certain roadway segment, yn, from a set

of alternatives j (j = 1, 2,…, 6) can also be determined in a

very similarway byusingEq. (1).However, the error term, en,
is assumed to follow a Gumble distribution. Subsequently, a

bicyclists’ preference of rating a certain roadway segment, yn,

from a set of alternatives j (j = 1, 2,…, 6) is also computed by

the stepwise function of latent measures Zn as shown in

Eq. (2). The estimation problem then becomes one of deter-

mining the probability that a particular bicyclist will perceive

an ordered response j on a certain roadway segment. In order

to accomplish this, the logit transformation is applied to the

cumulative probabilities as follows:

logit P Y � jð Þ½ � ¼ log
P Y � jð Þ

1� P Y � jð Þ : ð5Þ

A distinctive model for the cumulative logits can be

written as follows:

Zj ¼ logit P Y � jð Þ½ � ¼ aj þ a11x1 þ a21x2 þ � � � þ an1xn
¼ aj þ aXn; ð6Þ

where aj is the intercet; a11, a21,…, an1 are the elements of

a; and x1, x2,…, xn are the elements of Xn.

The probability of obtaining an alternative j in a certain

observation can be calculated by using the following

equation which is obtained by solving Eqs. (5) and (6).

P Y � jð Þ ¼ ezj

1þ ezj
¼ 1

1þ e�zj
: ð7Þ

The above system of equations can be expanded as

follows to obtain the probability that an individual will

perceive any particular alternative j from the ordered

response categories j = 1, 2,…, 6 on a roadway segment:

P y ¼ 1ð Þ ¼ P y� 1ð Þ;
P y ¼ 2ð Þ ¼ P y� 2ð Þ � P y� 1ð Þ;
P y ¼ 3ð Þ ¼ P y� 3ð Þ � P y� 2ð Þ;
P y ¼ 4ð Þ ¼ P y� 4ð Þ � P y� 3ð Þ;
P y ¼ 5ð Þ ¼ P y� 5ð Þ � P y� 4ð Þ;
P y ¼ 6ð Þ ¼ 1� P y� 5ð Þ;

ð8Þ

where P(y B 1), P(y B 2),…, P(y B 5) are the values

obtained using Eq. (7).

3.4 Model evaluation criteria

Before assessing the significance of individual components

of an ordered probit or logit model, it is first necessary to

test the precision of the model as a whole. In view of this,

following criteria are used in this study for the same

purpose.

1. Log likelihood measures of fit: This test evaluates

whether the presence of exogenous variables signifi-

cantly improves the quality of the model estimation. If

log likelihood of the final model, L(b), is substantially
larger than that of the intercept intercept-only model,

L(0), it indicates that the model is providing a more

accurate and meaningful estimation of the output than

the model with constant terms only.

2. AIC: AIC, defined below, rewards the goodness-of-fit

or quality of model fitting using the likelihood function

[23]:

AIC ¼ 2k � 2L bð Þ; ð9Þ

where k is the number of parameters estimated in the

model; L(b) is the log likelihood of the final model (i.e., the

model with input parameters).

Given a set of candidate models for the data set, the pre-

ferred model is the one with the least AIC value.

3. Pseudo-R2: It is known that models derived using OLS

procedure use coefficient of determination (R2) as a

measure of ‘goodness-of-fit.’ But the MLE-based

models are evaluated with the help of log-likelihood-

ratio test. A pseudo-R2 compares the likelihood for the

intercept-only model to the likelihood for the model

with predictors, and returns an indication on the

strength of the model. Values of pseudo-R2’s can be as

low as zero but can never equal one, and a higher value

of these parameters indicates a better-fitted model. In

the present study, two pseudo-R2’s such as Cox and

Snell R2 (R2
CS) and McFadden R2 (R2

McF) are used as

likelihood-ratio indexes. The mathematical expres-

sions of these two parameters are given below:

R2
CS ¼ 1� exp � 2

t
L bð Þ � L 0ð Þf g

� �

; ð10Þ

where t is the total number of observations in the data sets

used.

R2
McF ¼ 1� L bð Þ

L 0ð Þ : ð11Þ

4 Data source

A field survey was conducted in this study for the collec-

tion of built environment and roadway characteristics data.

In addition, a stated preference survey was used to assess

the perceived satisfaction of bicycle users on the investi-

gated segments. Following subsections discuss on data

collection locations and the surveys conducted.

4.1 Collection locations

Roadway geometrics and traffic flow data were collected

from 74 road segments for analyzing operational conditions

94 S. K. Beura et al.
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of on-street bicyclists. These segments belong to four mid-

sized cities (population size 0.5–1.0 million) of India,

namely Bhubaneswar (29 segments), Rourkela (19 seg-

ments), Rajahmundry (14 segments), and Kottayam (12

segments). Figure 1a shows locations of these cities, and

Fig. 1b shows some typical bicycle activities under varying

road conditions. Bhubaneswar is the administrative capital

of Odisha State, and primarily attracts tourists across the

world. It has emerged as one fast-growing, important trading,

and commercial hub in the eastern India. Rourkela, com-

monly known as the steel city of Odisha, is one of the largest

cities located at northern west of the State. Rajahmundry is

one of the major cities in the Andhra Pradesh State. Kot-

tayam city is the administrative capital of Kottayam district

and is located in south-central Kerala State.

Studied sites differ from one another in terms of geo-

metric designs and other operational characteristics. These

dissimilarities well represent the observed variability and

complexity of road conditions in mid-sized cities.

Considered roads are basically one to four-lane roads.

Traffic movements are restricted to one-way on some roads,

and some are allowed for two-way movements. Another

important feature of these sites is the wide variability in

roadside developments: residential, commercial, office, and

institutional, etc. Roads are mostly arranged in a grid,

meeting at signalized intersections that are often installed

with crosswalks. Several roads are characterized by on-

street parking lane, sidewalk, and median facilities.

Observed variations in some major variables (in specific

directions of roadways) are such as roadway width: 3–14 m,

effective width of the outside lane (sum total of the outer-

most through lane width, paved shoulder width and width of

extra paving between the outermost lane strip and edge of

pavement, minus the average width reduction due to

encroachments in the outermost lane [7]): 2–7 m, peak hour

traffic volume: 148–2,586 PCUs/h/lane (PCUs stand for

passenger car units), average traffic speed: 23–46 km/h,

pavement condition index: 2.5–4.5 on a 5-point scale

Fig. 1 Study locations and typical bicycle activities under differing conditions: a locations of studied cities in India; b schematic photographs of

few bicycle facilities in the study locations

Urban road segment level of service based on bicycle users’ perception under mixed traffic… 95

123J. Mod. Transport. (2017) 25(2):90–105



(5 = excellent and 1 = worst pavement quality), and on-

street parking turnover: very high to minimal, etc.

4.2 Built environment and road characteristics data

Road geometrics data such as width of the roadway in the

subject direction, outside lane width, median width, side-

walk width, shoulder width, parking lane width, curb

width, gutter pan width, and width of extra paving beyond

outermost lane stripe were collected using a measuring

tape. Information on the presence of curb, gutter pan,

median, bicycle lane, and sidewalk facilities were collected

using a 2-point scale: 1 = yes and 0 = no. Commercial

activities on roadside area were rated on a 3-point scale:

1 = high, 0.5 = moderate and 0 = negligible. The quality

of roadway surface was rated using a 5-point scale that

varies from 5 (excellent) to 1 (worst). Interruptions by

unauthorized stoppages of intermittent public transits were

rated on a 3-point scale: 1 = high, 0.5 = moderate and

0 = negligible. The frequency of all driveways and fre-

quency of driveways carrying a high volume of traffic

(driveways/km) were also collected during this survey.

Video footage of traffic movements on each road seg-

ment was collected during the rush hours of traffic flow.

The rush hours were chosen to reflect the worst conditions

encountered by bicyclists. In Indian mid-sized cities, the

traffic flow generally attains its peak commuting hours

twice a day: once in the morning (8.30–11.30 a.m.) and

once in the afternoon–evening time (3.30–6.30 p.m.).

Video footages were not collected on weekends and other

holidays as the traffic volume reasonably decreases on

these days. The average operating speed on Indian roads is

generally not as high as in developed countries, and a large

variation in vehicle speeds observed in the mixed traffic

flow conditions. Thus, the spot speed or space mean speed,

as normally considered for the homogeneous traffic, should

not be considered for the heterogeneous traffic. In this

regard, the video footages mentioned earlier were collected

over a long longitudinal trap of 30 m for the effective

measurement of average travel speed.

Each video clip was played on a large screen, and

desired traffic data sets were extracted. Running average

method was used to decide peak 1 h of traffic flow among

expected 3 h of rush conditions. Traffic volume (PCUs/h)

in that hour called, peak hour volume (PHV) was calcu-

lated by using equivalent PCU values proposed in Indian

Road Congress (IRC)-106 [24]. In addition, pedestrian

volume (ped/h), percentage of heavy vehicles (%), and

approximate volume of vehicular ingress–egress to on-

street parking area (veh/h/km) during the peak 1 h were

also extracted from the videos. Average operating speed

(km/h) on each segment was calculated by dividing the

length of the trap (30 m) by the average time taken by

motor vehicles to cross the trap.

4.3 Opinion survey and assessment of individual’s

satisfaction score

A perception survey was conducted to test how bicyclists

perceive their satisfaction levels under varying roadway

environments. Videography survey (showing roadway

environments to the participants through suitable video

clips and asking them to rate the road under shown con-

ditions) and traveler intercept survey (on-site face-to-face

interaction with the users of interest) are commonly fol-

lowed methods to assess user’s satisfaction levels. It is well

accepted that, videography survey is an established method

and has several advantages like (1) the number of street

segments that participants can rate during a reasonable

period of time is generally high, (2) more diverse group of

participants can be included, (3) it is more cost-effective

than having respondents on site, and many more. Thus, an

extensive videography survey was carried out in this study

to gather a huge amount of data sets. These data sets were

utilized for the development of BLOS models. However,

videography survey has several limitations as well, and

those bicyclists who travel regularly on a road segment are

the best examiners of the perceived bicycling quality of

that particular roadway section. Thus, a traveler intercept

survey was also carried out at some identified locations (22

segments), and the proposed BLOS model was validated

with so obtained data sets.

4.3.1 Videography survey

One important criterion in such surveys is that the demo-

graphics of the selected sample should approximately

represent the population as a whole. In this regard, enough

care was taken, and people of varying categories were tried

to be included in this survey. Residents of an institute of

national importance, NIT Rourkela, and people from

nearby localities were informed about the consequence of

the survey through a common e-mail and were invited to

participate in a large number. However, children of age less

than 14 years were requested to avoid their participation.

This eligibility criterion was used to ensure that the par-

ticipants are matured and experienced enough to give

proper judgment on road conditions. In this self-adminis-

tered questionnaire survey, a total of 154 self-interested

residents participated. The survey was conducted inside

institute auditorium in five different sessions. Roughly

25–35 participants participated in each session. The par-

ticipation rate was approximately 37%, 26%, 17%, and

20% for the institute students, faculties, staffs, and local

people, respectively. The gender distributions of
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participants were roughly even with 71 (46%) women and

83 (54%) men in total. The age distributions of participants

were around 5%, 38%, 17%, 10%, and 4% for age groups

of B20, 21–30, 31–40, 40–50, and C60 years. Roughly

44% of the participants are students (NIT Rourkela stu-

dents and others), 33% are full-time workers, 3% are part-

time workers, and remaining 20% are homemakers, the

unemploy, or retirees.

Survey participants were shown a representative video

clip from each segment illustrating a variety of conditions

including lane configuration, shoulder configuration, aver-

age traffic volume and speed, heavy vehicle percentage,

presence of curb, gutter pan, and median facilities. These

footages were shown with a high-definition video projector

and wall-mounted screen, placed as close as possible to the

eye level and located at 10–20 ft. away. The volume of

audio speakers was adjusted to replicate the approximate

sound in the real traffic. Each clip was about 1.5 min long,

which was chosen on the basis of events in the video that

the researchers wanted to include or exclude, as well as

with participants’ attention span in mind. There is a pos-

sibility that some participants may lose their interest to

watch the entire video and start filling the survey forms up.

However, they were instructed to watch individual clip

entirely before rating it.

The rating was obtained based on a short question: ‘How

much satisfied are you as a bicyclist on the shown road

segment under the shown conditions?’ Participants rated

their satisfaction levels on a Likert scale varying from 1

(excellent) to 6 (very poor). This kind of scaling system

with ordinal features is commonly used in traffic engi-

neering studies. Participants had roughly 10–15 s between

successive video clips to make their perceived ratings.

During the survey sessions, ‘repeater’ video clips were used

to assess individual respondent’s ability to detect minor

changes in the traffic flow. These clips were videotaped at

the same part of the segment as its original, but with dif-

fering traffic volumes. Repeater clips were played one by

one at a fixed interval during the survey sessions. It was

observed during post-data analyses that, each participant

was soundly able to detect minor changes and had given

their ratings quite consciously. Ratings obtained for these

repeater clips were not used in the model building process.

The authors thoroughly investigated the ratings obtained

for repeater clips during the post-data analyses. It was

expected that, each participant would have given a higher

rating where traffic flow is higher and a lower rating where

the traffic volume is lower. However, around 13 participants

violated this assumption. They were either unable to detect

minor changes in the traffic flow, or had given the ratings

unconsciously. Thus, any information obtained from these

participants were not included in the model building pro-

cess. From remaining 141 participants, a total of 10,434

(141 9 74) effective ratings or BLOS scores were obtained.

To check the sufficiency of these numbers of perceived

ratings for the model building, Cochran’s sample size for-

mula [25] was used and the allowed error in estimation of

the mean perceived ratings (3.48) was calculated. The error

in using this amount of data set was found to be limited to

1% only (estimated at 95% confidence level). Thus, the data

set was reasonably sufficient for the model estimation.

4.3.2 Traveler intercept survey

A traveler intercept survey was carried out on 22 road

segments located in different parts of the study area. These

segments were basically selected from varying road con-

ditions (excellent-worst). Similar to the videography sur-

vey, this traveler intercept survey was also carried out

during the peak hours of traffic flow to reflect the worst

perceived conditions. Team members were employed to

conduct on-site face-to-face interactions with at least 145

on-street bicycle users from each segment and collect their

responses. The socio-demographic diversities among these

participants were kept approximately similar to those in

videography survey participants.

Survey participants were asked to rate the roadway

segments based on a simple question: ‘What is your per-

ceived level of satisfaction while riding on the road seg-

ment?’ The rating scale was kept same as the 6-point Likert

scale used in the videography survey. Approximately 3,190

(145 9 22) effective responses were collected in this sur-

vey and were reserved for model validation purpose. To

check the sufficiency of these numbers of perceived ratings

for the model validation, Cochran’s sample size formula

[25] was used and the allowed error in estimation of the

mean perceived ratings (3.49) was calculated. The error in

using this amount of data set was found to be limited to 1%

only (estimated at 95% confidence level). Thus, the data set

was reasonably sufficient for the model validation.

4.4 Perception survey results

The perception survey carried out in this study resulted in a

total of 13,624 effective perceived ratings, i.e., 10,434

ratings from the videography survey plus 3,190 rating from

the traveler intercept survey. The percentage composition

of user-perceived ratings in each level (1–6) is shown in

Table 1. It can be observed that very few (below 1%) of the

perceived scores are 1.0; thus, very few facilities in Indian

mid-sized cities are offering excellent quality of services

for bicycle use. The table also shows that very few facili-

ties are offering the worst quality of services (BLOS

score = 6). However, most of the perceived BLOS scores

are 3 or 4, which indicates that bicyclists are moderately

satisfied with the existing facilities.
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5 Model development, results, and discussion

In this study, important road attributes were identified

using the random forest technique and analyzed using

ordered probit and ordered logit regression analyses. This

section gives a detailed discussion on each aspect and also

represents the results obtained from ordered probit and

logit analyses. The performance of these models was

assessed in terms of several statistical parameters, and the

better model has been reported.

5.1 Selection and ranking of important road

attributes

Random forest technique was applied on all collected road

attributes to screen out the unimportant ones. Remaining

significant variables were only inputted in the model

building process. R-package was used to screen the vari-

ables via the library ‘randomForest’ [22]. This technique

was executed with 160 trees grown in the input data sets.

To check whether this number of trees could lead to the

best outcomes, a plot of OOB error rate versus different

number of trees was plotted and shown in Fig. 2. As

depicted in this figure, after a growth of approximately 120

trees, the OOB error rate has started to be stabilized.

Hence, the attempted number of trees (160) was reasonably

sufficient to attain stable outcomes for the present problem.

As indicated in the earlier discussion, a node purity

value for each road attribute was produced using the ran-

dom forest technique to identify its importance in con-

tributing to the perceived satisfactions of bicyclists. By

using a cut-off purity value of 1.5, important variables were

screened as shown in Fig. 3. This figure depicts that the

peak hour traffic volume is the most important variable

with the highest node purity value of 13.64, and interrup-

tions by unauthorized stoppages of public transits are the

least important variable with the lowest node purity value

of 1.74. Other significant variables and their respective

order of importance are also shown in this figure. However,

road attributes such as the presence of median, sidewalk

facilities, on-street pedestrians, curb and gutter were

observed to have an insignificant effect on the perceived

satisfactions of bicyclists (node purity value below 1.5).

Hence, these parameters were excluded from the model

building process.

Table 2 shows the detailed statistics of data sets used in

this study to develop service prediction models, where each

attribute is subjected to the specific direction of the road-

way. The correlations between each independent variable

with the output variable (perceived BLOS score) were

assessed using Spearman’s correlation analysis, and the

results are shown in Table 3. Each independent variable

was observed to have a significant correlation with the

output variable. It might be noted here that, the correlation

among independent variables with Spearman’s rho (q)
value above 0.4 indicates the presence of multicollinearity

among inputs. Thus, the correlations among selected vari-

ables were tested through Spearman’s correlation analysis.

As observed in Table 3, q values among independent

variables are not very high and indicate the poor correla-

tions. Thus, the variables selected in this study are well

able to contribute independently in the BLOS model

building process.

5.2 Ordered probit model development

The ordered probit analysis was carried out by taking

multiple important road attributes into considerations, and

the results are presented in Table 4. The parallel-lines

assumption for each variable was tested using a series of

Wald-statistics (ratio of coefficient estimate and its stan-

dard error). As shown in this table, all coefficient estimates

are associated with negligible standard errors (SEs) and

also satisfy the required criteria of Wald-statistics. Thus,

the coefficients are not biased and able to provide accurate

and stable results. It can also be observed that all important

Table 1 Perception survey results

Perceived BLOS score Frequency Marginal

percentage (%)

1.00 119 0.87

2.00 1,194 8.76

3.00 5,526 40.56

4.00 5,705 41.87

5.00 994 7.29

6.00 86 0.65

Total 13,624 100.0
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Fig. 2 Plot of OOB error rate against different number of trees in

random forest
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attributes are significantly (p\ 0.05) contributing to the

model at the 95% confidence level. From the signs (posi-

tive or negative) of attribute coefficients, it can be

concluded that the perceived satisfaction of a bicyclist

approaches the ‘excellent’ (BLOS ‘A’), with an increase in

effective width of the outside through lane and pavement

Peak hour traffic volume per lane

Effective width of outside through lane

Commercial activities on roadside area

Vehicular ingress-egress to on-street parking area

Pavement Condition Index

Average taffic speed

Frequency of driveways carrying a high volume of traffic

Interruptions by stoppages of intermittent public transits 
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Node purity value
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Fig. 3 Node purity values of important road attributes

Table 2 Descriptive statistics of data sets used in this research

Serial

no.

Variable Unit/scale Min. Max. Mean SD

1 Effective width of the outside through lane (I1) m 2 7 3.68 0.90

4 Pavement condition index (I2) 1–5 (scale) 205 4.5 3.85 0.37

2 Peak hour traffic volume per lane (I3) PCUs/h/lane 148 2,586 1,069.6 489.10

3 Average traffic speed (I4) km/h 23 46 33.94 4.88

5 Commercial activities on roadside areas (I5) 1 (high), 0.5 (medium), 0

(minimal)

0 1 0.49 0.44

6 Interruptions by unauthorized stoppages of intermittent public

transits (I6)

1 (high), 0.5 (medium), 0

(minimal)

0 1 0.45 0.39

7 Volume of vehicular ingress and egress to the on-street parking

area (I7)

veh/h/km 0 6,000 745.78 1,442.45

8 Frequency of driveways carrying a high volume of traffic (I8) Number(s)/km 0 3 0.83 0.95

9 Perceived BLOS score (O) 1–6 scale 1.55 5.40 3.49 0.71

Min minimum, Max maximum, SD standard deviation

Table 3 Correlations among used variables

Variable O I1 I2 I3 I4 I5 I6 I7 I8

O 1.000 – – – – – – – –

I1 -0.532 1.000 – – – – – – –

I2 -0.465 0.022 1.000 – – – – – –

I3 0.550 0.148 -0.206 1.000 – – – – –

I4 0.410 -0.204 -0.048 0.104 1.000 – – – –

I5 0.520 0.166 -0.310 0.233 -0.033 1.000 – – –

I6 0.409 0.024 -0.020 0.244 0.225 0.169 1.000 – –

I7 0.530 -0.002 -0.203 0.219 0.136 0.187 0.154 1.000 –

I8 0.439 0.208 -0.183 0.205 0.074 0.214 0.217 0.220 1.000
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condition index (as their coefficients are negative). Con-

versely, it approaches the ‘worst’ (BLOS ‘F’) with an

increase in numerical values of all remaining variables (as

their coefficients are positive).

5.3 Ordered logit model development

The results of the ordered logit analysis are presented in

Table 5. The table shows that the coefficient estimates are

associated with negligible standard errors and also satisfy

the required criteria of Wald-statistics. Thus, the coeffi-

cients estimates are able to provide unbiased results. The

table also shows that, all important attributes are signifi-

cantly (p\ 0.05) contributing to the model at the 95%

confidence level.

5.4 Performance assessment of developed models

Tables 2 and 3 show the overall goodness-of-fit of probit

and logit models, respectively, measured through the

likelihood measures. This test statistic evaluates whether

the presence of exogenous variables significantly improves

the quality of the model estimation. It is observed that the

log likelihood of final models (L(b) = -2,257.03 and

-2,334.65 for probit and logit models, respectively) are

substantially larger than the log likelihoods of the inter-

cept-only models (L(0) = -5,892.50 and -5,892.75,

respectively). Hence, it is concluded that both models are

providing more accurate and meaningful estimations of

BLOS scores than the intercept-only models.

However, while comparing through the application of

AIC test statistics, the probit model was observed to have

better precession (AIC = 4,542.06) over the logit model

(AIC = 4,697.30). Tables 2 and 3 also show values of

pseudo-R2 obtained for both models. It can be observed

that the probit model with R2
CS = 0.577 and R2

McF = 0.617

has higher prediction precision over the logit model with

R2
CS = 0.569 and R2

McF = 0.603. From all these obser-

vations, we can conclude that though both probit and logit

models have reasonably fair performances with the data

sets used in this research, the ordered probit model is more

preferred than the ordered logit one because of its higher

degree of precision.

5.5 Model validation with traveler intercept survey

data

As explained earlier, the proposed model (the ordered

probit model) needed to be validated with perceived BLOS

scores collected from the traveler intercept survey. For this

Table 4 Ordered probit model parameters

Factor Coefficient SE Wald-statistic Significance

(p value)

95% Confidence interval

Lower bound Upper bound

Threshold parameters

Threshold 1 (l1) -5.648 0.225 629.383 \0.001 -6.089 -5.207

Threshold 2 (l2) -3.952 0.215 336.866 \0.001 -4.374 -3.530

Threshold 3 (l3) -1.885 0.213 78.131 \0.001 -2.303 -1.467

Threshold 4 (l4) 0.652 0.214 9.233 0.002 0.231 1.072

Threshold 5 (l5) 3.613 0.226 256.083 \0.001 3.171 4.056

Road conditions

I1 -0.215 0.018 148.984 \0.001 -0.250 -0.181

I2 -1.136 0.043 687.357 \0.001 -1.221 -1.052

Traffic conditions

I3 0.00103 0.00003 889.203 \0.001 0.001 0.001

I4 0.042 0.003 169.017 \0.001 0.036 0.049

Disturbances and obstructions

I5 0.511 0.041 151.792 \0.001 0.429 0.592

I6 0.566 0.045 159.594 \0.001 0.478 0.654

I7 0.000317 0.00001 503.547 \0.001 0.00029 0.00034

I8 0.174 0.02 75.662 \0.001 0.135 0.213

Overall goodness-of-fit

L(0) = -5,892.50; L(b) = -2,257.03; AIC = 4,542.06

Pseudo-R2

R2
CS = 0.577; R2

McF = 0.617
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purpose, the probability of each response category (y = 1,

2, …, or 6) obtained on each segment considered for model

validation was calculated from traveler intercept survey

data sets. The same is summarized in Table 6 (Columns: 2,

4, 6, 8, 10 and 12). The predicted probability of each

response category (y) on each validation segment was also

Table 5 Ordered logit model parameters

Factor Coefficient SE Wald-statistic Significance (p value) 95% Confidence interval

Lower bound Upper bound

Threshold parameters

Threshold 1 (l1) -9.735 0.412 557.623 \0.001 -10.543 -8.927

Threshold 2 (l2) -6.651 0.390 291.288 \0.001 -7.415 -5.888

Threshold 3 (l3) -3.089 0.387 63.795 \0.001 -3.847 -2.331

Threshold 4 (l4) 1.436 0.393 13.351 \0.001 0.666 2.206

Threshold 5 (l5) 6.698 0.411 265.096 \0.001 5.892 7.505

Road conditions

I1 -0.380 0.032 143.750 \0.001 -0.442 -0.318

I2 -1.968 0.080 610.992 \0.001 -2.124 -1.812

Traffic conditions

I3 0.00179 0.00006 824.521 \0.001 0.002 0.002

I4 0.078 0.006 173.716 \0.001 0.067 0.090

Disturbances and obstructions

I5 0.908 0.074 149.252 \0.001 0.763 1.054

I6 1.020 0.080 162.019 \0.001 0.863 1.178

I7 0.00059 0.00002 464.392 \0.001 0.00053 0.00063

I8 0.287 0.036 63.952 \0.001 0.217 0.357

Overall goodness-of-fit

L(0) = -5,892.75; L(b) = -2,334.65; AIC = 4,697.30

Pseudo-R2

R2
CS = 0.569; R2

McF = 0.603

Table 6 Ordered probit model validation with traveler intercept survey data

Segment

no.

P(y = 1) P(y = 2) P(y = 3) P(y = 4) P(y = 5) P(y = 6)

Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted

Observed and predicted probabilities of y at each level (1–6)

1 0.00 0.00 0.00 0.00 0.15 0.07 0.68 0.79 0.17 0.15 0.00 0.00

2 0.00 0.02 0.30 0.36 0.70 0.58 0.00 0.04 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.02 0.44 0.47 0.56 0.51 0.00 0.01 0.00 0.00

4 0.00 0.00 0.05 0.12 0.60 0.69 0.35 0.19 0.00 0.00 0.00 0.00

5 0.00 0.01 0.10 0.18 0.78 0.69 0.07 0.12 0.05 0.00 0.00 0.00

: : : : : : : : : : : : :

20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.50 0.45 0.49

21 0.10 0.32 0.71 0.57 0.19 0.11 0.00 0.00 0.00 0.00 0.00 0.00

22 0.00 0.00 0.00 0.00 0.10 0.17 0.80 0.77 0.10 0.06 0.00 0.00

Statistics between observed and predicted probabilities at each level (1–6)

R 0.996 0.912 0.966 0.980 0.988 1.000

AAE 0.013 0.049 0.071 0.043 0.022 0.008

RMSE 0.048 0.073 0.081 0.057 0.034 0.039

MAE 0.224 0.204 0.174 0.162 0.084 0.183

Overall prediction precision

SB = 0.45
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calculated with the help of ordered probit model, and the

results are summarized in Table 6 (Columns: 3, 5, 7, 9, 11

and 13). In order to assess the prediction precision of the

proposed model, several statistical parameters between

observed and predicted probabilities are estimated and

shown in Table 6 (Rows: 14–17). These parameters

include the correlation coefficient (R), the average absolute

error (AAE), the root-mean-square error (RMSE), and the

maximum absolute error (MAE). As observed, the R value

between observed and predicted probabilities is signifi-

cantly high (i.e., above 0.91). This signifies that the

observed and predicted probability values are very much

close to each other. The error measuring parameters have

also attained reasonably lower values with AAE B 0.071,

RMSE B 0.081, and MAE B 0.224 in each case. In order

to assess the overall performance of the developed model

with validation data sets, the Brier’s Score (SB) [26]

expressed below was used in this study:

SB ¼ 1

t

Xr

j¼1

Xn

i¼1

fij � Eij

� �2
; ð12Þ

where t is the total number of occasions (22 segments in

this study), r is the number of possible classes or categories

in which an event can occur (i.e., six BLOS classes ‘A–F’

in this study), fij is the predicted probability that an invent

will occur in category j, and Ej is the observed probability

that an invent will occur in category j.

It is obvious that SB has a minimum value of ‘zero’ for

perfect predictions. This score for the ordered probit model

as obtained using Table 6 was found to be 0.45, which is

very much close to zero. Thus, it is concluded from all

these investigations and observations that, the proposed

model is well validated with traveler intercept data sets,

and could be well applied for service quality assessments in

mid-sized cities.

5.6 Determining overall predicted BLOS scores

and bicycle service categories (A–F)

By applying the parameters estimated through ordered

probit analysis to the vector of independent variables, we

obtain the following model (as derived using Eq. (1)):

zn ¼ lj � 0:38I1 � 1:968I2 þ 0:00179I3 þ 0:078I4

þ 0:908I5 þ 1:02I6 þ 0:00059I7 þ 0:287I8;
ð13Þ

where j = 1, 2,…, 6, l1 = -5.648, l2 = -3.952,

l3 = -1.885, l4 = 0.652, and l5 = 3.613.

The overall predicted BLOS score (BLOSPred) for a

roadway segment is nothing but the sum of probabilities

obtained for individual ‘y’ values (y = 1, 2,…, or 6)

multiplied by the corresponding numerical equivalent of

that service category ‘j’ (j = 1, 2,…, 6). The mathematical

expression for the same is as follows:

BLOSPred ¼
X6

j¼1

P y ¼ jð Þ � j; ð14Þ

where P(y = j) values can be found out by putting corre-

sponding Zn values in Eq. (3).

In order to test the performance of above model in the

present context, an investigation has been carried out. One

roadway segment namely Master canteen to Rajmahal

square of Bhubaneswar city was selected randomly from the

study corridors, and its overall perceived BLOS score was

compared with the model-predicted BLOS score. Field

observations for this segment are I1 = 3.5 m, I2 = 4,

I3 = 1,505.72 PCUs/h/lane, I4 = 40 km/h, I5 = 1, I6 = 1,

I7 = 3,000 veh/km/h, and I8 = 2. The mean perceived

BLOS rating for the segment is 4.14. Putting the field

observed values in Eq. (13), Zn values for the segment were

calculated. Probabilities of perceived satisfactions of bicy-

clists in six-ordered response categories (1–6) were then

calculated by putting Zn values in Eq. (3) and shown below.

P y ¼ 1ð Þ ¼ P y� 1ð Þ ¼ 0;

P y ¼ 2ð Þ ¼ P y� 2ð Þ � P y� 1ð Þ ¼ 0:0005;

P y ¼ 3ð Þ ¼ P y� 3ð Þ � P y� 2ð Þ ¼ 0:014;

P y ¼ 4ð Þ ¼ P y� 4ð Þ � P y� 3ð Þ ¼ 0:619;

P y ¼ 5ð Þ ¼ P y� 5ð Þ � P y� 4ð Þ ¼ 0:366;

P y ¼ 6ð Þ ¼ 1� P y� 5ð Þ ¼ 0:0005:

The overall predicted BLOS score for the segment under

consideration was calculated by using Eq. (14) as:

BLOSPred = (0 9 1 ? 0.0005 9 2 ? 0.014 9 3 ? 0.619 9

4 ? 0.366 9 5 ? 0.0005 9 6) = 4.35. Thus, the absolute

deviation in the model prediction from the perceived score is

as less as 0.21 (i.e., 4.35–4.14). Thus, the proposed model is

convincingly efficient enough for service predictions in the

present context.

The BLOS scores obtained for studied segments were

used to define the ranges of bicycle service categories ‘A–

F,’ where ‘A’ designates the ‘excellent’ service quality and

‘F’ designates the ‘worst.’ The ranges are defined in

Table 7 by using a simple concept commonly followed in

bicycle and pedestrian studies [for example, 7, 27, 28]. The

mean perceived rating obtained in the present study was

around 3.5, which corresponds to the boundary between

LOS class ‘C’ and ‘D.’ This means to say that, BLOS

scores below a value of 3.5 correspond to the LOS cate-

gories ‘A–C,’ and those above 3.5 correspond to the LOS

categories ‘D–F.’ By considering the symmetry of the

boundary point of 3.5, symmetrical cutoffs are made, and

the LOS scale shown in Table 7 has been defined to stratify

BLOS scores into LOS classes. The predicted BLOS score
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(4.35) of Master canteen to Rajmahal square of Bhuba-

neswar, for instance, indicates that the segment is offering

a service category ‘D’ at its present scenario.

A detailed investigation was carried out to evaluate the

effectiveness of the model in predicting the service categories

of road segments in the real field. Predicted service categories

of all studied segment were estimated through the application

of the proposed BLOS model (ordered probit based). The

survey-observed BLOS categories were compared with cor-

respondingmodel-predicted BLOS categories, and results are

shown in Table 8. The matching between these service cate-

gories was observably as high as 86%. On the basis of the

model applications and evaluations, it was concluded that the

proposed BLOS model is well applicable in the present con-

text for the assessment of urban road segments.

6 Critical observations

It was observed from Table 8 that, around 1%, 4%, 46%,

42%, 6%, 1% of the total segments from study corridors

are offering service qualities of ‘A,’ ‘B,’ ‘C,’ ‘D,’ ‘E,’ and

‘F,’ respectively. Thus, bicyclists are perceiving excellent

and good levels of satisfactions only on 5% of total seg-

ments investigated in this study. This indicates a high

requirement for enhancing the service qualities of existing

facilities in order to encourage bicycle use in Indian cities.

Most of the road facilities that are offering service cate-

gories of ‘A’ and ‘B’ were observed to carry a less volume

of traffic (below 900 PCUs/h/lane) and have the provision

of shared-use paths or well-conditioned paved shoulders.

Road segments without the provision of these facilities but

passing through rural fields and carrying less volume of

traffic also came under these categories.

On the contrary, road segments offering service cate-

gories of ‘C’ and ‘D’ were observed to carry a relatively

higher volume of traffic (up to 2600 PCUs/h/lane) and are

substantially influenced by commercial and on-street

parking activities. Though few segments have the provision

of paved shoulders, those were observed to be illegally

acquired by street vendors or parked vehicles. The con-

siderable adverse effect from bicycle–vehicle interactions

and hindrance from street vendors or on-street parking

actives combined together mostly have made these seg-

ments to offer average to below average quality of services.

These parking and vending activities though seem to be

very trivial in Indian cities; actions must be taken by city

authorities to rectify them in order to enhance bicycle

services.

Road segments on which bicyclists are perceiving poor

and very poor quality of services (BLOS ‘E’ and ‘F’) are

generally passing through market areas and are highly

influenced by on-street parking activities. Unavailability of

separate bicycle paths, shrinkage of outermost lane width

due to high roadside commercial and parking activities,

and poor quality of pavement surface altogether have made

Table 7 BLOS score ranges of service categories (A–F)

BLOS

category

Overall perceived

satisfaction level

Ranges of predicted

BLOS score

A Excellent B1.5

B Very good 1.5–2.5

C Good 2.5–3.5

D Fair 3.5–4.5

E Poor 4.5–5.5

F Very poor [ 5.5

Table 8 Matching between observed and predicted BLOS categories (A–F)

Segment

no.

Effective

width of

outside lane

(m)

Pavement

condition

index

Traffic

volume

(PCUs/h)

Traffic

speed

(km/h)

Commercial

activity

Ingress–egress to

parking area

(veh/km/h)

Frequency

of

driveways

Survey-

observed

BLOS

category

Probit

model

BLOS

category

1 3.5 4 1,187.07 37 1 2,010 2 D D

2 3.5 4 1,403.67 38 1 2,010 2 D D

3 3.5 4 1,015.75 37 0 0 0 C C

4 3.5 4 1,165.95 38 0.5 330 1 C D

5 3.8 2.5 1,112.30 29 0.5 20 0 C D

6 3.5 3 1,103.00 37 1 6,000 2 E E

7 7 4.5 190.00 29 0 0 0 B B

: : : : : : : : : :

74 2.5 2.5 1,700.00 41 1 6,000 3 E E

Matching between survey-observed and model-predicted BLOS categories 86%
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these segment to offer poor and very poor services to

bicyclists.

7 Conclusions

Since the traffic flow in Indian cities is highly heteroge-

neous, perceived satisfactions of on-street bicyclists is

affected by a complex bicycle-vehicle interaction and

several other variables. The random forest technique, a

noble and promising machine learning technique, has

reported that eight variables on roadway geometrics, traffic

flow conditions, and built environments have a potential

effect on the occurrence. A node purity value obtained for

each variable in the random forest analysis has reported the

relative importance of the variables for the prediction of

perceived satisfaction levels of bicyclists. It is observed

that, traffic volume, effective width of outside through lane,

roadside commercial activities, vehicular ingress–egress to

the on-street parking area, pavement surface quality,

average traffic speed, frequency of driveways carrying a

high volume of traffic and interruptions by unauthorized

stoppages of intermittent public transits are significantly

affecting the occurrence in a descending order of impor-

tance. Traffic volume has the highest impact probably

because bicyclists encounter a complex interaction with

several kinds of motorized and non-motorized vehicles

present in the heterogeneous traffic stream.

Traffic volume and outside lane width being two of the

most important variables have concluded that the mini-

mization of bicycle-vehicle interactions and provision of

sufficient space for bicycle use are two key factors to

enhance the bicycle service qualities. This can be accom-

plished by providing separate bicycle lane, wide curb-lane,

or paved shoulder facilities. It is also concluded that, two

traditional activities in Indian cities such as roadside

vending activities, illegal on-street parking activities and

unauthorized stoppages of intermittent public transits have

a potential adverse effect on perceived satisfactions of

bicyclists. Thus, these traditional activities must be recti-

fied by the city authorities in order to enhance the bicycle

service qualities on urban streets. Some major key inno-

vations of the present study include the identification of

two potential parameters not considered in previous studies

such as: (1) interruptions by unauthorized stoppages of

intermittent public transits, and (2) frequency of driveways

carrying a high volume of traffic. In Indian cities, inter-

mittent public transits form a significant percentage of the

total traffic and usually stop on roadside areas for boarding

and stepping down of passengers. These haphazard activ-

ities hinder the path of bicyclists and cause a significant

discomfort to them. Likewise, the presence of driveways

also has a considerable adversative effect on perceived

satisfactions of bicyclists. In the Spearman’s correlation

analysis, the frequency of driveways carrying a high vol-

ume of traffic had a significant correlation with user-per-

ceived ratings. Conversely, while all driveways (including

those carry a less volume of traffic) were considered

together, the same parameter had an insignificant correla-

tion with the output. Thus, the former parameter is included

in the model development process. Some of these major

factors additionally considered in this study feasibly dif-

ferentiate the BLOS models development in developing

countries from those in developed countries.

Though regression analysis has found its wide applica-

tions in the development of bicycle LOS models, it is not

the best choice particularly in modeling the ordered

response variables (e.g., perceived ratings = 1, 2,…, or 6

in the present case). Regression analysis attempts to

develop predictive models using the least-square criterion

and predict a continuous variable, which is different than

what was asked to the participants during the perception

survey. To overcome these limitations, the performance of

ordered probit and ordered logit models is investigated in

this study. Though both models met a high confidence level

of 95% for each input variable, the ordered probit model

outperformed the logit model for the service predictions

under mixed traffic conditions. The model has produced

higher pseudo-R2 values (R2
CS = 0.577; R2

McF = 0.617)

with averaged observations. Thus, the fitting of the model

with data sets used in this study is reasonably fair. An

empirical equation is presented that can be used to derive a

letter grade BLOS category (A–F) for a segment by

incorporating the outputs of ordered probit model for the

facility (i.e., the probability obtained for each service cat-

egory, BLOS ‘A’ through ‘F’). The model-predicted BLOS

categories of the studied segments have a high matching of

86% with the expected service categories. This concludes

that the model has a high application efficiency in the

present context.

Another observation of this study concludes that, around

95% of all investigated roadway segments are offering

BLOS categories of ‘C’ or below. Thus, the city authorities

in India must take immediate actions by primarily focusing

on the findings of the present study as well as other related

studies for the betterment of bicyclists and public health as

well. The ordered probit analysis-based BLOS model

proposed in this research is basically a new decision sup-

port system for transportation engineers that will help in

long-term transportation planning and designing of bicycle

friendly networks primarily under heterogeneous traffic

flow conditions. The limitation of this study is that the

influence of bicycle lane parameters on bicyclists’ per-

ceived satisfactions is not addressed in the model building
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process. The reason is the unavailability of such facilities

in Indian mid-sized cities. However, researchers in other

countries may develop similar BLOS models considering

this bicycle lane parameter if such a provision is available.

If the ranges of variables shown in Table 2 are satisfied in

any big city under heterogeneous traffic conditions, then

the proposed model could also be suitably adopted to

assess the bicycle service quality.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Davis J (1987) Bicycle safety evaluation. Auburn University,

City of Chattanooga, and Chattanooga-Hamilton County Regio-

nal Planning Commission, Chattanooga, TN

2. Epperson B (1994) Evaluating suitability of roadways for bicycle

use: toward a cycling level-of-service standard. Transp Res Rec

1438:9–16

3. Landis BW (1994) Bicycle interaction hazard score: a theoretical

model. Transp Res Rec 1438:3–8

4. Sorton A, Walsh T (1994) Bicycle stress level as a tool to eval-

uate urban and suburban bicycle compatibility. Transp Res Rec

1438:17–24

5. Davis J (1995) Bicycle test route evaluation for urban road

conditions. In: Transportation Congress, volumes 1 and 2: civil

engineers—key to the world’s infrastructure, American Society

of Civil Engineers (ASCE), San Diego, CA, pp 1063–1076

6. Harkey DL, Reinfurt DW, Knuiman M, Stewart JR, Sorton A

(1998) Development of the bicycle compatibility index: a level of

service concept. Transp Res Rec 1636:13–20. doi:10.3141/1636-

03

7. Landis BW, Vattikuti VR, Brannick MT (1997) Real-time human

perceptions: toward a bicycle level of service. Transp Res Rec

1578:119–126. doi:10.3141/1578-15

8. Jensen SU (2007) Pedestrian and bicycle level of service on

roadway segments. Transp Res Rec 2031:43–51. doi:10.3141/

2031-06

9. FDOT (2009) Quality/level of service handbook. Florida

Department of Transportation, Tallahassee

10. HCM (2000) Highway capacity manual. Transportation Research

Board, Washington, p 1134

11. HCM (2010) Highway capacity manual. Transportation Research

Board, Washington, p 1650

12. Kang K, Lee K (2012) Development of a bicycle level of service

model from the user’s perspective. KSCE J Civ Eng

16(6):1032–1039. doi:10.1007/s12205-012-1146-z

13. Mozer D (1994) Calculating multi-mode levels-of-service.

International Bicycle Fund, Seattle

14. Hunter WW, Feaganes JR, Srinivasan R (2005) Wide curb lane

conversions: the effect on bicycle and motor vehicle interaction.

Transp Res Rec 1939:37–44. doi:10.3141/1939-05

15. Hallett I, Luskin D, Machemehl R (2006) Evaluation of on-street

bicycle facilities added to existing roadways, Report No. FHWA/

TXDOT-06/0-5157-1, Center for Transportation Research,

University of Texas, Austin. https://ctr.utexas.edu/wp-content/

uploads/pubs/0_5157_1.pdf

16. Verma M, Rahul TM, Reddy PV, Verma A (2016) The factors

influencing bicycling in the Bangalore city. Transp Res Part A

Policy Pract 89:29–40. doi:10.1016/j.tra.2016.04.006

17. Chellapilla H, Beura SK, Bhuyan PK (2016) Modeling bicycle

activity on multi-lane urban road segments in Indian context and

prioritizing bicycle lane to enhance the operational efficiency. In:

Proceeding of the 12th transportation planning and implementa-

tion methodologies for developing countries (TPMDC), IIT

Bombay, Mumbai, India

18. Beura SK, Kumar NK, Bhuyan PK (2016) Level of service for

bicycle through movement at signalized intersections under

heterogeneous traffic flow conditions. In: Proceeding of the 12th

transportation planning and implementation methodologies for

developing countries (TPMDC), IIT Bombay, Mumbai, India

19. Breiman L (2001) Random forests. Mach Learn 45(1):5–32.

doi:10.1023/A:1010933404324

20. Harb R, Yan X, Radwan E, Su X (2009) Exploring precrash

maneuvers using classification trees and random forests. Accid

Anal Prev 41(1):98–107. doi:10.1016/j.aap.2008.09.009

21. Kuhn S, Egert B, Neumann S, Steinbeck C (2008) Building

blocks for automated elucidation of metabolites: machine learn-

ing methods for NMR prediction. BMC Bioinform 9:400. doi:10.

1186/1471-2105-9-400

22. R Software (2009) http://www.r-project.org/. Accessed 27 April

2016

23. Train K (2003) Discrete choice methods with simulation. Cam-

bridge University Press, New York

24. IRC (1990) Guidelines for capacity of urban roads in plain areas.

Indian Road Congress 106, New Delhi

25. Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New

York

26. Brier GW (1950) Verification of forecasts expressed in terms of

probability. Mon Weather Rev 78:1–3. doi:10.1175/1520-

0493(1950)078\0001:VOFEIT[2.0.CO;2

27. Landis B, Vattikuti V, Ottenberg R, McLeod D, Guttenplan M

(2001) Modeling the roadside walking environment: pedestrian

level of service. Transp Res Rec 1773:82–88. doi:10.3141/1773-

10

28. Bian Y, Ma J, Rong J, Wang W, Lu J (2009) Pedestrians’ level of

service at signalized intersections in China. Transp Res Rec

2114:83–89. doi:10.3141/2114-10

Urban road segment level of service based on bicycle users’ perception under mixed traffic… 105

123J. Mod. Transport. (2017) 25(2):90–105

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3141/1636-03
http://dx.doi.org/10.3141/1636-03
http://dx.doi.org/10.3141/1578-15
http://dx.doi.org/10.3141/2031-06
http://dx.doi.org/10.3141/2031-06
http://dx.doi.org/10.1007/s12205-012-1146-z
http://dx.doi.org/10.3141/1939-05
https://ctr.utexas.edu/wp-content/uploads/pubs/0_5157_1.pdf
https://ctr.utexas.edu/wp-content/uploads/pubs/0_5157_1.pdf
http://dx.doi.org/10.1016/j.tra.2016.04.006
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.aap.2008.09.009
http://dx.doi.org/10.1186/1471-2105-9-400
http://dx.doi.org/10.1186/1471-2105-9-400
http://www.r-project.org/
http://dx.doi.org/10.1175/1520-0493(1950)078%3c0001:VOFEIT%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1950)078%3c0001:VOFEIT%3e2.0.CO;2
http://dx.doi.org/10.3141/1773-10
http://dx.doi.org/10.3141/1773-10
http://dx.doi.org/10.3141/2114-10

	Urban road segment level of service based on bicycle users’ perception under mixed traffic conditions
	Abstract
	Introduction
	Review of literature
	Methodological approach
	Random forest technique
	Ordered probit modeling
	Ordered logit modeling
	Model evaluation criteria

	Data source
	Collection locations
	Built environment and road characteristics data
	Opinion survey and assessment of individual’s satisfaction score
	Videography survey
	Traveler intercept survey

	Perception survey results

	Model development, results, and discussion
	Selection and ranking of important road attributes
	Ordered probit model development
	Ordered logit model development
	Performance assessment of developed models
	Model validation with traveler intercept survey data
	Determining overall predicted BLOS scores and bicycle service categories (A--F)

	Critical observations
	Conclusions
	Open Access
	References




