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The complex pattern of cancer evolution poses a huge challenge to precision oncology. Longitudinal sequencing of
tumor samples allows us to monitor the dynamics of mutations that occurred during this clonal evolution process.
Here, we present a versatile toolbox, namely CELLO (Cancer EvoLution for LOngitudinal data), accompanied with a
step-by-step tutorial, to exemplify how to profile, analyze and visualize the dynamic change of somatic mutational
landscape using longitudinal genomic sequencing data. Moreover, we customize the hypermutation detection module
in CELLO to adapt targeted-DNA and whole-transcriptome sequencing data, and verify the extensive applicability of
CELLO in published longitudinal datasets from brain, bladder and breast cancers. The entire tutorial and reusable
programs in MATLAB, R and docker versions are open access at https://github.com/WangLabHKUST/CELLO.
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INTRODUCTION

Targeting tumor-specific mutations via customized che-
mical compounds can precisely eradicate the cancer cells
without harming healthy tissues, which paves a way
toward precision oncology. But this precision oncology
strategy has not been successful in many refractory
cancers such as glioblastoma (GBM). One of the main
obstacles is the limited understanding of cancer evolution,
in which cancer cells might acquire advantageous fitness
to revive under treatment stress.
To study cancer evolution, researchers attempt to

collect tumor samples from different locations (multi-
regional) and/or at different time points (longitudinal) of
the same patients. However, the collection of such data is
extremely challenging, partly due to tumor resectability.
To overcome this difficulty, one way is to integrate data
from multiple sources, which is able to increase statistical
power, potentially leading to new discoveries hidden in
large-scale public datasets. Recently, Wang et al.
integrated longitudinal genomic data of GBM patients

from six different sources [1], and this integration has
revealed the pattern of GBM evolution under therapy and
discovered several somatic mutations exclusively in the
tumors after treatment.
Here, we summarized the computational methods used

in this paper [1], developed an easy-to-use toolbox,
namely CELLO (Cancer EvoLution for LOngitudinal
data), and provided a step-by-step tutorial about how to
analyze and visualize longitudinal next-generation
sequencing data. Particularly, we analyzed several public
longitudinal genomic sequencing datasets, i.e., the whole-
exome sequencing of the matched blood samples, the
initial and the recurrent tumors from cancer patients, and
demonstrated how to:
� preprocess the raw sequencing data into a tabular

form of mutations;
� filter low-confidence somatic mutations;
� generate longitudinal mutational landscape;
� analyze mutational signature;
� cluster patients based on evolutionary patterns;
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� identify clonal switching events; and
� infer temporal order of somatic mutations.
Notably, through a multi-platform data integration

strategy, we extended the module of hypermutation
signature analysis to be able to identify hypermutators
from targeted DNA sequencing and RNA sequencing
data, originally developed and used in our previous study
on secondary glioblastoma [2]. Besides brain tumor data,
we tested CELLO using additional published datasets of
longitudinal sequencing bladder and breast tumors [3,4],
and illustrated that CELLO is applicable not only in brain
tumor, but also in other cancer types. To benefit
researchers who are interested in longitudinal cancer
genomics study for analyzing their own data, both
MATLAB and R versions of CELLO are developed. To
ensure reproducibility and usability, we also present a
docker version of CELLO based on the R implementa-
tion.

PREPARING AND PREPROCESSING OF
INPUT DATA

Mapping of DNA and RNA sequencing data

DNA sequencing (DNA-seq) of tumor samples is able to
profile somatic mutations and copy number variations in
cancer cells, while RNA sequencing (RNA-seq) is
commonly used to detect gene fusions and quantify
expression changes in transcriptome. In this tutorial, we
mainly focus on the analysis of whole-exome sequencing
of the tumor tissue and normal control (blood or tumor
adjacent normal tissue), as well as RNA-seq of tumor
tissue, longitudinally collected from cancer patients.
The raw sequencing data (FASTQ files) should first go

through quality control. The tool FastQC [5] is recom-
mended for this purpose. Low quality reads, such as those
with average sequencing quality< 20 or with more than
three ambiguous bases (“N”s), should be discarded. The
high quality reads can then be aligned to the reference
genome (such as hg19, which can be downloaded from
the following site http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/chromosomes/). BWA-MEM [6] is
recommended for mapping DNA-seq data, and STAR
[7] for mapping RNA-seq data. For DNA sequencing
data, duplicates from PCR (polymerase chain reaction)
can be removed using the FastUniq toolkit [8]. Gene
expression profile can be extracted from the RNA-seq
aligned files using FeatureCounts [9], Cufflinks [10] or
RSEM [11]. Analysis of the DNA-seq data is detailed as
below.

Somatic mutation calling using SAVI2

Somatic mutation calling is to identify somatic mutations

(single nucleic variants and small insertions/deletions)
that are solely carried by tumor cells rather than normal
cells. Statistical algorithm for variant frequency identifi-
cation (SAVI) is an empirical Bayesian framework that
models variant allelic frequency (VAF) [12]. Based on the
posterior distribution, SAVI can identify somatic muta-
tions whose VAFs in a normal control are significantly
lower than those in a tumor sample. SAVI2 pipeline
further integrated multiple external databases and multi-
step filters to rule out common single-nucleotide poly-
morphisms (SNPs), potential technical errors, strand-
biased variants, and a number of other types of low-
quality variants. Notably, unlike most mutation callers,
SAVI2 is able to call mutations for sequencing data from
multiple samples at one execution, which is an important
advantage in the longitudinal sequencing data analysis.

Analysis of copy number alterations

Commonly used copy number alteration (CNA) detection
tools, such as EXCAVATOR [13], can be used to detect
copy number alterations from the WES data. EXCAVA-
TOR implemented a three-step normalization step to
reduce the bias from GC contents, genomic mappability
and exon size, all of which may significantly impact CNA
calls. Other tools such as CNVkit [14] can also be used,
and it is important to calibrate the method using existing
data and the reported CNA results to ensure the reliability
of the tools. For samples with only RNA sequencing data,
CNAPE will be used to infer the copy number change
[15].

Detection of gene fusions

Detection of gene fusions typically start from FASTQ
files from RNA-seq. ChimeraScan [16] is recommended
to generate the raw gene fusion candidates because of its
high sensitivity, but other tools such as STAR-fusion [17]
can also be used. The candidates can then be processed by
Pegasus [18] to annotate the gene fusions and prioritize
the fusions based on their functional importance using a
machine learning model. False positives and passenger
gene fusions can then be filtered out based on the score
and the number of supporting reads. It is recommended to
validate the presence of the selected gene fusions using
PCR and Sanger sequencing.

MATERIALS

Software

The whole CELLO pipeline requires the following
software packages:
� SAVI2 and its dependent packages:
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• Python (2.7 preferred);
• Scipy;
• Java;
• Samtools (v1.2);
• SnpEff (v4.1 C);
• tabix (v1.7);
• bgzip (v1.7);
• vcflib;

� Bedtools (v2.26.0); and
� MATLAB (R2016b) or R (version 3.6.1).

Example dataset

The required input file is a tabular data of mutations with
additional functional annotations from SnpEff [19], a
dependent package called from SAVI2, and the two
neighboring bases of the mutated position acquired by
Bedtools [20] getfasta command. In this tutorial, we
provided an example data of mutations from 90 GBM
patients before and after treatment previously published
[1]. Particularly, each patient in this dataset has three
biological samples: blood, primary and recurrent tumors.
The whole exome of those 270 samples were sequenced,
and the output sequencing raw data were aligned to the
reference genome (hg19) using BWA-MEM (Fig. 1A).
Using SAVI2 and Bedtools, we derived a mutation table
consisting of 56,242 rows/mutations and 27 columns/
features (Fig.1B, raw data file: input.savi.txt in the
GitHub repository). The detailed description of each
mutation feature is listed in Table 1.

PROTOCOL

First of all, we provided a functional content of CELLO
toolbox by listing the usage, input and output of each
function in Table 2. Next, we explained in details how to
use each function and what is the implication of the output
result.

Clean data

First, we filtered out the mutations with allelic frequency
less than 5% in both initial and recurrent tumors. We then
defined somatic mutations in tumors by using the
following criteria: (i) read depth of blood higher than 20
(default parameter); and (ii) number of altered reads in the
control as 0 or 1. In CELLO, one can read in and clean the
data using the following MATLAB or R codes.

MATLAB code:
saviTable = mutRead('input.savi.txt');
R code:
source('CELLO.R')
savi.table < - mutRead("input.savi.txt", 20, 1, 5)

Generate figures for longitudinal mutational
landscape

A mutational landscape is to display a global picture of
mutation occurrence in a tumor type using a grid heatmap,
e.g., oncoprint. For longitudinal data analysis, one patient
has two (or more) tumor samples, and hence a mutation
may be (i) conserved in the both samples, (ii) present in
the initial sample but disappear in the recurrent sample,
and (iii) absent in the initial sample but newly emerge in
the recurrent sample. Here we provide a customized
mutational landscape to visualize the presence/absence of
mutations during tumor progression using different
colors. In practice, we first marked the key driver genes
(knownDriverGene) in the data table (saviTable) and
input them to the relevant function, mutLandscape(),
which will automatically generate the longitudinal land-
scape (Fig. 1C). For example, using 12 patients in the
example dataset, Fig. 1C displays for each patient in each
column that (i) the number of somatic mutations in the
stacked bar plot (upper panel) with shared mutations in
yellow, primary-private mutations in red and recurrence-
private mutations in black, and (ii) the presence of key
functional drivers in the heatmap (lower panel) using the
same color theme. Note that this layout design provides a
general glance of mutational dynamics in cancer evolu-
tion, and works for patients with two tumor samples only.
To further display the co-occurrence and mutual

exclusivity between different mutations, we performed
Fisher’s exact test (FET) for each pair of key driver
mutations/phenotypes and highlighted the significant
pairs in a pyramid-shaped scatter plot (Fig. 1D). These
comparisons were performed within primary and recur-
rent samples and shown on the left and right halves of the
pyramid, respectively. Concretely, mutation in gene 1 co-
occurs with mutation in gene 2 in 25 out of 100 recurrent
samples, which leads to significant co-occurrence in the
FET (odds ratio> 1, P value< 0.0001). In contrast,
mutations in gene 2 and gene 3 exhibit a mutual exclusive
pattern in primary samples (odds ratio< 1, P value<
0.0001). We screened each pair between mutations and
phenotypes, and highlighted the significant co-occurrence
and mutual exclusiveness using larger dots, compared to
the smaller dots in grey denoting insignificant pairs.
Significant co-occurrences in primary and recurrent
samples are shown in red and black, respectively, whereas
mutual exclusiveness are in green with red/black border
denoting sample type. This figure can reveal statistically
significant associations between mutations and pheno-
types which are worth further investigation for potential
causality.
Furthermore, we use a 3D scatter plot to display the

proportion of each mutation present in each patient in
three categories: commonly shared in both primary and
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Figure 1. CELLOFramework. (A and B) Pre-processing: sequence alignment (A) and generation of somatic mutation table (B). (C) Generation
of longitudinal mutational landscape. (D) Pairwise correlation analysis of mutations for co-occurrence or mutually exclusivity. (E) Bubble plot

characterizing longitudinal enrichment of mutations. (F–H) Genomic characterization of somatic hypermutation: (F) Hypermutation identification
by scatter plot of mutation load versus hypermutation score of each tumor sample; (G) Composition of nucleotide changes in primary, non-
hypermutated and hypermutated samples in stacked bar plot; (H) Ratio of silent over missense mutations in primary, non-hypermutated and

hypermutated samples in violin plot. (I) 3-D plot for moduli space embedding of phylogenetic trees. (J) Tumor evolutionary directed graph.
(K) Identification and visualization of clonal switching events during cancer progression.
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recurrence, primary only and recurrence only (Fig. 1E). A
mutation occurred more frequently in common will be
located close to the upward axis in yellow, while the one
present more in either primary or recurrence will be
located close to leftward axis in red and rightward axis in

black, respectively. For example, Fig. 1E shows muta-
tions in gene 1 close to the upward axis in yellow, as
majority of the mutations are observed before and after
recurrence. Similarly, the mutations in gene 2 present in
primary are not always inherited in the recurrent tumor,

Table 1 Description of mutation features
Column Feature name Example Description

1 chr chr2 Chromosome

2 pos 209113112 Chromosomal position

3 ref C Nucleotide in reference genome

4 alt T Nucleotide in sample genome, i.e., variant allele

5 Effect missense_variant Functional effect of variant*

6 Effect_Impact MODERATE Impact of the variant effect: HIGH, MODERATE, LOW

and MODIFIER

7 Functional_Class MISSENSE Class of functional effect*

8 Codon_Class cGt/cAt Codon change

9 Amino_Acid_Change R132H Amino acid change

10 Amino_Acid_length 414 Total length of protein in unit of amino acid.

11 Gene_Name IDH1 Standard gene name, comma-separated multiple names

when the position (column 2) is covered by multiple genes

12 Sgt1_max_frequency 52 Max variant allele frequency (VAF) among non-control

sample, i.e., max (Primary_freq in column 17, recurrent_-

freq in column 18)

13 totdepth_Blood 43 Sequencing depth covered pos (column 2) in blood/

control

14 totdepth_Primary 38 Sequencing depth covered pos (column 2) in primary

tumor

15 totdepth_Recurrent 48 Sequencing depth covered pos (column 2) in recurrent

tumor

16 Blood_freq 0 VAF in blood/control, [0, 100]

17 Primary_freq 47 VAF in primary tumor, [0, 100]

18 Recurrent_freq 52 VAF in recurrent tumor, [0, 100]

19 refdepth_Blood 43 Number of reads supporting the ref base (column 3) in

blood/control

20 altdepth_Blood 0 Number of reads supporting the alt base (column 4) in

blood/control

21 refdepth_Primary 20 Number of reads supporting the ref base (column 3) in

primary tumor

22 altdepth_Primary 18 Number of reads supporting the alt base (column 4) in

primary tumor

23 refdepth_Recurrent 23 Number of reads supporting the ref base (column 3) in

recurrent tumor

24 altdepth_Recurrent 25 Number of reads supporting the alt base (column 4) in

recurrent tumor

25 CaseID R009 Patient ID, used in Ref. [1]

26 varPrefix A One reference base upstream (toward 5′ end on sense

strand) from the pos (column 2), i.e., chr2: 209113111

27 varSuffix G One reference base downstream (toward 3′ end on sense

strand) from the pos (column 2), i.e., chr2: 209113113

*The functional effects of variants in our dataset primarily include synonymous variant (SILENT), missense variant (MISSENSE), stop gained

(NONSENSE), frameshift variant, in-frame deletion, etc.

260 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Biaobin Jiang et al.



whereas the mutations in gene 3 are only observed in
recurrence. This figure can highlight evolutionary con-
servation of driver mutations, and recurrence-enriched
mutations for further investigation of potential recur-
rence-driving role. In practice, the longitudinal landscape,
pairwise correlation, and primary-recurrence enrichment
of mutation frequency can be computed and automatically
visualized by CELLO as follow.

MATLAB code:
knownDriverGene ={'TP53','ATRX','IDH1','EGFR',

'PTEN' , 'P IK3CA' , 'P IK3R1' , 'P IK3CG' , 'PDG-
FRA','RB1','NF1', 'PTPN11','LTBP4'};
[saviTable, mutGeneTable] = mutStats(knownDri-

verGene, saviTable);
hland = mutLandscape(saviTable, mutGeneTa-

ble);
hcom = mutCorrelation(mutGeneTable);
h3d = mutFrequency(mutGeneTable);
R code:
knownDriverGene < -c('LTBP4','PTPN11','NF1',

'RB1','PDGFRA','PIK3CG','PIK3R1','PIK3CA','PTE-
N','EGFR','IDH1','ATRX', 'TP53')
stats < - mutStats(savi.table, knownDriverGene, 5,

remove_LOW= TRUE)
mutLandscape(stats$mutNum.table, stats$mut-

Genes.table)
mutCorrelation(stats$mutGenes.table)
freq.table < - mutFrequency(savi.table, knownDri-

verGene, stats$mutGenes.table, 5)

Analyze mutational signature and hypermutation

It is known that the treatment of alkylating agent, i.e.,
temozolomide (TMZ) for GBM patients might induce
somatic hypermutation in cancer cell. The TMZ-induced
mutations can be characterized by a special type of
mutational signature, i.e., CC>TC [21]. To rapidly
calculate this TMZ-induced signature, we proposed a
customized Hypermutation score (HM score) to capture
the main characteristics of this signature as previously
described in our sGBM study [2], and combined it with
tumor mutation load to sort out the TMZ-induced
hypermutated samples. Recall that the HM score formula
is mathematically described as the summation of three
terms: (i) the fraction of C>T mutations, (ii) the fraction
of the dominant mutation type CC>TC among all the
C>T mutations, and (iii) the fraction of the secondary
mutation type CT>TT among all the C>T mutations.
Notably, this secondary type is not uniquely contributed
by TMZ treatment [21], and therefore its fraction should
not contribute to the HM score when it becomes the
dominant type within all the C>T mutations. As
previously described [2], the HM score is mathematically
formulated as

HM=
f C↕ ↓TðNÞ

ML
þ f C↕ ↓TðCÞ

f C↕ ↓TðNÞ

þ signðf C↕ ↓TðCÞ – f C↕ ↓TðTÞÞf C↕ ↓TðTÞ
f C↕ ↓TðNÞ

,

Table 2 CELLO functional content
Function name When to use Input Output

mutRead [must-do] Read savi table and filter

somatic mutations

Savi file path Mutation table

mutStats [must-do] Count and calculate driver

genes in each sample

Known driver gene

list

Driver table

mutLandscape Generate a longitudinal mutational

landscape

Mutation table and

driver table

Stacked bar and heatmap of mutational

landscape

mutCorrelation Identify co-occurrence and mutual

exclusiveness between mutations

Driver table Scatter plot highlights significant

pairwise mutation correlation

mutFrequency Identify conserved, primary-private, or

relapse-private mutations

Driver table 3-D scatter plot displays mutation

enrichment in common, primary or

relapse

mutSignature Identify hypermutated samples induced

by treatment

Mutation table 2-D scatter plot displays mutation load

and signature score of each sample

mutTreeClustering Identify evolutionary mode of each patient’s

tumors: linear vs. branched

Mutation table Moduli space illustrates relative similar-

ity of phylogenetic tress among patients

mutDirectedGraph Infer mutation order in tumor

evolutionary history

Mutation table Tumor evolutionary directed graph

mutSwitch Identify clonal switching events as

evidence of branched evolution

Mutation table Curves displays allele frequencies of two

different mutations of one gene in the

same patient before and after relapse
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where ML indicates mutation load; and the function
fC! T(x) is the number of nucleotides mutating from C
into T where x represents the flanking nucleotide of the C
at the 3-prime direction in the reference genome. And the
letter N denotes any bases A, T, G or C. The function sign
(y) = 1 if y>= 0, and -1 otherwise, which determines
whether CT>TT positively contributes to the HM score
or not. To highlight the hypermutated samples from the
cohort, we visualized the number of somatic mutations (a.
k.a., mutation load) and the HM score of each sample in a
2D scatter plot with initial samples in red squares and
recurrence samples in black circles (Fig. 1F). In our case,
a hypermutated sample is determined through a cutoff of
350 mutations or more in whole-exome scale, and the
hypermutation is attributed to TMZ induction if the HM
score is higher than 1.3, as shown within the grey shaded
area (Fig. 1F). This figure is able to visualize hypermu-
tated tumor samples with particular characteristic, and we
expect that it is also applicable in hypermutated lung
cancer with smoking signature and hypermutated skin
cancer with ultraviolet signature. Complementarily, we
provided a stacked bar plot displaying the proportion of
each nucleotide change type, 6 in total when considering
base-paring rule (see the legend, Fig. 1G), for each sample
in three categories: primary (red squares in Fig. 1F), non-
hypermutated relapsed (black circles in lower left corner,
Fig. 1F) and hypermutated relapsed samples (black circles
in upper right corner, Fig. 1F). This figure will highlight
the enriched type of nucleotide change in the hypermu-
tated samples, compared to the non-hypermutated
samples (C>T or G>A in our GBM case). In addition,
we also displayed the distribution of silent/missense ratio
of each sample among the primary, non-hypermutated
recurrence and hypermutated recurrence categories
(Fig. 1H). This figure is used to visualize whether or
not hypermutation imposes selective pressure in tumor
evolution. In practice, one can use the mutSignature()
function in CELLO to complete the above analysis and
visualize the corresponding results as follow.

MATLAB code:
hsig = mutSignature(saviTable);
R code:
hm.table < - mutSignature(savi.table, 15, 350, 1.3)

Cluster patients based on evolutionary pattern

With different shapes of phylogenetic tree, cancer
evolution follows different patterns: linear, branching,
neutral or punctuation [22]. Moduli space is a geometric
space of phylogenetic trees (Fig. 1I). Clustering analysis
on the Moduli space can categorize the embedded trees
with different evolutionary patterns. Particularly, we first
constructed a phylogenetic tree of the initial and recurrent

tumors of each patient with three branches: the branch of
common mutations in yellow, the branch of primary-
private mutations in red and the branch of recurrent-
private mutations in black, and then embedded the trees
into a Moduli space (Fig.1I). In this space, each dot
represents a phylogenetic tree of a patient, and the
coordinates of this dot are calculated by the structure and
the branch length of the phylogenetic tree. Clustering
those trees/patients on the Moduli space using un-
supervised clustering methods such as k-means algorithm
can group patients with similar phylogenetic trees into the
same categories. In particular, the patients with a long
trunk and extremely short branches in the tumor
phylogenetic tree are deemed to follow a linear growth
pattern, as illustrated on the top of the Moduli space in
Fig. 1I. In contrast, the patients whose recurrent tumors do
not inherit majority of mutations in the initial tumors
(bottom-left corner and the center) are deemed to follow a
branching pattern as the clonal structure of initial and
recurrent tumors are dramatically different. In addition,
the patients located in the bottom right corner are those
developing hypermutation after TMZ treatment, whose
phylogenetic trees have extremely long branch in black
representing the number of recurrence-private mutations.
In practice, the moduli analysis can be easily accom-
plished in a few seconds by CELLO with function
mutTreeClustering() in MATLAB or R as follow.

MATLBA code:
hmod = mutTreeClustering(saviTable);
R code:
cluster.table < - mutTreeClustering(stats$mutNum.

table)

Infer the order of somatic mutation using TEDG

Tumor evolutionary directed graph (TEDG [23]) is a
computational model to infer and integrate mutation
orders of multiple cancer patients into a directed graph of
highly recurrent trajectories. This model was successfully
applied in the longitudinal genomic data analyses of
chronic lymphocytic leukemia [23] and GBM [1], and is
generally applicable in other cancer types with tumor
genome sampling conducted at two time points or more.
A TEDG consists of major functional driver variants as
the nodes (Fig. 1J). In the TEDG, one directed edge from
gene 1 to gene 2 represents the gene 1 occurs earlier than
the gene 2 in tumor progression. The thickness of the
edges is proportional to the occurrence of this order, i.e.,
how many patients have this mutation order in their
temporally sampled tumors. The color gradient of nodes
stands for the evolutionary direction from early events
(red) to late events (black), which is quantified by the ratio
of indegree and outdegree of each node. And the size of
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the nodes is proportional to the occurrence of the
mutations. In practice, the TEDG can be constructed by
the function mutDirectedGraph() with optional decon-
volution using minimum spanning tree.

MATLAB code:
G= mutDirectedGraph(saviTable, true);
R code:
TEDG< - mutDirectedGraph(Stats$mutGenes.

table)

Identify “clonal-switching” events

Clonal switching refers to the switch between differen-
tially mutated versions of the same gene in the initial and
recurrent tumor of the same patient. In Fig. 1K, we
illustrate this event by showing two different mutated loci
of the same gene before and after recurrence. Notably, the
red mutant present in primary genome disappears in the
recurrence genome, whereas the black mutant is newly
emerging in the recurrence. This phenomenon has been
reported in multiple cancer types such as renal cell
carcinoma [24,25] and glioblastoma [1]. Clonal switching
events are often observed in key driver genes. Since the
possibility of back-mutation is extremely low, the
different versions of mutations are believed to be
developed independently, indicating a branched evolution
of the initial and recurrent tumors. In our case, one can use
the mutSwitch() function in CELLO to identify and
visualize the clonal switching events as the following
MATLAB or R code.

MATLAB code:
hsw = mutSwitch(saviTable, 'PDGFRA');
R code:
switch.table < - mutSwitch(savi.table, knownDri-

verGene, 5, 20)

EXTENSION OF HYPERMUTATION
DETECTION TO TARGETED DNA AND
WHOLE-TRANSCRIPTOME
SEQUENCING DATA

Built upon the original hypermutation method as men-
tioned above, we extended our pipeline of the hypermuta-
tion detection to targeted DNA and whole-transcriptome
sequencing data derived from our previous study on
secondary glioblastoma (sGBM) [2]. To achieve this
extension, we added extra filters to rule out sequencing
noise and alignment artifacts in the DNA-targeted and
RNA sequencing data (Fig. 2A). In particular, to remove
sequencing noise in targeted data, we increased the VAF
cutoff to 7%. And to remove potential uncommon
germline variants and the alignment artefacts in RNA

data, we removed the RNAvariants with VAF> 40% and
the variants close to splice regions. Using the 43 whole-
exome, 63 targeted-DNA and 51 RNA sequencing data
from the sGBM cohort, CELLO identified 4, 6 and 8
hypermutated samples with extensive mutation load and a
score of TMZ-induced signature larger than 1.3 (Fig. 2B–
D). Within the 18 hypermutated samples in total, one
sample was sequenced by both targeted-DNA and RNA
platforms, and our pipeline deemed this samples as
hypermutated in the both platforms, which verified the
consistency and robustness of our pipeline under different
sequencing protocols. Remarkably, the hypermutated and
non-hypermutated RNA-seq samples are inseparable
solely using the mutation load (Fig. 2D), but the gap of
HM score is sufficiently large for a high-confidence
separation, demonstrating that our additional filters
preserve the hypermutation signature.

EXTENSION OF ANALYTICAL PIPELINE
TO ADDITIONAL CANCER TYPES

To demonstrate that CELLO is applicable in other public
datasets of longitudinal tumor sequencing, we collected
two additional datasets from bladder cancer [3] and breast
cancer [4]. Based on the phylogenetic tree topology,
CELLO divided the patients into three clusters on the
Moduli space (Fig. 2E–G). Similar to glioma (Fig. 2E),
CELLO identified six bladder (Fig. 2F) and three breast
cancer patients (Fig. 2G) undergoing a branched evolu-
tionary mode under therapy.
In addition to glioma, CELLO constructed the TEDGs

of the bladder and breast cancer patients (Fig. 2H–J).
Unlike TP53 mutation as an early event and PIK3CA
mutation as a late event in glioma (Fig. 2H), we observe
they are both late events in the bladder cancer cohort
(Fig. 2I), and early events in breast cancer cohort (Fig.
2J). This observation implies that the same gene may play
different roles in the tumor evolution depending on the
tissue of origins.

DISCUSSION

We developed CELLO, a versatile toolbox for compre-
hensive analysis of tumor evolution given longitudinal
sequencing samples, following the previous work pub-
lished on brain cancer [1]. In this protocol, we elaborated
the technical details with interpretation on how to use
CELLO to analyze longitudinal tumor sequencing data in
brain, bladder, and breast cancers, and how to detect
hypermutation signature in the brain tumor data from our
previous study [2] generated by different sequencing
protocols and platforms. Having these detailed workflow,
one can use it to uncover evolutionary behaviors of other
cancer types with customized modifications. We antici-
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Figure 2. CELLO extension and applicability. (A) Overview of CELLO extension pipeline for hypermutation detection in cross-platform
sequencing data. (B–D) The hypermutation module of CELLO is applied to additional whole-exome (B), targeted-DNA (C) and RNA sequencing
data (D) of brain cancer. All the filled dots are deemed to be hypermutated samples. (E–G) Phylogenetic trees of brain (E), bladder (F) and breast

(G) cancer patients are projected in Moduli space by CELLO. (H–J) Tumor evolutionary directed graphs constructed by CELLO using the
longitudinal genomic data of brain (H), bladder (I) and breast (J) cancers.
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pate that more researchers can use CELLO to reveal the
global picture of pan-cancer evolution, which can provide
a guidance on how to target cancer evolution so as to
prevent from deadly relapse.

SUPPLEMENTARY MATERIALS

The supplementary materials and corresponding software are available

online at https://github.com/WangLabHKUST/CELLO.
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