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Abstract Ensuring a minimum operational level of road

networks in the presence of unexpected incidents is

becoming a hot subject in academic circles as well as

industry. To this end, it is important to understand the degree

to which each single element of the network contributes to

the operation and performance of a network. In other words,

a road can become an ‘‘Achilles-heel’’ for the entire network

if it is closed due to a simple incident. Such insight of the

detrimental loss of the closure of the roads would help us to

be more vigilant and prepared. In this study, we develop an

index dubbed as Achilles-heel index to quantify detrimental

loss of the closure of the respective roads. More precisely, the

Achilles-heel index indicates how many drivers are affected

by the closure of the respective roads (the number of affected

drivers is also called travel demand coverage). To this end,

roads with maximum travel demand coverage are sorted as

the most critical ones, for which a method—known as ‘‘link

analysis’’—is adopted. In an iterative process, first, a road

with highest traffic volume is first labeled as ‘‘target link,’’

and second, a portion of travel demand which is captured by

the target link is excluded from travel demand. For the next

iteration, the trimmed travel demand is then assigned to the

network where all links including the target links run on the

initial travel times. The process carries on until all links are

labeled. The proposed methodology is applied to a large-

sized network of Winnipeg, Canada. The results shed light on

also bottleneck points of the network which may warrant

provision of additional capacity or parallel roads.

Keywords Critical roads � Achilles-heel roads � Sensor

location problem � Flow-bundle � Link analysis

1 Introduction

Unexpected traffic disruptions and reliability consequences

have made academia and the industry more interested in

subjects such as resilience, reliability, vulnerability; flexi-

bility, robustness, fragility and critical roads [1]. Although

these concepts are yet to be unambiguously defined [2],

each subject stands on its own merit representing some

areas of concerns with a common denominator posed as the

following key question: how does the transport system

respond at such disruptive events? or ‘‘what is the damage,

given that something happens’’ [3].

The disruption entails a wide spectrum of events from

traffic accidents and incident to extreme events such as

natural or man-made disasters. During and in the aftermath

of such events, the most vital (or so-called critical) roads

must be kept at a functioning level.
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Identifying a measure of robustness of the network at

extreme events is a worthwhile effort which is also pursued

in this study. In the first place, there is no consensus on the

definition of network robustness much to the extent of the

network stretched in a wide spectrum of disciplines [2, 4].

We adopt an intuitive definition provided by the Institute of

Electrical and Electronics Engineers (1990): Robustness is

the degree to which the network can function correctly in

the presence of stressful conditions [1]. In other words,

robustness is a characteristic of a network in withstanding

or absorbing disturbances and remaining intact when

exposed to disruption [4].

The roads are the backbone of a network based on which

the operation is conducted. Irrespective of where we stand

on the above-mentioned spectrum, the general approach to

assessing the robustness (or inversely fragility) of the

network is to find the critical roads, which is a daunting

task. Critical roads could act like Achilles-heel that is that

the entire network could become hostage to the disruption

of few roads. In case of any incident leading to their clo-

sures, the network gets at a standstill. It is obvious that

finding such Achilles-heel roads holds a central role to

develop a mitigation scheme or to be prepared for any

eventuality. Perhaps such findings may warrant investment

in expanding the road capacity such as new roads, bridges

or lane widening, a type of themes known as network

design problem [5]. The criticalness degree of roads can

also be looked at as an index to measure their importance

which in turn is utilized in road constructions and their

prioritization [6, 7]. At the other end of this spectrum, there

might be a number of roads whose removal, in fact,

improves network performance commonly known as

Braess’s paradox [8–10].

According to the findings in the literature, identifying

such critical roads faces two main challenges: computa-

tional efficiency and theoretical development [11]. To cope

with such difficulties, we proposed a heuristic method

inspired by sensor (loop detector) location problem (SLP)

[12]. The SLP basically stands for finding the minimum

number and location of counting posts (in traffic count

survey) in order to infer all traffic flows in a transport

network. The widely accepted solution for the SLP is

finding roads which can represent a broader range of ori-

gin–destination (OD) travel demand. This method is known

as OD demand coverage based on which our heuristic

method for identifying the Achilles-heel roads is devel-

oped. To this end, roads with maximum travel demand

coverage are sorted as the most critical one, for which a

method widely popular among practitioners known as ‘‘link

analysis’’ is adopted. The proposed methodology is applied

to a large-sized network of Winnipeg, Canada. The results

shed light on also bottleneck points of the network which

may warrant provision of additional capacity or parallel

roads. These roads can also be considered as best possible

locations for petrol station or police checkpoints since they

represent the maximum number of vehicles passed through.

The impacts of the roads closure are simulated based on

user-equilibrium traffic assignment for which the following

assumptions—widely used in the literature—are made:

(a) travel demand is fixed and quantified as a single matrix,

(b) commuters have a perfect understanding of the travel

time, (c) neither demand nor travel time changes over time.

In other words, we solve for a static and deterministic traffic

assignment problem (TAP) subject to a fixed travel demand.

However, by relaxing one or some of the above-mentioned

assignment—which resulted in stochastic, dynamic and

variable travel demand methods—one can increase the

realism and fidelity of the traffic simulation at the costs of

additional computational times as well as some other com-

putational complexities. Nevertheless, the consensus in the

literature is to resort to the above-mentioned assumptions.

The rest of the article is organized as follows. Section 2

contains a literature review. Section 3 discusses the

methodology. Section 4 presents numerical results of two

case studies: Gao’s test network and a large-size network

of Winnipeg, Canada. Conclusion remarks are provided in

Sect. 5.

2 Literature review

In this section, we provide a review of the studies related to

the concepts of vulnerability followed by the literature

related to the SLP.

The subjects such as vulnerability, robustness, flexibility

and resilience do not have a clear demarcation and defi-

nition [4]. Recent thorough reviews have been made by

[4, 13–15]. Given the extensive breadth of the research, in

the present review, we seek only the most recent takes of

the literature on the subject of critical roads.

Most of the previous studies are conceptual methods on

vulnerability lacking a holistic approach to quantifying and

evaluating the vulnerability of transportation networks.

Rosenkrantz et al. [16] suggest the idea of a ‘‘Structure-

Based Resilience Matrix’’ to measure the vulnerability/re-

silience of networks’ components. Scott et al. [17] used

network flows, link capacity and network topology to

develop a network robust index measure. Leu et al. [18]

used a network analysis to measure the robustness con-

sidering physical features of the network. Mattsson and

Jenelius [19] provide an overview of recent research on

vulnerability and the resilience of transport systems.

The consensus in the literature is to investigate the

vulnerability based on the network topology [20, 21]. de

Oliveira et al. [22] investigated two performance attributes

of road networks, reliability and vulnerability and discuss
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the indicators found in the literature. The results show that

the vulnerability indicators are more strongly affected by

the characteristics of alternative routes. Aided by geogra-

phy information systems (GIS), Kermanshah and Derrible

[23] developed a data-driven approach to determining

vulnerable locations in road networks with respect to land

use information, demographic data and travel demand as

well as some topological indicators. Similarly, Thekdi and

Joshi [24] describe a scenario-based Bayesian approach to

evaluate evidence from big-data resources, such as geo-

graphical landscape and demographic data, to identify

vulnerable sections of the transportation network.

The plethora of the relevant studies can be divided into

two groups: (a) A vast number of studies only consider

topological characteristics of networks, such as accessi-

bility, connectivity, shortest path [25–30]. What is missing

in such approaches is the dynamic of the flow on the net-

work. (b) Other studies are primarily concerned with the

dynamic characteristic of flow such as commuters’ route

choosing behavior in the road network [1, 20, 31]. This

study obviously belongs to the second group.

The critical roads sometimes are dealt with in the con-

text of vulnerability or via resilience or through robustness

and fragility. The consensus is to examine removals of the

roads to find their impacts on the respective network. The

roads are then attributed with an index based on which the

critical ones are flagged [1, 32, 33]. Conforming to the

aforementioned classification, there are also two major

categories of indices to measure the overall performance of

the network (also known as a measure of effectiveness):

functional and topological [4]. The flow dynamic as an

overall network performance index is largely formulated as

changes in total travel time [4, 31].

Similarly, Jenelius et al. [3] elicited a number of link

importance indices and site exposure indices based on the

increase in generalized travel cost when links are closed.

These measures are divided into two groups: one reflecting

an ‘‘equal opportunities perspective’’ and the other a ‘‘so-

cial efficiency perspective’’ pertaining to the connectivity

and weighted by travel demand, respectively. The gener-

alized travel costs are measured based on the Dijkstra’s

shortest paths algorithm, and it is called ‘‘dynamic shortest

path algorithm.’’ In other words, the effects of the traffic

congestions arising from the disruptions (road closures) are

yet to be taken into account.

Albert et al. [34] investigated a class of in homoge-

neously wired networks called scale-free networks, which

include the worldwide web, the Internet, social networks,

cells as well as road networks. They found out that in

response to random failures such networks exhibit an

unexpected degree of robustness, to the extent their overall

operations become unaffected. However, these networks

are extremely vulnerable to targeted attacks aiming at a

few links or nodes that play a vital role in maintaining the

network’s connectivity. A similar observation has also

been reported by [35]. They have also displayed that

malfunctioning of a single component of a network can

generate a cascading effect, thus causing the entire network

to collapse.

Wu et al. [36] have extensively studied the cascading

effects of a number of failures’ scenarios. In contrary to the

previous studies, the congestion effects of the failures’

scenarios are fully taken into account based on the user-

equilibrium (UE) traffic assignment. They displayed that

two removal schemes flow-based and betweenness-based

inflict the highest disruption compared to other removal

scenarios (betweenness is an indicator of a node’s cen-

trality in a network, and it is equal to the number of shortest

paths that pass through the respective node).

As the literature review indicates, though the road net-

works are resilient to random or natural failures, they are

highly fragile to targeted attacks; that is why, we refer to it

as Achilles-heel phenomenon.

The SLP has been found to be of the utmost difficult

problems known as NP-hard [37–39]. The SLP has been of

great interest to electrical engineering as well as computer

science for which a number of different methods are pre-

sented [40–45]. Given the fact that SLP is NP-hard, the

heuristic methods are deemed valid [46, 47]. Yang and

Zhou [47] proposed four heuristic methods including

maximal flow fraction, OD demand coverage. Some

researchers consider geographical and/or topological dis-

aggregation of link flows to place the sensors [38, 48, 49].

Zhang et al. [50] proposed a genetic algorithm hybridized

with simulated annealing to find appropriate traffic count

posts to monitor network’s traffic flow. Viti et al. [41]

provide a solution for the SLP by minimizing a measure of

information loss of partial observability. Morrison and

Martonosi [51] establish a necessary condition on the

location of the sensors to enable the traffic flow to be

computed. Larsson et al. [12] present a review of the

solution methods of the SLP in the literature and appoint

the OD demand coverage (ODDC) as a favorable method.

Based on the literature review, the following can be

concluded. The road networks are shown to be of scale-free

[52] that is there is a few, but a significant number of nodes

with a lot of connections, whereas there are a high number

of nodes with very few connections. This feature emerges

from the fact that networks expand continuously by the

addition of new nodes, and new nodes attach preferentially

to nodes that are already well connected [53]. This is a

clear definition of the road networks. Given the fact that the

scale-free network is defenseless to targeted attacks, it is of

the highest importance to flag these failures which are the

mandate of the current study. To this end, the failure is

defined as a number of drivers affected by targeted attacks
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which in turn calls on the SLP. There are a number of

methods proposed for the SLP out of which the OD

demand coverage is adopted in our research. Furthermore,

we will discuss that the OD demand coverage implies the

two most detrimental removal scenarios: flow-based and

betweenness-based.

3 Methodology

Before proceeding to the next sections to discuss the

phased methodology, let us introduce all the notations used

in this article as presented in Table 1.

In this section based on the OD demand coverage cri-

terion, a set of highly demanding roads are identified. To

put it plainly, the candidate roads must be of highest

importance. Such interpretation gives birth to a whole

different problem in transportation in which traffic count

posts for OD estimation (ODE) are sought. The task of

ODE is centered on adjusting an outdated OD demand data

based on a recently compiled traffic count of ‘‘some

selected count posts.’’ Obviously, the traffic count posts are

placed on the road. Evidently, traffic survey and the count

are a costly job, and hence, it is not possible to have traffic

counts on all roads. Now the question to be first answered

is: Which roads must be selected as count posts to be used

in the ODE? It is also a valid answer to the SLP.

The ODDC can be mathematically formulated as fol-

lows [12]:

ODDC½ �max
X

r2R
qr � kr; ð1Þ

s:t:
X

a2A
Par � la� kr r 2 R; ð2Þ

X

a2A
la ¼ �n; ð3Þ

kr 2 0; 1f g; la 2 0; 1f g; r 2 R; a 2 A; ð4Þ

where the road network is denoted by a set of links, A, and

a set of OD pairs, R. The travel demand of OD pair r 2 R is

represented by qr. For every road in the network a 2 A and

each OD pair r 2 R, we consider binary decision variables

la and kr: If a sensor is allocated, la = 1 and la = 0

otherwise; if sensors capture any trips pertaining to the

respective OD pair, kr = 1 and kr = 0 otherwise. Fur-

thermore, Par is a matrix of the size of |A| 9 |R| with

binary entries: Par = 1 if traffic volume on a 2 A entails

any trips pertaining to r 2 R and Par = 0 otherwise. The

Table 1 Notation glossary used in this manuscript

Symbol Description

ODE Origin–destination estimation

ODDC Origin–destination demand coverage problem to be solved in phase 1

SLP Sensor (loop detector) location problem

A* Set of flagged roads as candidate roads deemed critical found at phase 1

A Sets of all roads including the candidate roads (i.e., A , A*)

N Set of nodes of the road network, representing, junctions

xa Traffic volume (in passenger car unit-pcu) on the road a 2 A

ta(xa) Travel cost or time of the road a 2 A, defined by a non-decreasing BPR function of the traffic volume of the respective road xa (called

delay function)

A�n ;A
þ
n Set of links starting and ending at node n 2 N, respectively; A�n ;A

þ
n � A

R Set of origin–destination pairs, R , N 9 N

qr Travel demand in pcu for origin–destination r 2 R

qar Partial trips belonging to OD trips qr traversing the road a 2 A

Pr Set of paths between origin–destination r 2 R

hp Traffic flow (in pcu) on path p 2 Pr, r 2 R

kr It is 1 if sensors (placed on the flagged road) capture any trips pertaining to OD r 2 R and 0 otherwise

Par It is a matrix of the size of |A| 9 |R| with binary entries: Par = 1 if traffic volume on a 2 A entails any trips pertaining to r 2 R and

Par = 0 otherwise

la It is 1 if road a 2 A is flagged to be allocated a sensor and 0 otherwise

�n A pre-specified value for the total number of flagged roads to be found as Achilles-heels: �n ¼ jA�j
�x A pre-specified value for the residual traffic flow

z The Beckmann objective function to be minimized

dpr;a Link-path incidence (1: if link a belongs to path p between origin–destination r, and 0 otherwise)

f pr The traffic flow on the path p between origin–destination r 2 R

4 S. A. Bagloee et al.
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number of sensors to be allocated to roads is denoted by �n.

In the end, a number of selected roads to be equipped with

sensors constitute the set of flagged roads A* , A hence

�n ¼ jA�j.
As discussed before, the SLP is proven to be NP-hard. In

order to streamline such difficulty (especially in facing

with real-sized networks), we adopt an intuitive and

heuristic approach based on a popular practice among

practitioners known as ‘‘select link analysis’’ or ‘‘flow-

bundle’’ [54] in which, traffic volume seen on a road is

traced back and forth to its origins and destinations. In

other words, a subset of the OD demand corresponding to

the traffic volume of the respective road is first skimmed

off and it is then highlighted in the traffic volume plot. By

doing so, the trace of the target traffic volume will be

shown on the network. The method is carried out in an

iterative course. Given a network with the result of the

traffic assignment, in each iteration, a road with highest

traffic volume is flagged for the sensor. The flagged road is

then subjected to the flow-bundle procedure to retrieve the

corresponding OD trips, and we call it flagged trips. For the

next iteration, the OD demand is first shaken off the flagged

trips, and it is then used for a new traffic assignment (better

to be called ‘‘partial traffic assignment’’).

The static, deterministic traffic assignment problem is

traditionally formulated based on the Wardropian princi-

ples, that is, drivers choose the shortest paths:

min zðxÞ ¼
X

a2A

Z xa

0

taðxaÞ dx; ð5Þ

s:t: :
X

p

f pr ¼ qr r 2 R; ð6Þ

f pr � 0 p 2 Pr; r 2 R; ð7Þ

xa ¼
X

i

X

k

X

p

f pr � d
p
r;a a 2 A; p 2 Pr; r 2 R; ð8Þ

where z the Beckmann objective function to be minimized;

f pr the traffic flow on the path p between origin–destination

r 2 R; dpr;a a link-path incidence (1: if link a belongs to the

path p between origin–destination r, and 0 otherwise)

[55, 56]. The rest of notations have already been intro-

duced. The TAP is solved iteratively such that in each

iteration links’ travel times are updated based on the con-

gestion level and it carries on until the difference of the

values of the objective functions in two successive itera-

tions becomes negligible.

Compared to the first traffic assignment effort, this new

(partial) traffic assignment can be computed much more

efficiently: Any solution algorithm for a TAP needs to start

with a feasible solution (traffic volumes on roads for

{xa, a 2 A}). In an iterative fashion, links’ travel times ta
and traffic volumes xa are updated until a satisfactory

convergence criterion is met (the travel times are updated

to also update the shortest paths).

For a new traffic assignment, in the absence of any

information the algorithm initiates based on the free-flow

travel time (called all-or-nothing traffic assignment). If

there were a prior knowledge of the travel times close to

those of the final optimal solution, then less number of

iterations would be needed to meet the convergence

criterion.

In the partial traffic assignment, this prior knowledge

exists as discussed in the following. First, the xa from the

previous traffic assignment is taken off from the OD travel

demand, while the links’ travel times remain intact which

is also corresponding to those of the optimal solutions

found in the first traffic assignment. This is because when a

portion of trips is taken off the road network, we do not

want to see any changes on drivers’ routing behavior (still

remaining in the road) for tracing the next round of trips.

Hence, solving the new traffic assignment can be termed as

‘‘partial’’ traffic assignment. The process carries out until a

certain number of flagged roads are obtained or residual

traffic volume of the network becomes insignificant. An

Start 

Initialize 
 : maximum number of flagged roads; 
 :  maximum residual traffic volume; 
 : set of collected roads flagged. 

Carry out complete traffic assignment 
over network and OD demand  

find road  with maximum traffic volume 

Elicit traffic volume on all roads 

Carry out “flow-bundle” for  the 
road , to find corresponding 
flagged OD trips: 

Carry out “partial traffic assignment” ,

flag

Save 

Trim the OD demand

If  and 

If   

Find maximum residual flow

End

No

yes

Fig. 1 Flow-bundle algorithm for the SLP
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algorithmic exposition of the method is provided as follows

(a pictorial presentation of the algorithm is also provided in

Fig. 1):

Step 0: Set two target values for terminations: (a) �n:

number of flagged roads to allocate sensor, (b) �x:

maximum residual traffic volume. Initialize set A*

designated to the roads flagged as selected for sensors.

Given network A and OD demand {qi, i 2 I}, carry out

traffic assignment to get traffic volume on all roads

denoted by {xa, a 2 A};

Step 1: Find a road a with maximum traffic volume (i.e.,

{xa = max(x‘), ‘ 2 A}) and add it to the flagged set

(a ? A*). Carry out ‘‘flow-bundle’’ for the road a, and

find the corresponding flagged OD trips denoted by

qar , r 2 R. Subtract the current OD demand from the

flagged trips (i.e., qr  qr � qar , r 2 R). Save
P

r2R q
a
r ,

as the ODCD of the road a. Now execute a partial traffic

assignment.

Step 2: Find number of flagged roads and maximum

residual traffic volume; if they are less than the target

values (�x and �n) and then go to step 1; otherwise,

terminate the algorithm.

The outcomes of the algorithm are the flagged roads for

the sensor. We specify values of the target number of

flagged roads and maximum residual traffic volume (�x and

�n) in the undertaken case studies. By now the flagged roads

are found. The order at which there are flagged as well as

their corresponding OD coverage volumes shows their

criticalness degree.

As the literature review indicates, the flow-based and

betweenness-based removal schemes are more detrimental

and disruptive to the networks’ performance. The OD

demand coverage method as implemented above (based on

the link analysis) obviously bears traits of these two

schemes. It is evidently flow-based because at each itera-

tion the road with highest traffic flow is flagged and taken

out of the network. Since a new traffic assignment problem

is solved for each iteration and hence a new set of the

shortest paths are calculated, the algorithm implicitly

considers the betweenness (note that the betweenness refers

to a total number of shortest paths passing through a

respective node).

4 Numerical evaluations

In this section, we first examine the proposed methodology

over a network similar to the Gao’s 12-node network [57].

The Gao’s network is readily available in the literature and

is being used by the researchers as a common currency or a

common benchmark network to exchange their findings.

Therefore, the results reported in this paper can then be

referred and examined in further studies. We then under-

take a large-sized network of Winnipeg as a challenging

case study to display applicability of the proposed

methodology. All delay functions associated with the links

conform to BPR-type.

As for the computational technology, we employ a

desktop computer with Intel(R) Xeon(R) 3.70 GHz and

64.0 GB RAM. The algorithm is coded in EMME 3 using

‘‘macro’’ the software’s programming language.

Parameters setup of the algorithm is as follows:

• The relative gap needed by Frank–Wolfe algorithm to

solve a traffic assignment is conservatively considered

to be 0.0001 [58];

• As for the number of candidates in Phase 1, one can

carry out the process until the maximum traffic volume

left on the roads becomes insignificant. For instance,

the capacity of a local road can be a good criterion for

being insignificant. Regardless, a pre-specified capped

number can also be considered. For instance, for the

Winnipeg case study, we intentionally extended the

number of candidates to 100 flagged roads, by which

the maximum traffic volume left on the network was

found 50. By doing so, we wanted to challenge the

performance of the proposed algorithm at such an

extreme condition.

4.1 Example 1: Gao’s network

Figure 2 illustrates the example network developed by Gao

et al. [57], where the delay functions conform to ta ¼
�ta þ 0:008x4

a (note: �ta is free-flow travel time and is shown

in Fig. 2). The OD travel demand is also presented in

Fig. 2 which is fairly different from the original Gao’s

network. The algorithm runs until the residual flow on the

network becomes zero which results in 12 (out of 16)

flagged roads.

The flagged roads are found as follows (start node-end

node): 5–6, 7–8, 6–10, 1–5, 4–8, 3–7, 5–9, 8–12, 6–7,

10–11, 2–6, 2–3; These roads are sorted in descending

order based on their respective total demand coverage

which are 6.28, 3.79, 3.34, 2, 2, 1.31, 1, 0.98, 0.91, 0.67,

0.24, 0.07. As can be seen, in early stages one can observe

significant decreases in the demand coverages.

4.2 Example 2: Winnipeg large-size network

The large-sized road network of the city of Winnipeg,

Canada, widely used in the literature [59] is undertaken for

the numerical test here as well. This dataset has also been

6 S. A. Bagloee et al.
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provided in the EMME 3 [60]. The road network is com-

prised of 154 zones, 943 nodes and 3075 directional links.

Given a high number of roads, the algorithm runs for 100

iterations to find 100 flagged roads.

Figure 3 along with Table 2 shows the locations and

characteristics of the flagged roads. In addition to the OD

coverage, other characteristics of the roads including free-

flow speed (ffs), length, capacity, free-flow travel time (t0)

and travel time are also provided in Table 2. As can be

seen in Fig. 3, the critical roads are largely flagged on the

main roads and roads surrounding the CBD.

Figure 4 depicts how OD demand coverages vary over a

descending order of the flagged critical roads. The fig-

ure shows a deep reduction in the first 10 roads and a very

slight slope in the rest of the roads. Hence, these 10 roads

must be pinpointed for further investigations and actions

OD demand matrix:  
O      D 8 9 10 11 12 
1 1 1 1 1 1 
2 1 0 1 1 1 
3 1 0 0 1 1 
4 1 0 0 0 1 
5 1 1 1 1 1 

Remarks: values on the roads are free flow 
travel time denoted by in the delay function 

Fig. 2 Gao’s test network

Fig. 3 Winnipeg network: locations of 100 roads found as flagged roads and traffic volume of the no-disruption scenario
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such as preparing mitigation plans, reinforcement measures

and.

5 Conclusions

In this study, we developed a heuristic methodology to find

the most critical roads whose closures are devastating as if

they act like Achilles-heel, and bring the entire network to

a halt. The Achilles-heels is unfortunately in the genes of

the road networks since they are proven to be of the scale-

free networks that are the networks highly vulnerable to

selected and targeted disruptions or attacks.

To this end, a set of roads which represent the travel

demand the most are deemed to be critical are flagged. To do

so, we borrowed the notion of sensor (loop detector) location

problem which is proven to be of utmost difficult problems in

terms of computational expenses. Such difficulties con-

vinced us to resort to a heuristic methodology based on the

concept of the maximum OD coverage which is already

found as a favorable method for the SLP in the literature.

According to the OD coverage method, highly

demanding roads (those that cover the travel demand the

most) are found, for which we employed ‘‘link analysis’’:

method—a popular tool for practitioner in traffic impact

studies. We applied the algorithm to the Gao’s test network

and a real network of Winnipeg, Canada.

The main contribution of this study can be attributed to

the way the OD coverage method is implemented in which

the two most detrimental removal scenarios (i.e., flow-

based and betweenness-based) are considered in one go.

Moreover, in terms of the computational expenses, the

proposed methodology provides highly efficient methods

much owed to the adoption of the partial traffic assignment.

The results can be found of the highest importance to the

traffic authorities in their quest to protect the road networks

against targeted disruptions which would have cascading

disruption across the system.
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Fig. 4 Winnipeg test, a variation of OD demand coverage over the
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The subjects such as critical roads, robustness and

resilience are seeing interest from different stakeholders

such as authorities, practitioners and academia. Knoop

et al. [33] have reviewed a variety of research and have

assessed the quality of the outcomes. They found there is

no consistency in the outcome. Such inconsistency and

uncertainty have also reported by others [13]. Future

studies can direct to first establish a consensus in defini-

tions of these themes and their implications. The authors

are currently studying on a global index to measure the

robustness (or adversely fragility) of the network. Similar

indices can be developed for other subjects. We are also

working to find critical scenarios (rather than critical roads)

which might consist of critical and non-critical roads. In

other words, there can be some non-critical roads; if they

become closed at the same time, the network becomes a

gridlock Bagloee et al. [61].
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