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Abstract The version of Bohmian mechanics in relativistic space–time that works best, the hypersurface Bohm–
Dirac model, assumes a preferred foliation of space–time into spacelike hypersurfaces (called the time foliation)
as given. We consider here a degenerate case in which, contrary to the usual definition of a foliation, several leaves
of the time foliation have a region in common. That is, if we think of the time foliation as a 1-parameter family of
hypersurfaces, with the hypersurfaces moving towards the future as we increase the parameter, a degenerate time
foliation is one for which a part of the hypersurface does not move as we increase the parameter. We show that the
hypersurface Bohm–Dirac model still works in this situation; that is, we show that a Bohm-type law of motion can
still be defined and that the appropriate |ψ |2 distribution is still equivariant with respect to this law.

Keywords Bohmian mechanics · Foliation · Relativity · Probability flux

1 Introduction

The natural extension of Bohmian mechanics to relativistic space–time (flat or curved), known as the hypersurface
Bohm–Dirac model [3], makes use of a spacelike foliation of space–time into spacelike hypersurfaces, the “time
foliation”F ; it can be specified by a 1-parameter family of spacelike hypersurfaces �t , called “time leaves,” with t
an arbitrary parameter such that for t1 ≤ t2,�t2 lies in the future of�t1 . In terms of arbitrary space–time coordinates
x0, x1, x2, x3, �t can be specified by means of a function f (t, x1, x2, x3) as the set

�t = {(x0, x1, x2, x3)|x0 = f (t, x1, x2, x3)}; (1)

the function f is then increasing in the variable t , and the property that�t is spacelike corresponds to certain bounds
on the derivatives of f with respect to x1, x2, x3.
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350 W. Struyve, R. Tumulka

Fig. 1 An example of a
what we mean by a
degenerate foliation (here,
of 1 + 1-dimensional
space-time): some of the
leaves overlap in a region
(here, on the left). The
equations defining this
particular example are given
in “Appendix”

The degenerate case we consider in this note, shown in Fig. 1, corresponds to f having a plateau as a function
of t , i.e., that f is constant as a function of t on some interval [t1, t2],
f (t1, x

1, x2, x3) = f (t, x1, x2, x3) = f (t2, x
1, x2, x3) (2)

for all t ∈ [t1, t2] and all (x1, x2, x3) in some region A ⊂ R
3. In particular,

∂ f

∂t
= 0 (3)

for t ∈ [t1, t2] and (x1, x2, x3) in the relevant region A. Put differently, when we think of how �t moves through
space–time as we increase the parameter t , we allow that a part of �t does not actually move towards the future
but remains constant. That is, there is a piece of hypersurface common to all �t with t ∈ [t1, t2]. Note that such a
degenerate foliation cannot arise as the level sets of the 0th coordinate function of a space–time coordinate system
because some space–time points x lie on several �t (while any coordinate function would yield a unique value at
x). An explicit example of a degenerate foliation, defined by means of formulas, is provided in “Appendix”.

We show here that Bohmian mechanics still works for a time foliation that is degenerate in this sense. More
precisely, we show that the definition of the hypersurface Bohm–Dirac model can be extended to this case in such
a way that the |ψ |2 distribution is still equivariant. We also note that the Bohmian world lines typically have kinks
(jump-like changes of direction) when crossing a plateau of f , see Fig. 2.

While we are not suggesting that a degenerate time foliation actually occurs in nature, our result is useful for
considerations about the flow of probability, which can often be expressed in a particularly intuitive way in terms of
Bohmian trajectories. That is, if we think of moving a spacelike hypersurface around in space–time, corresponding
to a 1-parameter family �t , then probability will get transported around on �N

t in agreement with the Bohmian
motion, and this is still true if the family �t is degenerate. Thus, our result provides greater freedom in how the
hypersurfaces can be moved around, and it is sometimes desirable to push part of the hypersurface to the future
while keeping another part unchanged; see [9] for an application of this strategy outside of Bohmian mechanics.

Besides, our result also contributes to illustrating that the hypersurface Bohm–Dirac model is very robust in the
sense that it works in many variations of the original setting; previous results in this direction have shown that the
hypersurface Bohm–Dirac model also works in curved space–time [14], in space–times with singularities [15], and
for hypersurfaces �t that are not smooth but have kinks [11].

Our result also applies to Bohmian theories with a field ontology instead of a particle ontology and still applies if
we drop the assumption ∂ f/∂t ≥ 0, as we elucidate in Sect. 4. Moreover, also in the case thatF is not everywhere
smooth but has kinks, equivariance continues to hold. This phenomenon is discussed in detail in [11] for non-
degenerate foliations consisting of surfaces �t that are manifolds with kinks; the reasons described in [11] apply,
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Bohmian mechanics for a degenerate time foliation 351

Fig. 2 The same
degenerate foliation as in
Fig. 1, along with examples
of Bohmian world lines.
The latter typically have
kinks when crossing a leaf
in a region where the time
foliation is degenerate (i.e.,
where leaves overlap)

Fig. 3 Equivariance also
holds for this kind of
non-smooth, degenerate
foliation

in fact, equally when F is degenerate and/or when F involves a (continuous but) non-smooth succession of
hypersurfaces. As a consequence, equivariance still holds forF of the kind depicted in Fig. 3.

This note is organized as follows: in Sect. 2, we recall the definition of the hypersurface Bohm–Dirac model; in
Sect. 3, we extend the definition to the degenerate case and show that equivariance is retained; in Sect. 4, we collect
some remarks; in “Appendix”, we provide an example of a degenerate foliation.

2 The hypersurface Bohm–Dirac model

This model is defined for a non-degenerate (spacelike) time foliationF = {�t : t ∈ R} and N particles as follows
[3]. Let M denote space–time; readers may take this to be Minkowski space–time, but the model works also for
a curved space–time. The wave function ψ : M N → (C4)⊗N evolves according to a system of non-interacting
multi-time Dirac equations (c = 1 = h̄)

iγ μ
k

(
∂kμ − ieAμ(xk)

)
ψ = mkψ (4)

for all k = 1, . . . , N , with ∂kμ = ∂/∂xμ
k , γ

μ
k = 1⊗· · ·⊗ 1⊗ γ μ ⊗ 1⊗· · ·⊗ 1 with γ μ in the kth place, and where

Aμ is an external vector potential. Each of the N particles has a world line that is everywhere time- or lightlike (in
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352 W. Struyve, R. Tumulka

fact [12], almost everywhere timelike, except in very special situations), whose unique intersection point with �t

we denote by Xk(t). The law of motion reads

dXμ
k

dt
∝ jμk = (ψ[γ μ1 ⊗ · · · ⊗ γ μN ]ψ)(X1(t), . . . , XN (t)) δμ

μk

∏

j 	=k

nμ j (X j (t)) (5)

with nμ(x) the future-pointing unit normal vector to �t at x ∈ �t .
For any spacelike hypersurface �, we say “the |ψ |2 distribution” for the probability distribution on �N with

density, relative to the Riemannian volume measure on �N defined by the 3-metric on �, given by

ρ(x1, . . . , xN ) = (ψ[γ μ1 ⊗ · · · ⊗ γ μN ]ψ)(x1, . . . , xN )

N∏

j=1

n�
μ j

(x j ) (6)

for all x1, . . . , xN ∈ �, with n�
μ (x) the future-pointing unit normal vector to� at x ∈ �. The equivariance property

of the hypersurface Bohm–Dirac model asserts that if (X1(t0), . . . , XN (t0)) is |ψ2|-distributed on �t0 ∈ F , then
(X1(t), . . . , XN (t)) is |ψ |2-distributed on �t ∈ F for any t ∈ R.

3 The hypersurface Bohm–Dirac model for a degenerate time foliation

We postulate the following law of motion for the version of the model for a degenerate time foliationF = {�t : t ∈
R} specified by a function f as in (1), that is, we demand that f (t,R3) is a spacelike hypersurface �t and that
∂ f/∂t ≥ 0. For any k such that F is locally non-degenerate at Xk(t), i.e., such that

∂ f

∂t
(t, X1

k (t), . . . , X
3
k (t)) 	= 0, (7)

we keep (5) as the law of motion. For any other k, i.e., for any k such that F is degenerate at Xk(t), we set

dXμ
k

dt
= 0, (8)

which means that we do not move the point Xk in space–time when �t does not move at that point as we increase
t . This law is the obvious choice, as Eq. (5), with the proportionality factor made explicit, is of the form

dXμ
k

dt
= (nν j

ν
k )−1 n0 ∂t f jμk , (9)

[with nμ = (1,−∇ f )/(
√
1 − |∇ f |2)], which vanishes when ∂t f = 0; thus, Eq. (8) corresponds to keeping (9)

also at degeneracies. In other words, our law of motion for a degenerate time foliation is a limiting case of the usual
law (5) for a non-degenerate time foliation. Moreover, Eq. (8) is the only possible choice (compatible with our
parameterization of the world line defined by the relation Xk(t) ∈ �t ) that leads to world lines that are everywhere
time- or lightlike. [That is because, as t increases, we cannot have Xk(t + dt) in the future of Xk(t) if we want
it to be on �t+dt , and we cannot have it anywhere on �t+dt other than at Xk(t) if the curve Xk(·) can never be
spacelike.]

So it is obvious how to choose the law ofmotion, and the only question is whether this choice leads to equivariance
of the |ψ |2 distribution. We will show presently that it does. This result is perhaps not surprising, as the law of
motion is a limiting case of the law of motion for the non-degenerate case, which is known to lead to equivariance
[3,14].

To verify equivariance, we can revisit the equivariance proofs for the hypersurface Bohm–Dirac model given in
[3,14] and check that non-degeneracy is not necessary for the proof; we follow here [14]. Suppose that

C =
⋃

t∈R
�N

t (10)
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Bohmian mechanics for a degenerate time foliation 353

Fig. 4 Two cross-sections of the surface C as in (10) for the particular foliation shown in Fig. 1 in 1 + 1-dimensional space–time for
N = 2 particles; C is a surface of dimension (1N + 1) = 3 in M N , which has dimension (1 + 1)N = 4. To visualize C , we set
the coordinate x12 = const. and display the 2-dimensional surface in 3-dimensional space thus obtained. Left for x12 negative and |x12 |
sufficiently large (in fact, the figure does not depend on the value x12 as long as x

1
2 < −π/2). Right for x12 positive and sufficiently large

is a piecewise smooth (3N + 1)-dimensional surface inM N ; see Fig. 4 for an example. (We conjecture that there
are degenerate foliations for which C is smooth rather than merely piecewise smooth, i.e., for which C has no
kinks.1 However, our considerations do not require smoothness and work just as well with kinks.)

The probability current tensor defined by the wave function ψ ,

jμ1,...,μN (x1, . . . , xN ) = ψ[γ μ1 ⊗ · · · ⊗ γ μN ]ψ, (11)

can be transformed into a 3N -form J [14],

Jκ1λ1μ1...κNλNμN = εκ1λ1μ1ν1 . . . εκNλNμN νN jν1...νN , (12)

which is closed on M N and thus also on C . Like any 3N -form on a (3N + 1)-dimensional manifold, J defines a
field of 1-dimensional subspaces Sx1...xN on C , its kernels, (except at the points where J = 0, which are the points
where ψ = 0), and the integral curves of Sx1...xN are exactly the possible trajectories of the configuration on C as
defined in (5) and (8) above for the degenerate or non-degenerate case. These trajectories satisfy the wandering
condition [14] (i.e., they are not closed or almost-closed) because they intersect �N

t only once for every t . As a
consequence [14], J defines a measure μ on the set of integral curves of the field Sx1...xN that agrees with the
3N -form J on any 3N -surface in C , and thus in particular on �N

t . If C has kinks, then integral curves need to
be extended across kinks, that is, for an integral curve ending at a point (x1, . . . , xN ) on a kink of C , the integral
curve on the other side of the kink starting at (x1, . . . , xN ) should be regarded as its extension. For almost every
kink point, the extension is unique, and μ is consistently defined on the set of extended integral curves [11]. The
measure μ is normalized (i.e., is a probability measure) because ψ is normalized on each of the �N

t (because it is
normalized on �N for any spacelike Cauchy hypersurface � inM ). On surfaces �N

t , μ is the “|ψ |2 distribution”
(6), and so this distribution is equivariant.

To sum up, non-degeneracy is not needed for equivariance.

1 We have two reasons for this conjecture. First, it seems that degeneracy, although it violates the standard definition of a foliation,
should not disturb the smoothness of C because degeneracy corresponds to a certain property about the directions tangent to C : ifF is
degenerate around, say, �t at xk ∈ �t , then T(x1...xN )C ⊆ Txk�t ⊕ ⊕

j 	=k Tx jM , where Tx M means the tangent space to the manifold
M at the point x . The point is that this property has nothing to do with smoothness. Second, we believe that the example in “Appendix”
can be so modified as to have smooth C at the expense of greater complexity of the example.
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354 W. Struyve, R. Tumulka

4 Remarks

1. Relation to no-signaling. Our result, that equivariance holds also for degenerate foliations, is related to the well-
known no-signaling theorem as follows. Let A be the region of degeneracy, i.e., the region on the hypersurface
�t that does not move as we increase t (the left region in Fig. 1), and let Ac

t be its complement in �t for
t ∈ [t1, t2]. It is a necessary condition for equivariance that the marginal distribution of |ψ�t |2 for the particles
in A does not change as we increase t . Indeed, if that condition did not hold, the |ψ |2 distribution could not be
preserved without moving the particles in A. Now that condition is more or less equivalent to the no-signaling
theorem: whatever external fields one experimenter chooses in Ac

t between �t1 and �t2 , they have no effect
on the distribution of, e.g., pointer particles in A. Alternatively, the no-signaling property is often expressed
by saying that the reduced density matrix ρA

t for A—obtained from the full quantum state on �t by tracing
out Ac

t—does not depend on t between t1 and t2 for any choice of external fields, ρA
t = ρA. The marginal

distribution referred to above is just the distribution with density 〈q|ρA|q〉, where q is any configuration in
A, i.e., the density is the diagonal of the position representation of ρA; so the t-independence of the marginal
distribution follows from the t-independence of ρA.

2. Kinks in the world lines (see Fig. 2). While the positions of the particles in the region A of degeneracy do not
change as we increase t from t1 to t2, the velocities may well (and will typically) change, in the sense that jμk
as in (5) changes with t for particle k in A (unless no particle outside A is entangled with particle k), and, as a
consequence,

lim
t↘t2

[
dXμ

k

dt

]
	= lim

t↗t1

[
dXμ

k

dt

]
, (13)

where [vμ] denotes the 1-dimensional subspace through vμ. [Equivalently, this relation is also true if [vμ]
denotes the unit vector in the direction of vμ, [vμ] = (vνv

ν)−1/2vμ, provided that the limiting direction is not
lightlike.] This means that the world line of particle k has a kink at the point X where it crosses A, with both
directions (into X and out of X ) being timelike or lightlike. Particles outside A (i.e., that do not pass through
the degeneracy) do not feature kinks.

3. No entering or leaving A. Since particles in A do not move, they obviously cannot leave A before t2. Conversely,
no particle that is outside A on �t1 can enter A between t1 and t2, as follows from the fact that the world lines
are everywhere time- or lightlike.

4. Particle creation and annihilation.We expect that the result of this paper, equivariance of |ψ |2 also for degenerate
foliations, extends to “Bell-type quantum field theories” [1,5,6], i.e., versions of Bohmian mechanics involving
particle creation and annihilation by means of stochastic jumps of the actual configuration in the configuration
space of a variable number of particles. These versions are formulated in [1,5,6] for a fixed Lorentz frame in flat
space–time. It should be straightforward to adapt them to a non-flat time foliation (also in curved space–time),
provided theHamiltonian can be defined for such a foliation; this will be possible in a natural way for an arbitrary
foliation if a multi-time evolution law for the wave function on the set of spacelike configurations is provided.
Such laws do not get along with an ultraviolet cut-off; on the formal level, such a law is described and discussed
in [8], while on the rigorous level, it may be possible to formulate such a law using interior–boundary conditions
[13]. The reason why these theories should work also with degenerate foliations is the following: they have a
law specifying the jump rate in terms of the wave function and the interaction Hamiltonian, where “rate” means
probability per time and should, therefore, be proportional to the thickness of the layer between �t and �t+dt

at the point where the particle creation or annihilation occurs. For a degenerate foliation, this thickness will
sometimes vanish, and, therefore, no creation or annihilation events should occur at such space–time locations.

5. Field ontologies. There also exist Bohmian approaches with fields as the actual configurations, rather than
particle positions (see, e.g., [10]). These approaches could similarly be formulated with respect to a degenerate
foliation. For example, for a scalar field, the guidance equation for a non-degenerate time foliation is of the
following form [4]:
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Fig. 5 The kind of world
lines arising if we allow �t
also to move backwards in
time, as explained in
Remark 6

x1

x0

dϕ(x)

dτ
= 1√

h
Im

(
1

��x

δ��x

δϕ�x (x)

) ∣∣∣
ϕ|�x

, (14)

where dϕ(x)/dτ = nμ(x)∂μϕ(x) is the directional derivative at x along the normal to the time leaf �x that
contains x , h is the determinant of the induced Riemannian metric on �x , ϕ|�x is the restriction of the field
configuration to the hypersurface �x , and ��(ϕ�) = 〈ϕ� |�〉, where |�〉 is the state vector in the Heisenberg
picture and where |ϕ�〉 is defined by ϕ(x)|ϕ�〉 = ϕ�(x)|ϕ�〉, for points x on �, with ϕ(x) the Heisenberg field
operator. In terms of the parameter t of the time leaves �t , Eq. (14) can be rewritten as

∂ϕ( f (t, x), x)

∂t
= ∂ f

∂t

[
n0

1√
h
Im

(
1

��t

δ��t

δϕ�t ( f (t, x), x)

) ∣∣
∣
ϕ|�t

+ uμ∂μϕ

]
, (15)

with x = (x1, x2, x3) and uμ the orthogonal projection of the timelike coordinate vector (1, 0, 0, 0) to the
tangent plane to �t at x = ( f (t, x), x), which can be written as uμ = δ

μ
0 − n0nμ; note that uμ∂μϕ is a

directional derivative along �t and thus known if ϕ�t is given.
2 If we take (15) as the guidance equation for ϕ

also in the case of a degenerate foliation, it implies that, at any point x = ( f (t, x), x) where the foliation is
degenerate (i.e., ∂ f/∂t = 0),

∂ϕ( f (t, x), x)

∂t
= 0, (16)

in analogy to (8). We expect that equivariance still holds, for the same reasons as for the particle ontology.
6. Generalization to a time foliation going backwards in time. We may even drop the assumption ∂ f/∂t ≥ 0 and

allow any smooth f function such that f (t,R3) is a spacelike hypersurface for every t . That means that, as we
increase t , �t may move towards the future in some regions, towards the past in others, and remain unchanged
elsewhere, with the regions changing with t . Again, we are not suggesting that a time foliation like that actually
occurs in nature, but it may be worthwhile noticing this mathematical possibility. The law of motion (5) can
naturally be adapted to this case by writing it in the form (9), which allows for ∂t f to be positive, negative, or
zero. When a world line reaches a point at which ∂t f changes sign, the world line will typically change sign of
its direction, as depicted in Fig. 5—an extreme kind of kink.
In this scenario, there is no longer a unique point of intersection between a world line and a time leaf �t ;
however, the 4N functions t �→ Xμ

k (t) that together form a (smooth!) solution of the ODE system (9) provide
an unambiguous choice of N points on �t for each t . For this configuration, the |ψ |2 distribution is again
equivariant. Indeed, consider, instead of C , the (3N + 1)-dimensional surface

2 To verify (15), note that ∂tϕ( f (t, x), x)) = ∂μϕ δ
μ
0 ∂t f , and δ

μ
0 = (1, 0, 0, 0) = n0nμ + uμ.
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C̃ =
⋃

t∈R
{t} × �N

t (17)

in the (4N + 1)-dimensional space R×M N (which is smooth if f is), and on it the closed 3N -form J defined
as in (12). Then the kernels of J form again a field of 1-dimensional subspaces on C̃ , the integral curves of
which are the solutions of the law of motion (9). Since the t variable is increasing along the integral curves,
they obey the wandering condition, and thus [14] the measure defined by J on �N

t (i.e., the |ψ |2 distribution)
is equivariant.

Acknowledgments Both authors acknowledge support from the John Templeton Foundation, Grant No. 37433. W.S. acknowledges
current support from the Actions de Recherches Concertées (ARC) of the Belgium Wallonia-Brussels Federation under Contract No.
12-17/02.

Appendix: Example of a degenerate foliation

Here is a specific example of an f function such that the foliation it defines according to (1) is degenerate. In fact,
this example is depicted in Figs. 1, 2, and 4.

Let a > 0, and let g : R → R be a smooth increasing function such that g(x) = −1 for x < −a, g(x) = 1 for
x > a, and dg/dx ≤ 1 everywhere; for example (depicted in Fig. 6), a = π/2 and

g(x) =

⎧
⎪⎨

⎪⎩

−1 if x ≤ −π/2

tanh(tan(x)) if − π/2 < x < π/2

1 if π/2 ≤ x .

(18)

Then we define f (t, x1, x2, x3) as follows: the function is actually independent of x2 and x3; for simplicity, we
write x instead of x1; f (t, x) is given by

f (t, x) =

⎧
⎪⎨

⎪⎩

(t + a) 12

(
1 − g(t + 2a)

) − 1 − g(x) if t ≤ −a

g(t)(1 + g(x)) if − a ≤ t ≤ a

(t − a) 12

(
1 + g(t − 2a)

) + 1 + g(x) if a ≤ t.

(19)

The graph of f is shown in Fig. 7. Note the plateau, f (t, x) = 0 for all (t, x) with −a ≤ t ≤ a and x ≤ −a.
Alternatively, if we define

f2(t, x) =

⎧
⎪⎨

⎪⎩

t + 1 − g(x) if t ≤ −2
1
2 t (1 + g(x)) if − 2 ≤ t ≤ 2

t − 1 + g(x) if 2 ≤ t,

(20)

Fig. 6 Graph of the function g defined in (18)
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Bohmian mechanics for a degenerate time foliation 357

Fig. 7 Graph of the
function f defined in (19).
The plateau f (t, x) = 0 is
visible on the left (for
−π/2 < t < π/2 and
x < −π/2)

then we actually obtain the same foliation parameterized differently, i.e., the hypersurfaces are labeled differently;
the labels are chosen such that f2(t, x) = t for x > a. The function f2 is not smooth, but the definition is
simpler.

The corresponding surface C is not smooth. For two particles, this can be seen as follows. First note that if
x12 > π/2, then f2(t, x12) = t . As such the intersection of C with a constant x12 hyperplane, which we denote by
Cx12

, is given by

Cx12
=

⋃

t,x11∈R
( f2(t, x

1
1), x

1
1 , t, x

1
2) =

⋃

x11 ,x02∈R
( f2(x

0
2 , x

1
1), x

1
1 , x

0
2 , x

1
2). (21)

Since ∂ f2(t, x)/∂t is not continuous for t = ±2 and x < π/2, Cx12
and hence C are not smooth. This is illustrated

in Fig. 4 on the right.
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