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Abstract
Purpose of Review Despite advanced technologies to avoid corrosion of dental implants, the mechanisms toward the release 
of metals and their role in the onset of peri-implant diseases are still under-investigated. Effective knowledge on the etiopatho-
genesis of corrosive products and preventive strategies mitigating the risks for surface degradation are thus in dire need. 
This review aimed to summarize evidence toward biocorrosion in the oral environment and discuss the current strategies 
targeting the improvement of dental implants and focusing on the methodological and electrochemical aspects of surface 
treatments and titanium-based alloys.
Recent Findings Recent studies suggest the existence of wear/corrosion products may correlate with peri-implantitis progress 
by triggering microbial dysbiosis, the release of pro-inflammatory cytokines, and animal bone resorption. Furthermore, 
current clinical evidence demonstrating the presence of metal-like particles in diseased tissues supports their possible role 
as a risk factor for peri-implantitis. For instance, to overcome the drawback of titanium corrosion, researchers are primarily 
focusing on developing corrosion-resistant alloys and coatings for dental implants by changing their physicochemical features.
Summary The current state-of-art discussed in this review found corrosion products effective in affecting biofilm virulence 
and inflammatory factors in vitro. Controversial and unstandardized data are limitations, making the premise of corrosion 
products being essential for peri-implantitis onset. On the other hand, when it comes to the strategies toward reducing implant 
corrosion rate, it is evident that the chemical and physical properties are crucial for the in vitro electrochemical behavior of 
the implant material. For instance, it is foreseeable that the formation of films/coatings and the incorporation of some func-
tional compounds into the substrate may enhance the material’s corrosion resistance and biological response. Nevertheless, 
the utmost challenge of research in this field is to achieve adequate stimulation of the biological tissues without weakening 
its protective behavior against corrosion. In addition, the translatability from in vitro findings to clinical studies is still in its 
infancy. Therefore, further accumulation of high-level evidence on the role of corrosion products on peri-implant tissues is 
expected to confirm the findings of the present review besides the development of better methods to improve the corrosion 
resistance of dental implants. Furthermore, such knowledge could further develop safe and long-term implant rehabilitation 
therapy.
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Introduction

Since the introduction of titanium (Ti) dental implants in 
the 1960s by Branemark [1], the therapy with Ti-based den-
tal implants has evolved from an accidental experimental 
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discovery to a predictable standard of care for replacing 
missing teeth presenting a survival rate above 96% [2•]. This 
achievement is primarily due to the good mechanical proper-
ties as well as resistance to corrosion and excellent biologi-
cal performance of Ti, which are mainly led by their inherent 
ability to form a spontaneous Ti oxide layer after exposure 
to oxygen atmosphere (mainly  TiO2) [3]. Nevertheless, the 
biomaterials currently used for dental implant design are still 
far from perfect. Although the passivation provided by the 
nano-scale amorphous  TiO2 layer is well known to act as a 
protective barrier against corrosion in physiological condi-
tions (i.e., neutral pH), when dental implants are inserted 
into the complex in vivo oral environment, the constant 
exposure to acidic substances and microbial metabolites may 
proceed in reduced pH and consequent irreversible rupture 
of the passive film. Additionally, the  TiO2 barrier presents 
a poor tribological efficacy and can be easily removed/dis-
rupted under loading [4]. As such, the implant becomes 
more susceptible to electrochemical reactions between the 
surface and oral fluids, resulting in partial or complete dis-
solution of the metal [5•, 6–8].

The endurance of these corrosive factors over time, along 
with wear induced by implantation procedures (e.g., friction, 
micro-motion), is the process that can cause the undesired 
release of metallic ions and particles from the implant to 
the surrounding tissues. In consequence, it may eventually 
lead to severe biological complications such as peri-implant 
diseases and even systemic toxicity, in a worst-case scenario 
[9•, 10–12]. Importantly, recent reports have hypothesized 
the contribution of the Ti particles to the onset and progres-
sion of peri-implant bone loss. In fact, it has been pointed 
out by the 2017 AAP/EFP World Workshop on the Classifi-
cation of Periodontal and Peri-Implant Diseases and Condi-
tions [13•] as a potential risk factor for peri-implantitis but 
with no conclusive evidence based on the currently available 
data. Thus, from this standpoint and considering the current 
prevalence of peri-implantitis (about 57% at patient-level) 
[14•], studying the influence of corrosion-induced release 
of ions and particles as a driving factor for peri-implant 
diseases and early/late failure of dental implants remains 
clinically relevant. Additionally, even though the problem of 
corrosion of dental implants has been successfully addressed 
through innovative surface modifications and alternative bio-
materials using nobler metal alloys, the race for an ideal 
dental implant design capable of protecting the material 
from corrosion effects has disclosed numerous techniques 
and strategies that are stagnated in the bench, thus providing 
no consensus for a solid advance for clinical application.

Therewith, this review provides a close look at the avail-
able information regarding the corrosive factors/mechanisms 
of metal ions released from dental implants materials and 
their consequent biological side effects on peri-implant tis-
sue and systemic health. Furthermore, a compilation of key 

factors driving the anticorrosive effect of current surface 
modification techniques and metal alloys is presented, target-
ing a safer design of dental implants to ensure the long-term 
success of the implant rehabilitation therapy.

Search Strategy

A literature review focusing on the corrosion process of 
dental implants was undertaken aiming to answer the fol-
lowing focused question: “What is the current evidence 
toward the key factors influencing dental implants biocor-
rosion and driving the anticorrosive effect of implant surface 
modification techniques and titanium alloys?” For this, as a 
first step, two reviewers (B.E.N. and J.M.C.) searched for 
appropriate articles in the Pubmed (Medline) database using 
the combination of the terms “dental implants” OR “sur-
face treatments” OR “alloys” AND “corrosion” OR “elec-
trochemical” OR “degradation.” This was complemented by 
manual searches in peer-reviewed journals and snowball-
ing approach to identify additional relevant studies in the 
reference lists of included articles. Finally, after screening 
the potential eligible titles and abstracts that addressed the 
focused question, relevant findings from the included arti-
cles were integrated into the following writing topics, as 
appropriate.

Dental Implants Meet the Challenges 
of the Reactive Oral Environment

From the moment dental implants are inserted in the oral 
cavity, the fate of maintaining their physicochemical proper-
ties, especially the integrity of the protective  TiO2 passive 
layer against corrosion, is highly dependent on the chal-
lenging conditions of the hostile electrolytic oral environ-
ment [8]. Usually, the oral fluids (i.e., saliva, blood plasma) 
are characterized by the presence of organic and inorganic 
substances in combination with a pH buffering mechanism 
that regulates the hypotonic and physiological condition of 
the medium (pH between 6 and 7) [15, 16]; however, some 
factors such as microbial metabolites and corrosive sub-
stances can reduce the pH, turning the environment acidic 
and highly reactive to chemically attack the metallic surfaces 
[7, 17, 18].

Corrosive substances, such as  Cl−,  F−, and  H+, can be 
found in saliva, oral biofilms, prophylactic commercial for-
mulations (e.g., toothpaste, mouth rinses, cariostatic gels), 
and foods [19–21]. Remarkably, the influence of  F− ion 
concentration in the medium adversely affecting the corro-
sion resistance of titanium-based materials has been widely 
studied [20–24]. Beline et al., for example, showed that 0.2% 
sodium fluoride mouthwash reduced Ti corrosion resistance 
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regardless of the surface treatment (machined, sandblasted, 
or acid etching) compared to fluoride-free mouthwashes 
[24]. Similar findings were reported by Chen et al. [25], 
in which results demonstrated that the Ti corrosion resist-
ance decreased with the increasing concentration of fluoride 
(0–0.4 ppm  F−) in Hanks’ solution. That previous study also 
demonstrated the increase in surface roughness and accelera-
tion of Ti ion release, which was even more pronounced in 
an acidic environment (pH 7.3 vs. 5.0) [25]. It is suggested 
that these corrosion results are mainly due to the formation 
of hydrofluoric acid (HF) from fluoride ions when the aque-
ous environment is acidified by eating habits or microbial 
metabolites  (F− +  H+ → HF). HF is a well-known weak acid 
strongly reactive to metals because it has chemical character-
istics prone to induce the breakdown of the  TiO2 protective 
layer  (TiO2 + 4HF →  TiF4 +  2H2O) [26], thus promoting 
not only the degradation but also the discoloration of the 
metal surface due to the generated fluoride-titanium com-
pounds (e.g.,  TiF4(TiF6)3−) [27].

Concurrently, besides the local acidification induced by 
foods and beverages, oral bacteria’s promotion of acidic 
environment has been considered one of the major and 
intriguing causes to decrease the corrosion resistance of Ti 
[17]. The mechanism from which the microbial corrosion 
process occurs starts as soon as dental implants are inserted 
in the oral cavity. From this moment, not only the outer 
implant surface but also the micro gaps between the implant 
and abutments are immediately covered by protein-rich fluid 
pellicle—saliva and blood—that has remarkable specific-
ity to bacterial components, thus promoting the adhesion of 
bacteria to these surfaces [28, 29]. As the biofilm develops, 
oxidation reactions due to bacterial acidic metabolites and 
oxygen level deficiency may occur between the biofilm-cov-
ered Ti surface (cathodic area) and the exposed Ti (anodic 
area), increasing the corrosion rate of the implant material 
[17]. Additionally, biofilm decontamination by mechanical 
debridement and chemical methods, such as citric acid rub-
bing, may also induce Ti release from the implant surface 
[30, 31].

In a nutshell, it is important to highlight that regardless 
of the etiologic factor driving the corrosion on Ti, bacterial 
cells and physicochemical factors act synergically for the 
implant surface degradation. For example, because biofilm 
development is influenced by the low pH microenvironment, 
the promotion of local acidification by modulating factors 
such as external acidic substances (e.g., foods, caffeine, coti-
nine, and nicotine) [4, 32, 33] and microbial components 
such as lipopolysaccharides [34] may accelerate the micro-
bial corrosion process of Ti.

Furthermore, it is important to highlight that the literature 
has been increasingly reporting other chemical and biologi-
cal substances to reduce implant corrosion, and it should not 
be neglected. Notably, Sousa et al. recently demonstrated 

that hydrogen peroxide  (H2O2) concentration in mouthwash 
was able to reduce the corrosion resistance of Ti6Al4V alloy 
under dynamic conditions simulating the hygiene protocol 
usually indicated in post-surgical implant placement [35]. 
Accordingly, other studies focusing on the role of  H2O2 as 
a by-product of the peri-implant inflammatory process also 
demonstrated a reduction of implant corrosion stability [21, 
36]. Yet, in a most unfavorable environmental condition, 
combining three oxidative agents  (H2O2, lactic acid released 
from bacteria, and fluoride), the corrosion of the Ti surface 
considerably increased compared to the results of these sub-
stances alone [21]. In the same way, some studies have also 
assigned the role of albumin, the most abundant protein in 
blood plasma, to reduce the kinetic of Ti surface passivation 
and accelerate the dissolution of the material [36, 37].

Altogether, these physical, chemical, microbiological, 
and inflammatory corrosion processes promote the surface 
damage of dental implants and the release of corrosion by-
products that may adversely alter the microenvironment 
conditions of peri-implant tissues, leading to cytotoxic and 
inflammatory reactions. Further, such event compromises 
the success of dental implant rehabilitation therapy.

Biointerface‑Safety of Corrosive Products 
on Oral/Systemic Health—Should We Care?

With the growing aging world population and its expectation 
for a predictable long-term dental implant therapy, know-
ing the factors that contributes to the success/failure of the 
rehabilitation is of utmost importance. Since one of the main 
concerns towards implant therapy is the high prevalence of 
peri-implant disease [14•], unraveling the onset and pattern, 
as well as the risk factors for disease progression, remains 
clinically relevant. For instance, because it has been evi-
denced that metallic corrosive products are not fully bioin-
ert; multiple studies have been raised concerns regarding the 
potential of wear and corrosion products to induce adverse 
biological reactions not only locally in the surrounding peri-
implant tissues but also systemically throughout the human 
body [5•, 9•, 18, 33, 38•, 39].

Once corrosion products are released from the implant 
surface due to mechanical (wear particles/debris), elec-
trochemical (corrosion-related free metal ions, organome-
tallic complexes, and salts), and/or combination of both 
mechanical and electrochemical processes (i.e., tribocor-
rosion), a series of biochemical reactions might be trig-
gered at the biointerface microenvironment [4, 38•, 40] 
(Fig. 1). In this context, several in vitro and pre-clinical 
experiments have demonstrated the role of Ti ions and 
particles to present toxic and/or pro-inflammatory effects 
[33, 41•]. In the case of mechanical wear, for example, 
Ti particles released by ultrasonic scaling of sandblasted 
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and acid-etched (SLA) surface induced a higher in vitro 
inflammatory response than the control LPS-treated 
human macrophages culture. In this case, a higher gene 
expression level of the pro-inflammatory cytokines IL1β, 
IL6, and TNFα was noted, probably because macrophages 
may have phagocytosed Ti particles [30]. Interestingly, 
such inflammatory response due to Ti phagocytosis is an 
event that has been reported to occur not only with mac-
rophages but also with neutrophil cells [33]. In addition, it 
seems that the macrophage-related expression of cytokine 
level may be directly dependent on the increasing concen-
tration of particles and the type of implant surface treat-
ment (machined, sandblasted, and SLA) [30]. Note that the 
in vitro cytokine level and in vivo bone resorption (mouse 
calvariae model) were more pronounced when particles 
were originated from sandblasted discs than from SLA and 

machined surfaces, probably due to differences in chemical 
profile and particle sizes [30].

Choi et al. [42] reported that the larger the particle size, 
the more the expression of receptor activator of nuclear fac-
tor κB ligand (RANKL), a dominant signal for osteoclast 
recruitment, and the proteolytic activities of matrix metal-
loproteinases (MMP) 2 and 9, involved in the degradation 
of bone matrix and mineralization. The authors also demon-
strated that although all particle sizes were able to induce the 
loss of implant integration with bone tissue in vivo (rat tibia 
model), large particle sizes (≥10.0 μm and <15 μm) were 
shown to maintain osteoblast in vitro viability whereas a 
reduction was observed for smaller particle sizes, indicating 
that different functional responses may be generated depend-
ing on the particle size present in the surrounding tissues, 
which is reported to vary from 100 nm to 54 μm [41•].

Fig. 1  Schematic depiction of hypothesized biochemical mechanisms 
for corrosion-related titanium-tissue interaction of dental implants. 
Corrosion process of dental implants leading to Ti particle/ion release 
arises from the electrochemical attack of the reactive oral environ-
ment to the implant surface by disrupting the protective oxide passive 
layer  (TiO2). As a consequence, there is an induction of inflamma-
tory process in the soft tissue cells (e.g., fibroblasts) and bone cells, 
which is mainly led by signaling factors promoting the differentiation 
and recruitment of osteoclast cells responsible for peri-implant bone 
resorption (left panel). In a close look, there are several potential 
biochemical routes for the occurrence of these peri-implant inflam-
matory processes (right side). For instance, when dental implants are 
subjected to physical, chemical, and bacterial factors present in the 
reactive oral environment, it can be supposed that there is a multi-
directional pathway loop for the Ti-tissue interaction. For example, 
once metallic particles/ions are released, the peri-implant inflamma-

tory process may occur by activating the function of phagocytic cells 
such as (1) neutrophils and (2) macrophages, (3) stimulating some 
communication pathways of osteoblastic cells, or even promoting 
(4) microbial accumulation in the degraded rougher surface region. 
In particular, the phagocytosis of Ti ions may lead to a (5) higher 
expression level of pro-inflammatory cytokines (e.g., IL1β, IL6, and 
TNFα), and all of these mentioned processes (3 to 5) may induce (6) 
RANKL expression within osteogenic cells, thus indirectly promot-
ing RANKL-induced osteoclast differentiation and consequent (7) tis-
sue inflammation and bone resorption. Once inflammation occurs, the 
pH level of the region is reduced with concurrent microbial dysbiosis, 
favoring the generation of bacterial acid products that, in the end, also 
negatively affect the corrosion resistance of Ti. Created and adapted 
from “Anti-neutrophil Cytoplasmic Antibody (ANCA)-associated 
Vasculitis” and “Proposed Therapeutic Treatments for COVID-19 
Targeting Viral Entry Mechanism,” using BioRender.com (2021)
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The cytotoxic effect of Ti products on the inflammatory 
response of human cells has been demonstrated for particles 
and Ti ions. Mine et al. showed that the concentration of Ti 
ions might have an impact on the bone remodeling of dental 
implants as 20 ppm Ti ions reduced cell viability of murine 
pre-osteoblastic MC3T3-E1, osteoclast-like RAW264.7, and 
epithelial cell-like GE-1 cells, and 9 ppm Ti ions increased 
the expression of RANKL and osteoprotegerin (OPG) in 
MC3T3-E1 cells [43]. In accordance, Wachi et al. [44] also 
demonstrated in vitro and in vivo (rat model) that, in the 
presence of bacterial LPS, 9 ppm Ti ions (limited concen-
tration to induce a cytotoxic effect in vitro) can synergisti-
cally increase the ratio of RANKL to OPG and the level 
of CCL2, a chemokine related to activation of monocyte 
infiltration. Additionally, gingival epithelium loaded with 
Ti ions enhanced the localization of bacterial LPS endo-
toxin toll-like receptor 4, suggesting that Ti ions may play an 
important role in peri-implantitis onset by altering osteoclast 
differentiation due to changes in the sensitivity of the epi-
thelium around microorganisms. In fact, in a previous study 
of our research group, Ti particles and ions demonstrated a 
striking influence on microbial growth in a dose-response 
manner, and Ti ions had the capacity to cause a dysbiotic 
change in the microbial community toward a profile similar 
to pathogenic biofilm-related to peri-implant infections [6].

Accordingly, evidence for Ti degradation in diseased 
peri-implant tissues has been demonstrated in human stud-
ies. As such, levels of released Ti were detected via ICP-MS 
(inductively coupled plasma mass spectrometry) in submu-
cosal plaque [45•], soft-tissue biopsies [46], and exfoliative 
cytologic samples [47•, 48] in greater amount in diseased 
peri-implant mucosa than in healthy sites. Nevertheless, for 
both healthy and inflamed tissue biopsies, the Ti concentra-
tion found (7.3 to 38.9 μM) were reported to be within the 
levels needed to activate the IL-1β secretion from human 
macrophage in vitro, which is a phenomenon closely related 
to stimulating an in vivo proinflammatory reaction [46]. 
Thus, these findings suggest poor specificity between the 
biological impact of Ti concentration and the pathological 
process of peri-implant diseases.

Indeed, there is some biological plausibility of the rela-
tionship between the origin of Ti ions/particles in the peri-
implant tissue and the onset of biofilm-related peri-implant 
diseases. For instance, it can be supposed that there is a 
multidirectional pathway loop for the degradation of Ti sur-
face in the oral environment: (i) wear, acidic substances, and 
metabolites released from bacteria (e.g., lactic acid) pro-
mote the degradation and acidification of the peri-implant 
microenvironment, thus allowing the passive oxide layer 
breakdown with consequent pitting and galvanic attacks; 
(ii) corroded Ti surface presenting increased roughness 
provides additional niches for bacterial recolonization; (iii) 
microbial accumulation promotes oxygen level deficiency 

that jeopardizes the reformation of the passive oxide layer, 
thus promoting crevice corrosion on Ti surface; (iv) corro-
sion products induce microbial dysbiosis favoring the occur-
rence of inflammatory reaction and the consequent genera-
tion of acid products (hydrogen peroxide and  H+) that in 
the end also negatively affect the corrosion resistance of Ti. 
Nevertheless, it is of utmost importance to emphasize that 
among biofilm models used to assess microbial corrosion on 
Ti, only a few studies available in the literature considered 
the polymicrobial diversity of oral environment resembling 
the clinical situation [17], emphasizing the need for further 
in vitro and in vivo investigations on the cause-effect pattern 
between microbial accumulation and Ti surface degradation.

In addition, considering that all these corrosion processes 
occur in a complex biological environment, the transporta-
tion of corrosion by-products to remote organs is inherent. 
Ti ions have been related to ionically bind to blood proteins 
and be transported throughout the human body to distant 
organs such as kidneys, liver, and lung, thus extending tox-
icity concerns from local to a general health scope [39]. 
Therefore, as it is well known that corrosion and Ti release 
indeed occur and are correlated with inflammatory reaction 
induction and potential systemic cytotoxic effects, strategies 
to avoid the corrosion of dental implants are necessary and 
have been extensively studied.

Strategies to Avoid/Reduce the Corrosion 
of Dental Implants

Given what was mentioned in the above topics, some strate-
gies have been drawn to avoid/reduce the corrosion of dental 
implants and the consequent undesired effects. Inhibiting 
corrosion of metals is an interdisciplinary approach in which 
engineering solutions are applied to the biomedical field to 
improve their applicability under a complex biological envi-
ronment. Nevertheless, the race for novel approaches has led 
to numerous technologies that do not reach an endpoint con-
sensus on the ideal strategy that could provide real progress 
for clinical application. In this way, knowing the key factors 
driving the corrosion resistance of current technologies is 
of great relevance for the guidance of future studies. Herein, 
we will review two main methods: the design of corrosion-
resistant Ti alloys and the development of protective surface 
treatments.

The Search for Corrosion‑Resistant Alloys 
for Dental Implants

When designing experimental alloys for dental implants to 
resist corrosion, the most straightforward strategy is alter-
ing their composition. Several alloying elements are known 
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to inhibit the degradation process by driving the growth of 
highly stable passive oxide films and microstructures [49]. 
From designing a new experimental alloy to improving 
already existing ones, the final goal is to create a material 
that can achieve passivity [50], regulate the hydrogen evolu-
tion reaction [51, 52], and reduce the anodic/cathodic activ-
ity directly [22, 53].

Stainless steel, cobalt-based alloys, magnesium (Mg), and 
its alloys have proven their applicability as bone implants 
[11]. However, Ti is the most popular material used for den-
tal implant manufacturing, and its alloys have been widely 
applied clinically. Table 1 sums up the main alloying ele-
ments added to Ti and their role in improving the electro-
chemical properties of experimental metallic alloys pro-
posed for dental implants. Herein, only studies investigating 

binary alloys with high potential as implant materials were 
selected. In this way, it was possible to clearly state the 
effects of the alloying elements on Ti corrosion kinetics and 
microstructure.

Zirconium (Zr), tantalum (Ta), niobium (Nb), chromium 
(Cr), and molybdenum (Mo) are some of the elements nor-
mally added to Ti to form a stable and resistant oxide film 
when in contact with the environment. For example, Ta 
oxides (mainly  Ta2O5) are known to be very stable, and their 
association with  TiO2 improved the structural integrity of 
the passive film leading to superior resistance to pitting cor-
rosion [55]. Similarly, Mo showed concentration-dependent 
protection, in which higher concentrations arise the forma-
tion of a more compact inner oxide layer at the metal-oxide 
interface [67]. On the other hand, some elements such as Fe 

Table 1  Effect of alloying elements on Ti alloy microstructure and electrochemical parameters

Note: A decrease in the electrochemical parameters, capacitance, icorr, ipass, and corrosion rate, reflects low electrochemical activity and high pas-
sivity. The higher the Ecorr, Epit, and Rp values, the greater the corrosion resistance properties and the stability of the oxide film

Alloying 
element

Effect on alloy microstructure and electrochemical parameters Ref.

Zr Zr acts reducing the anodic activity directly, stimulating a solid solution to strengthen and form a reinforced film 
containing  ZrO2. Zr addition leads to higher polarization resistance (Rp) and lower values of corrosion current density 
(icorr), corrosion rate, and capacitance parameters of Ti-Zr alloys.

[53, 54]

Ta Ta incorporation forms a stable  Ta2O5 passive film and a β phase in the Ti matrix, which reduces pitting initiations, the 
corrosion rate, and icorr while enhancing the corrosion potential (Ecorr) parameter of Ti-Ta alloys.

[55]

Nb Nb promotes the formation of β and ω phases in the α-Ti matrix and contributes with  NbO2 to the passive film, enhanc-
ing the protective cathodic reaction. Nb addition lowers the corrosion rate, icorr, and passivation corrosion density 
(ipass)  values, increasing the Ecorr parameter of Ti-Nb alloys.

[56]

Cu Cu provokes  Ti2Cu precipitation with a strong strengthening effect. Ti–Cu alloys exhibit a nobler Ecorr and higher Rp, 
and the icorr decreases with increasing Cu content.

[57, 58]

Ag As the concentration of Ag enhances, it favors the precipitation of intermetallic components  (Ti2Ag and TiAg). With the 
increasing Ag content in Ti-Ag alloys, Ecorr increases, and icorr decreases. There is a tendency for the intermetallic to 
dissolve preferentially.

[58, 59]

In In forms an α single-phase alloy with greater refinement of grains for higher concentrations. The corrosion rate and icorr 
lower with In addition, enhancing Rp values of Ti-In alloy.

[60]

Pd Pd favors the precipitation of β-phase, forming predominantly an α-β microstructure. Pd accelerates the protective 
cathodic reactions and inhibits the dissolution of Ti while decreasing icorr and capacitance and enhancing the Rp of 
Ti-0.2Pd alloy.

[22, 58]

Cr The addition of Cr in low concentrations forms an α-β structure, and then, for higher contents of Cr, a single β-phase 
alloy is observed. A Cr-rich oxide film improves the Rp and diminishes the icorr of the Ti-20Cr alloy.

[58, 61, 62]

Mn Mn stimulates the formation of an α-β structure, but at higher concentrations, a single β-phase can be obtained in asso-
ciation with the TiMn compound. Mn enhances the cathodic reaction but does not improve the corrosion resistance of 
Ti considerably.

[58, 63]

Mg Ti-Mg alloys show Ti and Mg phases in their microstructure. The Ecorr decreases with the content of Mg, while the icorr 
increases.

[64]

Co Co provokes the formation of an α-β structure, but as its concentration increases, only the β phase is observed associated 
with  Ti2Co. Ti-Co alloys show similar corrosion behavior to pure Ti.

[58]

Bi Bi forms a single α-Ti phase, but Ti–20Bi alloy shows  BiTi2 and  BiTi3 intermetallic phases. Ti–Bi alloys slightly 
increases Ecorr values but shows a significantly lower icorr in an electrolyte containing fluoride and acid lactic.

[65]

Mo The growth of primary β-phase dendrites with smaller sizes is observed with increasing Mo content in the alloy. Adding 
Mo to pure Ti improves the stability of the anodic oxides, increasing Rp and decreasing icorr and ipass as the content of 
Mo enhances in Ti-Mo alloys.

[66, 67]

Fe Fe provokes the β phase formation as the concentration enhanced, improving the grain refinement of the Ti alloy. With 
the optimal concentration, Fe reduces the icorr and increases the critical pitting potential (Epit) and Rp parameters of 
Ti-Fe alloys.

[58, 68]
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form oxides less stable than  TiO2, impairing its protective 
behavior if added in high concentrations [68].

As seen in Table 1, not only the oxide film is changed 
when an alloying element is added to Ti. The alloy may go 
through a variety of phase transformation reactions, which 
can result in three microstructure phases (α, α+β, and β) 
with intermetallic variants [69•, 70]. There is no consensus 
in the literature regarding the best crystalline phase to pre-
vent corrosion. While β crystalline phase is expected to be 
more resistant to dissolution and stabler than the α-phase 
[71, 72], the solid solution strengthening effect of the single 
α-phase in Ti alloys has revealed a better electrochemical 
behavior than α+β and β alloys [53, 73].

Regarding intermetallic phases, it tends to precipitate by 
incorporating high concentrations of alloying elements to Ti. 
Generally, intermetallic compounds will dissolve preferen-
tially on the surface by developing a galvanic cell with the 
matrix [73–77], which impairs the alloy’s electrochemical 
stability. In fact, the possible formation of a galvanic cou-
ple between Ti and Mg because of their dissimilar potential 
may accelerate the corrosion processes of Ti–Mg alloys [64]. 
Thus, single-phase alloys are likely to exhibit better elec-
trochemical properties [78], but when more than one phase 
and/or diverse crystallographic orientations are present, it is 
indispensable to achieve grain refinement and an even distri-
bution of the elements [49]. A fine microstructure provides 
an “enveloping effect” by modifying the cathode/anode area 
ratio between the intermetallic and the matrix to minimize 
the galvanic effects and provide corrosion protection of the 
less noble phase [57, 79]. Also, homogeneous microstruc-
tures and greater elemental distributions may result in bet-
ter corrosion resistance due to the improved stability and 
durability of the passivation films formed on the matrices in 
these cases [50, 58, 74, 76, 77, 80]. For instance, the inho-
mogeneous distribution of the  Ti2Ag phase in Ti-Ag alloys 
resulted in more pores (e.g., imperfections) on the surfaces, 
favoring crevice corrosion attacks owing to localized disrup-
tion of the passive film [59].

The grain refinement of an alloy can be achieved from dif-
ferent approaches. Firstly, alloying elements such as Fe [68], 
In [60], and Sn [81] have shown a strong role in refining the 
grain size of the alloy, increasing its corrosion resistance. 
Another well-known approach to inhibit corrosion on alloy 
materials by microstructure refinement and homogeneous 
element distribution is applying alternative manufacturing 
techniques and thermomechanical/finishing processes [49]. 
Additive manufacturing or 3D printing (e.g., selective laser 
melting (SLM), electron beam melting (EBM), laser metal 
deposition (LMD), selective laser sintering (SLS), binder 
jetting (BJ), laser engineered net shaping (LENS), and wire 
arc additive manufacturing (WAAM)) [55, 82–86], as well 
as finishing (e.g., burnishing, laser surface treatments, and 
shot penning) [87–89], and thermomechanical processing 

(e.g., aging and annealing) [90, 91] are a set of techniques 
that have been used to fabricate new alloys with protective 
properties against corrosion by (i) complete oxidation of 
alloying elements and growth of a uniform surface film, (ii) 
formation of defect-free microstructures with refined grain 
structures, and (iii) homogeneous distribution of alloying 
elements without solute segregation.

Although only binary Ti alloys are reviewed in Table 1, 
several other elements have been used to develop corrosion-
resistant alloys. Some alloying elements (e.g., V, Al, and 
Sn) are more commonly associated in ternary, high entropy 
alloys (HEAs), or compositionally complex alloys (CCAs). 
The range of elements and combinations is wide. For this 
reason, researchers are first modeling a well-defined com-
bination of elements and their concentrations by computa-
tional tools that consider first-principles calculations (e.g., 
ab  initio, density functional theory) to predict material 
properties and electrochemical mechanisms before testing 
it by in vitro and in vivo studies [51, 92, 93]. Although this 
approach may increase the chance of success of metallic 
alloys, essentially, studies may have tested the progressive 
incorporation of an element to alloys empirically [53–55, 
94–96].

Improving the Electrochemical Stability 
of Dental Implants by Surface Treatments

While the design of new alloys seeks to create a corrosion-
resistant dental implant by improving the electrochemi-
cal properties of the bulk material, surface treatments are 
applied to the implant substrate after its manufacturing, 
aiming to minimize the corrosion damages by avoiding the 
penetration of corrodents on metal underneath and prevent-
ing the electrochemical reactions. Table 2 summarizes the 
treatment details and outcomes of the main technologies 
proposed to create a protective behavior against corrosion 
of dental implants surfaces.

Similar to the corrosive behavior of alloys, the electro-
chemical stability of coatings is also influenced by their ele-
mental and crystalline composition. For instance, the growth 
of a  TiO2 rutile phase by surface treatments applied to Ti 
substrate has triggered superior electrochemical stability of 
the material [104, 111]. In addition, the reinforcement of 
the oxide layer with homogeneously distributed functional 
and stable compounds and crystal phases (e.g., TiN, TiH 
 TiO2,  Al2O3, SiC) by coating/film deposition technologies 
has proved to enhance the corrosion performance of the 
implant material [54, 99, 110, 113]. In this context, Safavi 
et al. [113] and Ling et al. [119] listed a series of mechanism 
and ideal criteria that coatings and films deposited by mag-
netron sputtered and hydrothermal methods need to meet for 
corrosion inhibition, which may be considered regardless of 
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the surface treatment technology: (i) the formation of sta-
bler oxide films containing  TiO2,  ZrO2,  Nb2O5,  Ta2O5, etc. 
and certain crystallinity potentially contribute to prevent the 
internal dissolution of the coating due to corrosive attacks; 
(ii) dense, compact, and defect-free layers can successfully 
fill the existing porosities of the substrate, preventing the 
corrosive fluid to reach the surface of the implant; (iii) thick 
layers may decrease and even mitigate the dissolution of the 
coatings in the immersion medium; (iv) an improved ability 
of substrates to form passive layers after coating/film depo-
sition leads to better protective behavior; and (v) a strong 
bond strength between the coating and the substrate might 
avoid the coating cracking and peeling off in the body fluid, 
avoiding local corrosion.

Besides the intrinsic characteristics of the film/coating, it 
is important to consider the final alterations that the surface 
treatment will result in the physical-chemical properties of 
the dental implant that may hinder or improve the material’s 
electrochemical stability. For example, some researchers 
have focused on creating a surface with hydrophobic nature 
to restrict or repeal the electrolyte solution at the surface, 
preventing liquid penetration through the coating and pro-
tecting the underlying substrate from corrosion [114, 117]. 
On the other hand, a detrimental behavior from the phys-
icochemical alterations provoked by treatment techniques 
is also possible. For instance, increased surface roughness 
and surface area may impair the passive film formation and 
facilitate its damage, favoring pitting corrosion initiation 
[97–99]. Besides, increased electrochemical activity of 
treated surfaces may be incited by greater wettability, which 
results in lower contact resistance between the electrode and 
electrolyte that can have an even more negative outcome if 
a higher surface area is available for ion transportation [54, 
128].

Conclusions and Remarks

Despite the need for further in vitro and in vivo in-depth 
elucidation regarding the effect and mechanisms of dental 
implant corrosion products on peri-implant tissue inflamma-
tion and systemic health, current evidence displays that there 
is room for the development of improved strategies toward 
the reduction of implant corrosion rate targeting real pro-
gress from the bench to the clinic. Regardless of the strategy, 
either designing experimental Ti alloys or developing new 
treatment surfaces, the aim converts to the same spotlight: 
to reduce the degradation level of the implants and prevent 
metal release in the tissue surrounding them to prolong their 
lifetime. It is evident that the chemical and physical prop-
erties are crucial for the electrochemical behavior of the 
implant material. Thus, developing an alloy or coating/layer 
for corrosion inhibition is mandatory to investigate these 

features and consider biological applicability. For instance, 
incorporating some functional compounds into the substrate 
may improve the corrosion resistance of the implant mate-
rial, but it can also be cytotoxic for tissues. On the other 
hand, although hierarchal structure topography with a 
greater surface area might improve the biological response 
of the implant, it may exhibit unwanted effects on the growth 
and stability of the oxide film, impairing its corrosion prop-
erties. The ultimate goal is to find reliable routes to con-
jugate in the same implant both characteristics, adequate 
stimulation of the biological tissues without weakening its 
protective behavior against corrosion. Therefore, based on 
the data discussed in this review, it can be suggested that an 
extensive understanding of the involved corrosion mecha-
nism should be the basis for the design of dental implant 
devices. Full knowledge of the role of corrosion products 
and better methods to improve the corrosion resistance of 
dental implants can illuminate how to control peri-implant 
diseases and achieve safe and long-term implant rehabilita-
tion therapy.
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