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Abstract Compared with controlled terminologies (e.g.,
MedDRA, CTCAE, and WHO-ART), the community-based
Ontology of Adverse Events (OAEs) has many advantages in
AE classifications. The OAE-derived Ontology of Vaccine
AEs (OVAE) and Ontology of Drug Neuropathy AEs
(ODNAE) serve as AE knowledge bases and support data
integration and analysis. The Immune Response Gene
Network Theory explains molecular mechanisms of vaccine-
related AEs. The OneNet Theory of Life treats the whole
process of the life of an organism as a single complex and
dynamic network (i.e., OneNet). A new “OneNet effective-
ness” tenet is proposed here to expand the OneNet theory.
Derived from the OneNet theory, the author hypothesizes that
one human uses one single genotype-rooted mechanism to
respond to different vaccinations and drug treatments, and
experimentally identified mechanisms are manifestations of
the OneNet blueprint mechanism under specific conditions.

The theories and ontologies interact together as semantic
frameworks to support integrative pharmacovigilance
research.
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Introduction

Although various types of drugs have dramatically improved
public health, many drugs are associated with various types of
adverse events (AEs, or called adverse reactions) including
severe AEs. While most vaccine AEs are mild, many vaccines
are occasionally associated with severe AEs and even death
[1–4]. Every year, there are over two million severe adverse
drug reactions (ADRs) [5]. Many countries spend 15–20 % of
hospital budgets to treat drug complications [6]. ADRs cause
100,000 human deaths yearly, making ADRs the fourth lead-
ing cause of human mortality in the USA [5, 7]. To prevent
ADRs, it is critical to accurately monitor and assess ADRs,
identify the drug-ADR associations, and understand the fun-
damental ADR causal mechanisms. These become the impor-
tant topics of pharmacovigilance.

Different AE case-reporting systems have been developed.
USA has two federal level systems to monitor AEs. The USA
Food and Drug Administration (FDA) AE Reporting System
(FAERS) is a database that contains information on AEs and
medication error reports and is designed to support the FDA
post-marketing safety surveillance program for drug and ther-
apeutic biologic products [8]. The Vaccine AE Reporting
System (VAERS) is a web-based vaccine safety surveillance
program co-sponsored by the USA FDA and Centers for
Disease Control and Prevention (CDC) [9, 10]. Broadly
speaking, a vaccine is a special type of drug [11]. However,
vaccines and chemical drugs also differ in many aspects. For
example, vaccine administration is usually given to humans
under healthy conditions for a preventive purpose, but chem-
ical drugs are typically given to a sick patient for therapeutic
purpose. In general, the dose, time, route, and frequency of
vaccine administration are well-defined; however, for chemi-
cal drug administration, the dose, time, and frequency are
often difficult to establish for patients with various conditions
[11]. As a result of these differences, it is more challenging to
identify the causality of ADRs since ADRs are associatedwith
more confounding factors than vaccine AEs (VAEs). On the
other hand, vaccine AEs can be spread to more of the popu-
lation quickly due to its often wide use in a short period of
time. To improve public health, it is important to monitor both
ADRs and VAEs closely.

To support data comparison and sharing, it is important to
establish and use a controlled AE terminology system. The

Medical Dictionary for Regulatory Activities (MedDRA)
[12, 13] is the standard terminology system used in FAERS
andVAERSAE classifications in the USA.MedDRA has also
been used in European Union and Japan. The Common
Terminology Criteria for Adverse Events (CTCAE) is a prod-
uct of the USNational Cancer Institute (NCI) that provides the
criteria for the standardized classification of adverse reactions
of drugs used in cancer therapy [14]. The World Health
Organization (WHO) Adverse Reactions Terminology
(WHO-ART) is a dictionary that serves as a basis for rational
coding of adverse reaction terms [15]. As introduced later in
this article, although MedDRA, CTCAE, and WHO-ART
have been widely used, these classical AE terminology sys-
tems have many drawbacks to be addressed.

A biomedical ontology is a human- and computer-
interpretable set of terms and relations (sometimes called
“classes” and “object-properties”) that represent entities in a
specific biomedical domain and how they relate to each other.
Ontologies have played a critical role in biomedical data and
knowledge representation, exchange, integration, and infer-
ring new knowledge. For example, the Gene Ontology (GO)
provides controlled and standardized terms for naming differ-
ent types of biological processes, cellular components, and
molecular functions [16]. Creating such ontology-based anno-
tations is highly valuable for both querying databases and
analyzing high throughput data. Since its first publication in
2000 [16], GO has been cited by over 9000 peer-reviewed
publications in PubMed and over 110,000 hits in Google
Scholar. The Ontology for Biomedical Investigations (OBI)
[17] is a biomedical ontology co-developed by over 20 bio-
medical communities with the collaborative aim of
representing life-science and clinical investigations. OBI has
been used as the basis for developing more than 10 ontologies
and for representing a wide range of investigations [18–21].
The community-based Vaccine Ontology (VO) [22–24] has
been used in different applications, such as vaccine data inte-
gration [25–28] and literature mining [23, 29]. The Drug
Ontology (DrON) has recently been developed to support
drug classification [30]. A community-based Ontology of
Adverse Events (OAE) has also been developed to support
AE classification and different applications [31].

In addition to clinical AE surveillance and analysis, another
important research effort is to identify the molecular mecha-
nisms of causal AEs. Extensive research has been conducted
in pharmacovigilance mechanism studies, resulting in a large
amount of knowledge and data. However, it is still very diffi-
cult to integratively represent and analyze the results using
bioinformatics approaches. Scientific theories may provide a
better framework to support such studies. For the mechanism
studies in pharmacovigilance, there have been two recently
proposed theories, i.e., the “Immune Response Gene
Network” theory [32, 33] and the OneNet Theory of Life
(abbreviated as “the OneNet theory”) [34]. Ontology and
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ontology-based Semantic Web technologies may provide a
robust platform for reproducible data representation, ex-
change, sharing, and analysis [35, 36]. It is possible to use
the theories to guide ontology development and use theory-
guided ontologies to build up an integrative foundation and
framework to support the representation of reported knowl-
edge and prediction of unknown knowledge and adverse
events.

The overa l l goa l o f th i s a r t i c le i s to rev iew
pharmacovigilance-related terminologies, ontologies, and the-
ories, and propose the combination of ontologies and theories
to support integrative research on clinical AE phenotypes and
fundamental AE mechanisms. Specific objectives include the
following: (i) a review of existing controlled terminologies
and ontologies related to pharmacovigilance, (ii) a review of
two theories applicable to understand the causal mechanisms
of vaccine and drug safety, (iii) extension and applications of
the OneNet theory, and (iv) proposing that the ontologies and
theories can interact with each other and be applied to support
integrative pharmacovigilance research.

Conventional Controlled AE Vocabulary Systems

Major controlled AE vocabulary systems that are widely used
in different settings are first introduced below.

The MedDRA

MedDRA is organized with a five-level hierarchy, with
Lowest Level Terms (LLT) at the bottom, followed by
Preferred Term (PT), High Level Term (HLT), High Level
Group Term (HLGT), and with System Organ Class (SOC)
at the top [12] (Fig. 1a). The LLT level has more than 70,000
terms. Each LLT term is linked to only one PT term. Each PT
has at least one LLT (itself) and may include many synonyms
and lexical variants. Related PTs are grouped into HLTs and
higher level HLGTs based on anatomy, pathology, etiology, or
function. Finally, HLGTs are grouped into SOCs based on
etiology, manifestation site, purpose, or social circumstances.

MedDRA [12] has several limitations. First, the terms in
MedDRA do not include term definitions, which may cause
confusion and misunderstanding, especially when terms may
have different meanings. Second, synonyms are often incor-
rectly assigned. For example, “swollen eyelid” and “swollen
eyes” are defined incorrectly as synonyms in MedDRA.
Third, hierarchical relations among MedDRA terms are often
inaccurate. As seen in Fig. 1b, the MedDRA class “Acute and
chronic thyroiditis” has many subclasses including
“Thyroiditis,” “Thyroiditis acute,” “Thyroiditis chronic,” and
“Thyroglossal cyst infection.” The class Acute and chronic
thyroiditis is problematic because it is likely difficult to find
a type of thyroiditis which is both acute and chronic at the

same time. Based on the structure, it would be ideal to replace
the Acute and chronic thyroiditis with Thyroiditis, and the
classes Thyroiditis acute, Thyroiditis chronic, and other spe-
cific thyroiditis should be subclasses of Thyroiditis. In addi-
tion, Thyroglossal cyst infection should not be considered as a
subclass of Acute and chronic thyroiditis or thyroiditis.
Instead, Thyroglossal cyst infection is an infection process
that may be a possible cause of thyroiditis. The poorly defined
hierarchy limits its ability to support valid VAE classification
[3]. These issues described here often resulted in inconsisten-
cy and failure in identifying AEs [37]. In addition, the
MedDRA licensing requirement prevents wide public soft-
ware development and dissemination.

The CTCAE

As a product of the US National Cancer Institute (NCI),
CTCAE (http://evs.nci.nih.gov/ftp1/CTCAE) is a set of
criteria for the standardized classification of AEs of
drugs used in cancer therapy. Most US and UK drug
trials encode their observations based on CTCAE. The
CTCAE version 4.0 released in 2009 includes a
relatively small number (790) of AE terms. This version
of CTCAE is in general in harmony with the
MedDRA’s terminology. Different from MedDRA,
CTCAE terms are often well-defined with text defini-
tion. An AE in CTCAE may be assigned to grades 0
through 5 that indicate different levels of clinical sever-
ity. The general guideline of assigning CTCAE severity
is as follows: grade 0, sign and symptom within normal
limits; grade 1, mild AE; grade 2, moderate AE; grade
3, severe AE; grade 4, life-threatening or disabling AE;
and grade 5, death related to AE [14].

The WHO-ART

WHO-ART has been developed and maintained by the
Uppsala Monitoring Centre, the WHO Collaborating Centre
for International Drug Monitoring [38]. The WHO-ART hier-
archical structure has four levels: Included Term (IT),
Preferred Terms (PT), High Level Term (HLT), and System
Organ Class (SOC). The 2015Q1 version of WHO-ART in-
cludes 6410 terms with 2123 terms being the PTs—principal
terms for describing adverse reactions [38]. Like MedDRA,
WHO-ART does not provide formal definitions of terms.

In addition to MedDRA, CTCAE, and WHO-ART,
there exist other controlled terminology systems for
AE case report ing and analysis , including the
Systematized Nomenclature of Medicine Clinical Terms
(SNOMED-CT) [39] and the International Classification
of Disease (ICD) [40]. There have also been efforts to
compare, map, and combinatorically use different termi-
nology systems [41–46].
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Ontology-Based AE Representation and Analysis

Compared to the conventional AE terminologies as described
above, the formal ontology representation of AEs happened
more recently and has offered more advantages [47–50]. A
terminology is a structured collection of concepts and terms
in a certain language in a specific subject field. An ontology is
a formal naming and definition of the classes (or called types),
properties, and the relations among the entities that really or
fundamentally exist for a particular domain of discourse. An
ontology provides formal and explicit models of entities in a
human- and machine-readable representation, and relations
among entities are logically represented as “axioms.” The
conventional AE terminologies (e.g., MedDRA) are roughly
equivalent to class hierarchies in ontologies. This means that a
MedDRA concept “10037844” defines the class of all the
individual AE instances that match the criteria for “rash”.
The is_a relation relates classes between a superclass and its
subclasses (e.g., members). In addition to the is_a relation, a
formal ontology typically includes more sophisticated rela-
tions to present various necessary and/or sufficient conditions
[29]. The logical relations between entities are more rigorous-
ly and explicitly defined in an ontology. Ontologies are devel-
oped using ontology-specific languages, including the
OBO format [51] and the Web Ontology Language (OWL)
[52]. The OWL description logics (DL) format supports
asserted hierarchy and inferred hierarchy [29]. In addition,
many ontology-based Semantic Web technologies [36] are
available to support advanced data linkage, sharing, and
analysis.

A formal ontology is developed by following specific prin-
ciples and guidelines. The Open Biological and Biomedical

Ontologies (OBO) Foundry is a collaborative initiative aimed
at building up consensus-based ontology development princi-
ples and establishing ontologies following the set of principles
in an evolving nonredundant suite [53]. Examples of OBO
Foundry principles include that (1) ontologies should be open,
(2) ontologies are developed in a collaborative effort, and (3)
ontologies use common unambiguously defined relations
[53]. These principles are widely accepted as the guidance
for new ontology development.

In this section, we will introduce three ontologies that rep-
resent the general AEs and specific AEs induced by vaccines
and chemical drugs. These ontologies are all developed by
following OBO Foundry principles.

The OAE

OAE represents various AEs as pathological bodily processes
that occur after a medical intervention [31]. The OAE-defined
adverse event does not have to be causally induced by a med-
ical intervention, which is consistent with its definition in
commonly used clinical scenarios, including their uses in
VAERS and FAERS. OAE also defines the term “causal ad-
verse event” to present that an adverse event is known to be
causally induced by a medical intervention [31].

OAE is developed by importing existing ontology terms
and generating new OAE-specific terms. OAE is aligned with
the Basic Formal Ontology (BFO) [53, 54] (Fig. 2). BFO
contains two branches, continuant and occurrent [53, 54].
The continuant branch represents time-independent entities
such as material entity and spatial region, and the occurrent
branch represents time-related entities such as process and time
interval. Using BFO as the upper level ontology makes our

Fig. 1 MedDRA features. a The
five layers of MedDRA. b A
subset of the MedDRA hierarchy.
It is a screenshot made from the
MedDRAvisualization in NCBO
BioPortal (http://bioportal.
bioontology.org/ontologies/
MEDDRA). It is problematic to
list a term Acute and chronic
thyroiditis as the parent term of
other thyroiditis terms including
“thyroiditis” itself. “Thyroiditis
fibrous chronic” should be a
subclass of “Thyroiditis chronic”.
Instead of being a subtype of
Acute and chronic thyroiditis,
“Thyroglossal cyst infection” is
an infection process that may
cause thyroiditis
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ontologies integrated seamlessly with >100 other ontologies
that also align with BFO. To support ontology reuse and in-
teroperability, OAE also imports terms (e.g., “pathological
bodily process”) from over 20 existing ontologies (e.g., the
Ontology of General Medical Science or OGMS) [55]
(Fig. 2). In addition to imported ontology terms, OAE has
included over 3200 OAE-specific terms whose ontology IDs
start with “OAE_” followed with seven digital numbers. Most
of these OAE-specific terms are various types of AE terms
(Fig. 2). Each term is well-defined, referenced, and linked to
possible MedDRA ID using the annotation property seeAlso.
The linkage supports cross-referencing and term mapping. As
of February 16, 2016, OAE has 4666 terms. The statistics of
OAE can be found on the Ontobee [56] website: http://www.
ontobee.org/ontostat/OAE.

OAE was first demonstrated to offer better classification of
AEs than MedDRA in a bioinformatics analysis of VAERS
VAE case reports [3]. This study used the VAERS VAEs as-
sociated with four trivalent (killed) inactivated influenza vac-
cines (TIV) and FluMist (the only trivalent live attenuated
influenza vaccine or LAIV). After classical statistical analysis,
48 TIV-enriched and 68 LAIV-enriched AEs were identified.
The MedDRA terms of these AEs were first mapped to OAE
terms. The analysis of the OAE-based hierarchies of TIV and
LAIV-enriched AE terms allowed better classification of these
AE terms. Different patterns associated with these VAE sub-
sets were identified. Specifically, TIV-enriched AEs include
neurological and muscular processing such as paralysis,
movement disorders, and muscular weakness. In contrast,
LAIV-enriched AEs include inflammatory response and respi-
ratory system disorders. Furthermore, LAIV was found to
have lower chance of inducing two severe AEs, Guillain-
Barre Syndrome (GBS) and paralysis, than TIV [3]. In this

study, a side-by-side comparison on how OAE, MedDRA
[12], and SNOMED [39] classified TIV- and LAIV-
associated VAEs provided strong empirical evidence on the
clear advantages of OAE over MedDRA and SNOMED in
AE classification [3].

As demonstrated below, OAE has also been used in devel-
oping domain-specific ontologies that act as vaccine or drug
AE knowledge bases.

The Ontology of Vaccine Adverse Events (OVAE)
as a Knowledge Base of Vaccine AEs

OVAE is an ontology of the AEs known to be associated with
the administration of licensed vaccines [57]. OVAE is devel-
oped as an extension of OAE and VO. The community-based
VO [22–24, 29] is developed to represent and integrate vari-
ous vaccines and vaccine-related data, particularly those stored
in VIOLIN, the largest web-based, comprehensive vaccine
database and analysis system [58]. VO includes the informa-
tion of all licensed human vaccines used in the USA. Figure 3
illustrates how VO logically represents the information of an
influenza vaccine (Afluria), including how the vaccine links to
the vaccine, vaccination route, vaccine quality, vaccine aller-
gen, the manufacturer, influenza virus pathogen, and vaccine-
induced immune responses. VO has been used in different
applications to represent various types of vaccine-related in-
formation [22, 25–27, 59]. The VO has also been used for
many studies in vaccine literature mining [23, 29, 60–62].
Like OAE, VO is also aligned with the BFO, which facilitates
the seamless alignment and extension of the OAE and VO for
OVAE generation.

OVAE classifies AEs associated with US-licensed human
vaccines [57]. OVAE imports all the licensed vaccines from

Fig. 2 OAE hierarchical structure. This screenshot displays part of the
OAE hierarchy using the Protégé-OWL editor. For each OAE term such
as “rash AE,” clear label and definition are provided. Its cross-references

to other resources (e.g., MedDRA) are cited if available. OAE is aligned
with the upper level BFO and OGMS
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the VO, related AE terms from OAE, and axioms to link
vaccines and AEs with specific details. Figure 4a shows
how OVAE is used to represent the fever AE associated with
an influenza vaccine Afluria. It is noted that OVAE accurately
represents age-specific AE occurrence rates as described in the

FDA-approved vaccine package insert documents. Currently,
OVAE includes all over 1300 AEs associated with 63 US-
licensed human vaccines [57]. Therefore, OVAE serves as a
knowledge base of the AEs known to be associated with the
administration of licensed vaccines.

Fig. 3 VO representation of vaccine knowledge. This example
ontologically represents the information about Afluria, a killed
inactivated influenza vaccine manufactured by the company CSL
Limited. In addition to the inactivated influenza virus, the vaccine
contains chicken egg protein allergen. The vaccine is administered to
humans through intramuscular route. The human’s background such as

age can be linked to the vaccination event. The Afluria vaccination has
the ability of inducing specific adaptive immunity against virulent
influenza infection as well as various adverse events. Note that the AEs
that are known to be induced by specific vaccines are primarily
represented in OVAE instead of VO

Fig. 4 OVAE representation and query of AEs associated with FDA
licensed vaccines. a OVAE representing Afluria VAEs reported in FDA
vaccine package insert. The top screen shows the adverse reactions of
Afluria as recorded in the FDA vaccine package insert document of
Afluria. The bottom screen (extracted from a view using the Protégé
OWL editor) shows how OVAE represents the ≥10 % occurrence of
“Afluria-associated fever AE” in children 5 through 17 years of age.
The OVAE representation matches the information in the FDA vaccine

package insert document. b SPARQL query of OVAE for the top 3 AEs
associated with the highest numbers of vaccines. As shown in a, “Afluria-
associated fever AE” is a cross product of “Afluria vaccine adverse event”
and “fever AE,” which provides the query strategy for identifying the
vaccine (Afluria) and the specific AE (“fever AE”). The query was
performed using the Ontobee SPARQL web program: http://www.
ontobee.org/sparql
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The information of the OVAE knowledge base can be que-
ried using SPARQL (a recursive acronym for SPARQL
Protocol and RDF Query Language). The Resource
Description Framework (RDF) data model makes statements
about resources in the form of subject-predicate-object expres-
sions (i.e., triples). The RDF triples can be stored in an RDF
triple store and be queried using SPARQL. A previous study
has demonstrated that SPARQL is able to retrieve useful in-
formation from OVAE such as the top 10 vaccines associated
with the highest numbers of VAEs and the top 10 VAEs most
frequently observed among all licensed human vaccines [57].
Figure 4b demonstrates how a SPARQL query with a few
lines of code can identify useful information from the OVAE
stored in an RDF triple store.

The ODNAE

Ontology of Drug Neuropathy Adverse Events (ODNAE) is
an ontological knowledge base that represents 215 US FDA-
licensed drugs able to induce >10 neuropathy AEs and how
these drugs are linked to chemicals, human qualities, drug
mechanisms of actions, and biological processes [63].
Among several drug ontologies (RxNorm [64], NDF-RT
[65], and DrON [30]), we selected DrON as the default ontol-
ogy for representing drugs; as DrON provides mapping be-
tween drugs and ChEBI [66] chemical terms and like ODNAE
and OAE, DrON is also aligned with BFO and follows
OBO Foundry ontology design principles [53]. In order
to enable data integration and data reuse, we added
links from the DrON terms to RxNorm and NDF-RT

IDs by annotation property rdfs:seeAlso in ODNAE.
Figure 5 shows an example of how ODNAE represents
drug-associated neuropathy AEs.

As a knowledge base, ODNAE captures verified knowl-
edge obtained from basic biomedical research and clinical
practices. Since the ontology is machine readable, ODNAE
supports neuropathy AE data representation, exchange, and
integration. Furthermore, the integrated ODNAE knowledge
base supports computer-assisted advanced analysis. For ex-
ample, using the SPARQL queried results from the ODNAE,
we performed a heatmap analysis to explore the correlation
between drug molecular entities and various neuropathy AEs.
Our results showed that drug-associated carbon groups,
pnictogen, chalcogen, and heterocyclic compounds were as-
sociated with the highest numbers of AE cases [63]. Among
215 neuropathy-inducing drugs, 127 belong to organic chem-
ical carbon groups, which include 21 organohalogen com-
pounds. We also identified seven pairs of agonists and antag-
onists that share targets (e.g., dopamine, serotonin, and sex
hormone) [63].

Theories Toward Understanding Adverse Event
Causality Mechanisms

A fundamental approach toward understanding AE causality
is to propose scientific theories and use these theories to guide
our research. Two related theories and their applications in
pharmacovigilance studies are introduced below.

Fig. 5 Illustration of ODNAE design pattern and representation. a
Design pattern for representing cisplatin-associated peripheral
neuropathy AE. The drug product Cisplatin Injectable Solution contains
the active ingredient of cisplatin. The administration of the drug on a
human patient causes a peripheral neuropathy AE. During the bodily
process, the drug acts as a nucleic acid synthesis inhibitor, a role that is

realized in a “negative regulation of cellular biosynthetic process” that
occurs in the patient. Age is the patient’s quality that may affect the AE
formation. In addition to ODNAE-specific terms, this model uses terms
from other ontologies including ChEBI, DrON,NDF-RT, PATO, GO, and
NCBITaxon. bOntological hierarchy of the cisplatin chemical entity. The
screenshot was obtained from the Ontobee [56]
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The Immune Response Gene Network Theory

Dr. Gregory A Poland proposed an “Immune Response Gene
Network Theory”with an aim to explain the immune response
mechanisms induced by vaccinations [32, 33]. This theory
states that the responses to a vaccine are the cumulative results
of interactions driven by a host of genes and the interactions
among these genes [32] (Fig. 6a). The interactive and iterative
activation and suppression of specific pathway genes occur in
a choreographed fashion to generate a coherent immune re-
sponse to a vaccine. These immune gene activities result in
activation and secretion of cytokines, antibodies, chemokines,
and immune effector cells, leading to innate, humoral, and
cell-mediated immune responses, as well as local and system-
ic adverse events. The basic genetic elements of the theory
include key immune response genes, gene polymorphisms
and epigenetic modifications, and gene–gene interactions,
which may all change the outcomes of host immune responses
to a vaccine [32] (Fig. 6a).

The theory has been supported by experimentally identified
associations between immune response gene polymorphisms
and various antibody and cell-mediated immune responses to
many viral vaccines including measles–mumps–rubella vac-
cine, influenza vaccines, hepatitis B, and smallpox vaccines
[32]. Many gene polymorphisms have been found to be di-
rectly associated with vaccine AEs [67–70]. For example,
based on three independent studies, three single nucleotide
polymorphisms (SNPs) in two human genes that encode for
the methylenetetrahydrofolate reductase (MTHFR) and the
interferon regulatory factor-1 (IRF1) were significantly asso-
ciated with systemic AEs after smallpox vaccination [68].

To understand the immune response gene networks,
vaccinomics can be applied that uses immunogenetics and
immunogenomics methods to understand the mechanisms of
heterogeneity in immune responses to vaccines [71].
Adversomics has also become an emerging field of applying
omics and immunogenetics to study AEs including vaccine
AEs [72]. The results gained from vaccinomics and

Fig. 6 Graphic illustration of two gene network-based theories for explaining AE mechanisms. a The Immune Response Gene Network Theory. b The
OneNet Theory of Life. The details about these two theories are described in the text
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adversomics can be used in the rational design and develop-
ment of new vaccines, leading to the new golden age of “vac-
cine informatics” [60], “reverse vaccinology” [73], and “pre-
dictive vaccinology” [32].

The OneNet Theory of Life and Its Applications
in Pharmacovigilance

While the Immune Response Gene Network Theory explains
well the mechanisms of vaccine AEs, it does not target the
explanation of the AE mechanisms for chemical drug. The
Immune Response Gene Network Theory does not focus on
the effects of those genes and factors beyond the immune
system. Therefore, there is a desire to generate a more
systematical theory that traces the root causes of different
types of AEs and associated factors. Based on the Immune
Response Gene Network Theory and several other theories
including the Evolutionary Synthesis Theory [74], the Cell
Theory [75], and the “Immune Network Theory” [76], the
author has recently proposed a One Network Theory of the
Life of an organism (abbreviated as “OneNet theory”) [34]. As
described below, the OneNet theory provides an ideal frame-
work to study the molecular mechanisms of causal AEs in-
duced by vaccinations and drug treatments.

The OneNet theory treats the whole process of a life of an
individual organism as one single complex and dynamic
network (called “OneNet”). The OneNet has four characteris-
tics represented by four tenets:

1. OneNet Blueprint: The OneNet blueprint is stored in the
genotype of the organism.

2. OneNet Start: The dynamic OneNet process starts to exist
at the moment when the first cell of the organism forms.

3. OneNet Dynamics: The OneNet of temporal interactions
between the genetic materials and their environments de-
termines the dynamic phenotype (e.g., morphology, be-
havior, survival, and reproduction) of the life.

4. OneNet Effectiveness: An organism with its expressed
OneNet profile more adaptive to an environment is
advantaged to survive, replicate, and live a better life in
the environment.

The first three characteristics were defined and discussed in
the original paper [34]. The last OneNet characteristic is newly
added to provide a mechanism to measure the effect (or out-
come) of the complex OneNet process.

The OneNet theory targets the systematic representation
and analysis of the life of one organism (e.g., a human being),
with a special focus on the dynamic interactions among geno-
type, environment, and phenotype along the life process. The
theory explores the root cause of an organism’s phenotypes
(e.g., AEs after vaccine and drug administrations) (Fig. 6b).
The genotype of a human is rooted at the genome of the

fertilized cell (i.e., zygote) that involves a sperm fusing with
an ovum [74]. The zygote is the first cell that contains the
intact and complete genotype information of the human. The
genotype is the blueprint for the development of an organism
[77]. Extending this fact, the genotype would also include the
blueprint information of the OneNet mechanism on how the
organism interacts with various environments (e.g., drug ad-
ministration). The life of an organism with different stages is
the manifestation of the OneNet blueprint of the organism.
Such a OneNet blueprint manifestation is represented by var-
ious phenotypes and underlying gene expression profiles out
of the dynamic interactions between the genotype and its en-
vironments. Different people may have different genotypes
(including gene polymorphism) and encountered environ-
ments that include intra- and extra-organism environments.
The intra-organism environments of the genetic materials in-
clude those inside the cells but outside the genetic materials
and those outside the cells but inside the human body [34]. All
these environmental factors may change the gene expression
profiles and phenotypes. Therefore, given various environ-
mental conditions, different people may demonstrate different
phenotypes including various AEs following exposure to a
vaccine or a drug (Fig. 6b).

The OneNet effectiveness tenet is newly added to the
OneNet theory and first described in this article. There are
different meanings of the terms effectiveness, efficacy, and
efficiency in different settings [78–81]. For example, in med-
icine, effectiveness relates to how well a treatment works in
practice, while efficacy measures how well it works in a well-
controlled clinical trials or laboratory studies [79, 82, 83]. In
physics, an effective theory is a framework intended to explain
an observed effect without claiming that the theory correctly
models the underlying unobserved processes [80]. In the
OneNet theory, the author adopts the definitions of the ontol-
ogy reference model developed for the uncertainty represen-
tation and reasoning evaluation framework (URREF) [81]. In
the URREF ontology, the “effectiveness” relates to a system’s
capability to produce an effect, and effectiveness includes (i)
“efficiency”: doing a thing in the most economical way, (ii)
“efficacy”: getting a thing done (i.e., meeting a target or de-
sire), and (iii) “correctness”: doing a “right” thing, i.e., setting
a right target to achieve an overall goal (the effect). Similarly,
the OneNet theory uses the term “OneNet effectiveness” to
represent the capability of an organism to produce an effect,
including the survival, replication, and quality of life in a
specific environment. The OneNet effectiveness tenet states
that an organism with its own expressed OneNet profile more
adaptive to its environment is advantaged (i.e., more effective)
to survive, replicate, and live a better life in the environment.
Similar to the composition of the effectiveness as defined in
the URREF ontology [81], OneNet effectiveness also includes
different levels, i.e., OneNet efficiency, efficacy, and
correctness.
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Both the Immune Response Gene Network Theory and the
OneNet theory facilitate the understanding and study of causal
pharmacovigilance mechanisms. The Immune Response
Gene Network Theory provides a more specific network sce-
nario in the domain of vaccine-induced AEs. This theory in-
forms the importance of studying different immune response
gene networks and gene polymorphism to understand funda-
mental vaccine AEmechanisms. The Immune Response Gene
Network Theory fits well with the OneNet theory. The
OneNet theory has a broader scope and can be used to study
the mechanisms of AEs induced by both vaccines and drugs.
In addition, the OneNet theory goes further to lay out the root
cause genotype-guided molecular networks and the geno-
type–environment–phenotype network dynamics where the
environment has a broad scope that includes vaccination, drug
administration, infection, and stress. In a complex dynamic
system, prior states will have an influence on present states
[84]. Similarly, in the complex OneNet system, the genotype
and a patient’s conditions (e.g., age, gender, and previous
exposure to the same vaccine or drug) before and during
vaccine/drug administration would affect the outcomes of
vaccine/drug AE processes.

Ontology-Based and Theory-Guided Integrative
Representation and Analysis of AE Interaction
Networks

The standard controlled terminologies, pharmacovigilance-
related ontologies, and two network theories are reviewed
above. The author has also proposed a new tenet in the
OneNet theory to cover the outcome aspect of the OneNet
process. Now, two critical questions are how to the ontologies
and the theories interact with each other, and how the possible
interaction between the theories and ontologies can better sup-
port pharmacovigilance research. These two questions are ad-
dressed below.

The Two Network Theories and Ontologies Can Closely
Interact with Each Other

As described above, the two network theories (the Immune
Response Gene Network Theory and the OneNet theory) pro-
vide frameworks to study causal AE mechanisms. An ever-
increasing amount of data has been generated out of intensive
research in the pharmacovigilance studies. Although the the-
ories help mechanistic understanding, it has been a huge chal-
lenge to consistently and logically represent and analyze the
obviously big data associated with the AE complex systems.
Ontologies and ontology-based Semantic Web methods natu-
rally provide tools to perform such tasks.

Ontologies support integrative representation of AEs and
the processes leading to AEs. Figure 7 outlines an OAE-based

ontological model of AE-related processes and related factors.
After a vaccine/drug administration, three stages of biological
processes occur in the patient (Fig. 7) [31]. The initial stage
processes involve the vaccine/drug entry and initial host re-
sponses. The intermediate stage processes include series of
intermediate smaller processes, some eventually leading to
positive preventative or therapeutic effect, some leading to
noises, and some leading to AEs. The last stage processes
are the execution stage processes leading to pathological out-
comes [31]. These processes occur in different anatomic loca-
tions. Many factors, such as age and gene polymorphism,
likely affect the final outcome. In addition to the OAE-based
model (Fig. 7), the OVAE model (Fig. 4) logically represents
the knowledge of vaccines and vaccine-induced AEs, and the
ODNAEmodel (Fig. 5) ontologically links drugs, drug chem-
ical ingredients, AEs, mechanisms of actions, and biological
processes. All the ontologies and models described above
cover different granularities of details. A federation of these
specific models provides a more comprehensive picture of
vaccine- and drug-induced AE mechanisms.

Ontologies can also support integrative representation of
AE-related genetic interaction networks. OVAE and
ODNAE can be expanded to represent gene interaction path-
ways and networks leading to AEs induced by vaccines and
drugs. Furthermore, we can use ontologies to represent vari-
ous human interaction networks and identify those that are
relevant to pharmacovigilance. Hundreds of interaction/path-
way/network databases exist [85]. For example, Reactome
[86], KEGG [87], BioCyc [88], and BioCarta [89] are inter-
action and pathway databases that cover various biological
domains. The Pharmacogenetics Knowledge Base
(PharmGKB) contains genomic, phenotype, and clinical in-
formation collected from various pharmacogenetic studies
[90]. Unfortunately, the knowledge in these databases is often
overlapped but disintegrated. Extended from a general
species-neutral framework of the Interaction Network
Ontology (INO) [91], the ongoing Human Interaction
Network Ontology (HINO) project is designed to integrate
data from different interaction pathway databases [92]. After
an expected comprehensive HINO is generated, AE-related
genetic interactions and pathways can be extracted from
HINO and exported to OVAE and ODNAE to enrich their
representation of integrated AE mechanisms.

Since the OneNet theory emphasizes the dynamic interac-
tions among genotype, environment, and phenotype along the
life process, it is necessary and critical to ontologically model
and represent various environment factors and their interac-
tions with genotype and phenotype. After drug administration,
multiple and complex environmental factors may play impor-
tant roles in the mechanism of AEs through interactions with
genotype. There exist several ontologies, including
Environment Ontology (EnVO) [93] and the Experimental
Factor Ontology (EFO) [94], which represent various
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environmental and experimental factors. EnVO is a commu-
nity-led, open ontology for specifying a wide range of envi-
ronments relevant to life science disciplines [93]. Driven by
the critical needs in annotating biological variables in gene
expression studies, EFO is developed as an application ontol-
ogy to represent various experimental factors [94]. In addition,
the Gene Ontology (GO) includes a branch of cellular com-
ponents [16], which lays out various levels of cellular compo-
nents where intracellular molecular interactions may occur. To
represent specific interactions between genotypes, environ-
ments, and phenotypes, related environmental and experimen-
tal factors can first be imported from existing ontologies (e.g.,
EnVO, EFO, and GO) to a domain ontology (e.g., ODNAE
and HINO), and specific interactions can then be represented
by building up ontological axioms.

In summary, the network theories and ontologies can close-
ly interact with each other. First, the network theories provide
the framework on how to link clinical AE phenotypes and
internal causal mechanisms, guide the contents and logics of
the en t i t i e s to be represen ted in on to log ies in
pharmacovigilance studies. For example, the integrative onto-
logical modeling of the processes and factors leading to
vaccine/drug AEs (Fig. 7) is generated based on the guidance
of the OneNet theory. Without the theory, it is easy to miss the
whole picture of what to include in the ontological model. On
the other hand, the ontologies provide standard representa-
tions to support the standard description on the two network
theories. Without a standard ontological representation, the
network theories are hard to describe and be applied in various
situations. The integrative relations between the ontologies

and theories can be further illustrated when they are combined
to analyze fundamental pharmacovigilance questions as ex-
ampled below.

Combined Theories and Ontologies Support Integrative
Pharmacovigilance Research

Is that possible that the combination of the theories and ontol-
og i e s c an syne rg i s t i c a l l y s uppo r t i n t eg r a t i v e
pharmacovigilance research? As exemplified below, the au-
thor argues that the new theories can be used to generate new
and novel hypotheses, and since the large scope and complex-
ity of the hypotheses, the final addressing of the theory-
derived hypotheses will require the support of ontologies.

Derived from the OneNet theory, the author hypothesizes
that one human host uses one single mechanism to respond to
different vaccinations and drug treatments. This hypothesis is
based on the fact that one human being has one genotype and a
single OneNet blueprint; therefore, the same person would
respond to different medical interventions using the same
genotype-rooted OneNet mechanism. On the other hand, this
hypothesis appears against the obvious experimental observa-
tions that human uses different mechanisms against different
vaccinations and drug treatments. However, there is no con-
flict since these are essentially two different types of mecha-
nisms. The OneNet mechanism represents the blueprint de-
sign of the sum of interactions, pathways, and networks that
occur in the same human given any possible conditions. The
experimentally identified mechanisms are those that occur in
reality under specific conditions, and they are the

Fig. 7 Integrative ontological modeling of the processes and factors
leading to adverse events induced by a vaccine or a drug. The OAE-
based model is extended with the knowledge from the OneNet theory.

The model logically links the patient’s genotype, qualities (e.g., age), and
gene expression profiles before a vaccine/drug administration to the
adverse event. See the text for more details
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manifestations (or expressions) of the OneNet blueprint with
specific gene expression and molecular interaction profiles.
As a multicellular organism, a human includes trillions of cells
organized into tissues, organs, and organ systems. All the
human cells contain the same or essentially the same genotype
as seen in the zygote. Extending the above hypothesis, the
author further hypothesizes that all cells with the same geno-
type in a human share the same OneNet blueprint mechanism
although the blueprint manifestations in specific cells most
likely differ, and the OneNet blueprint includes mechanistic
design for how different cells interact with each other to form
the physical human body and collaboratively respond to var-
ious environmental factors. Based on such an OneNet-derived
framework, one ultimate goal of our research is to fully iden-
tify the comprehensive OneNet blueprint mechanism and use
it to predict specific OneNet manifestation profiles given dif-
ferent conditions such as a vaccine or drug administration.

While the above hypothesis targets on each person having a
single genotype-rooted OneNet blueprint mechanism, the
OneNet mechanisms from different people may share many
biological interactions, pathways, and networks. Each person
has a single OneNet mechanism due to its own original initi-
ation from one single cell and all cells sharing the same geno-
type source. Different people originate from different geno-
types (except those in monozygotic twins) in different cells
and thus have essentially different OneNet blueprint mecha-
nisms. However, all humans share human-specific genotype
contents, suggesting that different people have many shared
molecular interactions and pathways. In microbiology, a “pan-
genome” represents the union of the gene sets of all the strains
of a clade (e.g., species) [95, 96]. Such a pan-genome is com-
posed of a “core genome” containing genes present in all
strains, a “dispensable genome” containing genes present in
two or more strains, and “unique genes” specific to single
strains. Similarly, the human pan-genome is the nonredundant
collection of all human DNA sequences present in the entire
human population. A recent human pan-genome study has
found a large amount of novel sequences that are both popu-
lation and individual specific [97]. Genetic sequence varia-
tions also exist for the same genes and noncoding genomic
regions among different human genomes. In molecular biolo-
gy, an interactome is the whole set of molecular interactions
that occur in the cells of an organism (e.g., human) [98–100].
Inspired by the pan-genome and interactome concepts, the
author envisions that the OneNet blueprint for a specific or-
ganism (e.g., human) population includes a “pan-interactome”
and the human pan-interactomewould be composed of a “core
interactome” containing interactions present in all humans, a
“dispensable interactome” containing interactions present in a
population of humans, and “unique interactome” specific to
human individuals. The OneNet blueprint mechanism for the
whole human population can be considered as the pan-
interactome given all possible environmental conditions, and

different interactions then form pathways and networks. The
OneNet blueprint mechanism for a person would then include
a pan-interactome subset that is specific for this person. This
strategy would differentiate and integrate different people’s
OneNet mechanisms. One future task is to identify the shared
and differential mechanisms among different people, which
would facilitate basic mechanism studies and rational thera-
peutic design in both general and personalized medicines.

Since the above OneNet-derived hypotheses cover a huge
and complex scope of the dynamic interactions between ge-
notypes, environments, and phenotypes in one person or dif-
ferent people, it is difficult to study and address these hypoth-
eses for real specific applications without theory-guided onto-
logical representation and knowledge organization. A similar
situation occurred when a small number of chemical elements
were discovered in early 1800s.WhenDmitriMendeleev pub-
lished the first widely recognized Periodic Table of Chemical
Elements in 1869, there had been only 63 elements discov-
ered. The generation of such a periodic table led to correct
organization of published elements and prediction of new el-
ements and their attributes. Similar to the Periodic Table of
Chemical Elements that well-organizes chemical elements,
ontologies will allow semantic organization of complex bio-
logical entities and interaction networks among these entities.
The OneNet theory provides a framework for rational ontolo-
gy design for modeling and representing the complex biolog-
ical networks. While the Periodic Table of Chemical Elements
is relatively simple, the Table had been used as a very power-
ful platform for predicting new chemical elements.With much
more complex biological ontologies, it is much more difficult
to generate new hypotheses. Therefore, new ontology-based
algorithms and tools will need to be developed and evaluated
for real case studies. Many advanced computational modeling
methods and tools for complex systems have been developed
[84, 101, 102], which can be combined with existing theories
and ontology representations to better understand complex
organism systems including pharmacovigilance, leading to
precision medicine.

Discussion and Future Perspectives

The contributions of this paper are multiple. First, this paper
reviews standard and classical AE terminology systems
(including MedDRA, CTCAE, and WHO-ART) and three
AE-related ontologies (i.e., OAE, OVAE, and ODNAE).
Second, this paper reviews two network theories (i.e., the
Immune Response Gene Network Theory and the OneNet
theory) and proposes to use the two theories as the integrative
framework to systematically explain and analyze complex
network mechanisms in pharmacovigilance. Third, the author
proposes and explains a new OneNet effectiveness tenet to
cover the outcome of the whole OneNet process of an
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organism’s life. With this newly added tenet, the OneNet is
characterized by four features: blueprint, start, dynamics, and
effectiveness. Fourth, the author argues that the ontologies and
theories can closely interact with each other, and the combi-
nation of the theories and ontologies can be used to support
integrative pharmacovigilance research. Fifth, to better illus-
tration of such integrative research, the author proposes a nov-
el OneNet-derived hypothesis that differentiates and integrates
the single genotype-rooted OneNet blueprint mechanism in a
human and various expressions of the blueprint given specific
conditions, extends the hypothesis with new hypotheses, and
proposes ontology-based systems biology methods to study
these hypotheses.

While the standard AE terminologies are widely used to
support the evaluation of clinical trials, their shortcomings
have promoted the development of new ontologies related to
AE classification and analysis. The classical terminologies
classify specific AEs and higher level AE types with specified
hierarchical structures. However, these terminology systems
have their internal drawbacks such as the lack of robust hier-
archical structure and logical definitions, and their inability to
semantically link to patients’ attributes. As noted by FDA
scientists in a prominent Opinion article published in early
2012 [49], although MedDRA has served the public health
well, to continue to advance the drug safety, adverse drug
reaction (ADR) classification must “evolve beyond relatively
simple vocabularies and toward being the knowledge frame-
work for a systematic organization of all ADR-related data
and information” and such evolvement “promises to enable
new discoveries, inform researchers and regulators, and create
new biosurveillance capabilities.” The OAE and OAE-based
OVAE/ODNAE provide such knowledge frameworks for sys-
tematic organization, representation, and linkage of AE-
related information, including vaccines/drugs, patient, patient
quality, anatomic locations, biological mechanisms, biological
processes, and gene responses. As demonstrated in the OVAE
andODNAE data analyses [57, 63], such ontology knowledge
base representations also support data query and allow the
statistical correlations between different factors and meaning-
ful inference from one to the other.

Extending from the ontological knowledge frameworks, the
author proposes to use and integrate complex network theories
to further study scientific questions in pharmacovigilance. To
systematically study molecular mechanisms leading to AEs,
two theories are reviewed in this article. The Immune
Response Gene Network theory emphasizes the importance
of gene-driven activation of immune response pathways and
can be used to explain vaccine AE causality and study gene-
AE associations. The OneNet theory focuses more on the root
case analysis of the whole life process and is applicable for
studying the mechanisms of vaccine/drug AEs and linking
them to different conditions (e.g., genotype, age, and history).
The author also proposes to use ontologies to represent and

analyze various interaction networks covered by these theories.
Furthermore, to demonstrate the usage of the network theories,
the author derived a hypothesis on the unified mechanism of
each person (and even different people) to respond to different
medical treatments. This newly proposed hypothesis differenti-
ates one single OneNet blueprint design in one person and
various OneNet manifestation (or expression) profiles given
different conditions. Based on the hypothesis, the author pro-
poses an integrative framework of representing the comprehen-
sive OneNet blueprint mechanism using ontology, and
predicting OneNet manifestations in specific people given dif-
ferent conditions such as vaccination and drug administration.
While such a hypothesis is ambitious to tackle, integrated on-
tological and computational methodologies provide a feasible
strategy to address and study the hypothesis.

Although this article clearly demonstrates the critical role
of ontologies in systematic pharmacovigilance study, its effi-
cient usage meets the bottleneck of extensive time-consuming
efforts needed for ontology development. To overcome the
bottleneck, many software programs have been developed,
for example, the Protégé OWL editor [103] and the
BioPortal web ontology repository system [104]. In the past
years, the author’s laboratory has also developed a collection
of web-based “Ontoanimal” tools including OntoFox [105],
Ontodog [106], Ontorat [107], Ontobee [56], and Ontobeep
[108]. Each tool has specific functions; together, these tools
are able to extract ontology subsets, provide ontology com-
munity views, generate and edit ontology terms, query and
visualize ontology terms, provide statistics of ontologies,
and compare ontologies. These Ontoanimal tools have been
widely used to facilitate the development of various ontol-
ogies including the OAE [31], OVAE [57], and ODNAE [63].

Although extensive research has been done, there is still a
long way to go to fully understand how a human develops and
responds to a vaccine/drug administration. However, the author
is optimistic that the development of well-organized, theory-
guided ontologies will gradually and firmly increase the semantic
representation and organization of complex entities and interac-
tion networks. Furthermore, the theories will be developed and
used to generate new and novel hypotheses. Such theoretic and
ontological frameworks will lay out a solid foundation for the
development of more advanced computational algorithms and
the generation of new hypotheses, leading to integrated
pharmacovigilance research that better bridges and understands
clinical AE phenotypes and fundamental biological mechanisms.
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