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Abstract This paper provides a simple and transparent proof of a new social choice
impossibility theorem. The Gibbard–Satterthwaite theorem and Arrow’s impossibility
theorem are straightforward corollaries.
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1 Introduction

One of the impossibility theorems introduced by Yu (2013) can help prove both
the Gibbard–Satterthwaite theorem (Gibbard 1973; Satterthwaite 1975) and Arrow’s
impossibility theorem (Arrow 1963) succinctly. In this paper, we offer a direct proof
of this theorem, which resembles Yu (2012) and employs the “pivotal voter” technique
devised and perfected by Barberá (1980), Geanakoplos (2005), and Reny (2001). We
comment on different approaches of establishing classical theorems in the last section.

2 The setup

The following terminology follows Yu (2013) closely.
A set of individuals N = {1, . . . , N } with N ≥ 2, each have some preferences over

M ≥ 3 alternatives A = {a1, . . . , aM }. Throughout the paper, we label individuals
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with n and number alternatives with i, j, k. Let P be the set of all possible relations
on M that are complete, asymmetric, and transitive, i.e., strict preference relations.1

A preference profile is an ordered list �� = (�1, . . . ,�N ) with �n∈ P for every
1 ≤ n ≤ N . All possible preference profiles form the collection PN .

Definition 1 (SCF) A social choice function F : PN → A assigns to each �� ∈ PN
a choice F( ��) ∈ A.

Definition 2 (SPF) A social preference function R: PN → P assigns to each �� ∈
PN a preference relation R( ��) ∈ P .

Several definitions facilitate communication.

Definition 3 For profile ��, ai dominates a j if ai �n a j for every n.

Definition 4 Two profiles �� and ��′ agree on {ai , a j } if ai �n a j is necessary and
sufficient for ai �′

n a j for every n.

Definition 5 A′ ⊂ A is at the top of �� if ai �n a j for every n, every ai ∈ A′, and
every a j ∈ A\A′. If in addition A′ = {ai , a j }, we call �� a {i, j}-runoff.

Definition 6 A runoff generating function Ti j : PN → PN brings A′ = {ai , a j } to
the top, keeping internal rankings of A′ and A\A′ intact.

3 The main theorem

Definition 7 (D) A SCF F is dictatorial if there exists a social choice dictator n such
that F( ��) �n ai for every ai 
= F( ��) and every ��.

Definition 8 (O) A SCF F is onto if F(PN ) = A.

Definition 9 (WP) A SCF F is weakly Paretian if ai dominating a j implies F( ��) 
=
a j for every i, j and every ��.

Definition 10 (CM) A SCF F is Condorcet monotonic if whenever �� and {i, j}-runoff
��′ agree on {ai , a j }, F( ��) = ai implies F( ��′) = ai .

This condition requires every social choice to be a generalized Condorcet win-
ner in that it has to win any runoff it enters that keeps intact its rankings against
the opponent. Losing a {i, j}-runoff prevents ai from winning any profile that agrees
with it on {ai , a j }, no matter what rule—for example, simple majority, super major-
ity, or weighted majority—determines the runoff outcome. In particular, if F( ��) =
ai , F(Ti j ( ��)) = ai by (CM). We often apply the contrapositive statement.

Lemma 1 (O) and (CM) imply (WP).

Proof Let ai dominate a j in ��. (O) ensures that F( ��′) = ai for some ��′. By (CM),
the choice remains ai for Tik( ��′), where k /∈ {i, j}, and further for Ti j (Tik( ��′)). Since

1 The proofs that deal with weak preferences are published on my personal website: http://sites.google.
com/site/neilningyu/.
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a j loses the {i, j}-runoff Ti j (Tik( ��′)) that agrees with �� on {ai , a j }, the choice for ��
cannot be a j . ��
Theorem 1 If a SCF F satisfies (O) and (CM), then it is dictatorial.

Proof Pick any ��′ with {ai } and {ai , a j } at the top. Swap the positions of {ai , a j }
sequentially from 1 to N . By (WP), the choice is either ai or a j , starting with ai and
ending with a j . The (i, j)-pivotal voter ni j is the first whose swap makes a difference.
By (CM), any two (i, j)-runoffs that agree on {ai , a j } select the same alternative, so
ni j is independent of which ��′ (with {ai } and {ai , a j } at the top) we start with.

1 . . . ni j − 1 ni j ni j + 1 . . . N

��′′ a j . . . a j ai ai . . . ai

� . . . �
ai . . . ai a j a j . . . a j

� . . . � ak ak . . . ak

��′′′ � . . . �
a j . . . a j a j ai . . . ai

� . . . � � . . . �
ai . . . ai ai a j . . . a j

� . . . � ak � . . . �

Consider depicted profiles ��′′ and ��′′′ with {ai , a j , ak} at the top, where columns
correspond to voters and squares mark possible positions of ak . The definition of
ni j informs us that F(Ti j ( ��′′)) = ai and F(Ti j ( ��′′′)) = a j , so F( ��′′) 
= a j and
F( ��′′′) 
= ai by (CM). For ��′′, the choice is ai , for (WP) rules out ak and others.
Hence, F(Tik( ��′′)) = ai , implying that in defining nik , no swap before ni j makes a
difference, i.e., nik ≥ ni j . But j and k are arbitrary, so ni j = nik , i.e., ni− refers to
the same individual.

Moreover, Tik( ��′′) and ��′′′ agree on {ai , ak}, so F( ��′′′) is not ak due to its loss
to ai in {i, k}-runoff Tik( ��′′). We are left with F( ��′′′) = a j , so F(Tjk( ��′′′)) = a j ,
demanding by (CM) that

a j �ni j ak implies F( ��) 
= ak . (*)

In defining n jk , (∗) says that no swap before ni j makes a difference, so n jk ≥ ni j or
n j− ≥ ni−. But i and j are arbitrary, confirming n j− = ni−. The single pivotal voter
can eliminate any alternative except her favorite by (∗). ��

4 Classical impossibility theorems

Given Theorem 1, we can prove the Gibbard–Satterthwaite theorem through a simple
lemma. Let (�′

n, ��−n) represent the new profile constructed by replacing the prefer-
ences of individual n in �� with �′

n∈ P .
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Definition 11 (SP) A SCF F is strategy-proof if F(�′
n, ��−n) 
= F( ��) implies

F( ��) �n F(�′
n, ��−n) for every n, every ��, and every �′

n .

This condition demands that an individual is worse off misreporting her preferences
whenever a misreport can influence the choice, so truth-telling is optimal.

Lemma 2 (SP) imply (CM).

Proof Let �� and {i, j}-runoff ��′ agree on {ai , a j }. Suppose that F( ��) = ai and
F(�′

1, ��−1) = ak for k 
= i . By (SP), ai �1 ak . Define ��′′ = (�′
1, ��−1). Given

�� = (�1, ��′′
−1), (SP) entails ak �′

1 ai . Since ��′ is a {i, j}-runoff, k = j , contradicting
the agreement of �� and ��′ on {ai , a j }. So F(�′

1, ��−1) has to remain ai . Likewise,
the process of updating �� to ��′ one by one keeps the choice unaltered. ��
Theorem 2 (Gibbard–Satterthwaite) If a SCF F satisfies (O) and (SP), then it is
dictatorial.

Proving Arrow’s theorem is equally simple.

Definition 12 (AD) A SPF R is Arrow dictatorial if there exists a social preference
dictator n such that ai �n a j implies ai R( ��)a j for every i, j and every ��.

Definition 13 (AU) A SPF R is Arrow unanimous if ai �n a j for every n implies
ai R( ��)a j for every i, j and every ��.

Definition 14 (AIIA) A SPF R is Arrow independent of irrelevant alternatives if when-
ever �� and ��′ agree on {ai , a j }, ai R( ��)a j implies ai R( ��′)a j .

Theorem 3 (Arrow’s) If a SPF R satisfies (AU) and (AIIA), then it is Arrow dictato-
rial.

Proof Given R, we can define a SCF F R that selects the alternative ranked highest
by R. F R obviously satisfies (O), because by (AU), F R( ��) = ai if only {ai } is at the
top. To see (CM), let �� and {i, j}-runoff ��′ agree on {ai , a j }. When F R( ��) = ai ,
ai R( ��)a j , so by (AIIA), ai R( ��′)a j . But ai R( ��′)ak for k /∈ {i, j} by (AU), so F R( ��′)
has to be ai .

Theorem 1 thus presents a social choice dictator n of F R . She is a social preference
dictator too. If ai �n a j , individual n dictates F R(Ti j ( ��)) = ai , so ai R(Ti j ( ��))a j

and by (AIIA) ai R( ��)a j . ��

5 Concluding remarks

The simplicity is no coincidence. Our main theorem employs assumptions that
are almost logically minimal (Yu 2013). Traditionally, people prove the Gibbard–
Satterthwaite theorem as a corollary of the Muller–Satterthwaite theorem (Muller and
Satterthwaite 1977). But the “monotonicity” condition assumed is more restrictive
than (CM), making it a weaker theorem than ours. Reny (2001) has to circumvent the
difficulty by giving parallel proofs of Arrow’s theorem and the Muller–Satterthwaite
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Proof of Arrow’s theorem and the Gibbard–Satterthwaite theorem 149

theorem. Mas-Colell et al. (1995) prove Arrow’s theorem first, but as a step toward
the Muller–Satterthwaite theorem, the construction of RF , a SPF derived from a SCF,
is necessarily more involved than that of F R . Building on these earlier works,2 our
framework offers an alternative way of unifying and teaching classical theorems.
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