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Background: The direct-to-consumer genetic testing (DTC-GT) industry has exploded in recent years, initiated by
market pioneers from the United States and quickly followed by companies from Europe and Asia. In addition to
their primary objective of providing ancestry and health information to customers, DTC-GT services have emerged
as a valuable data resource for large-scale population and genetics studies.
Methods: We assessed DTC-GT market leaders in the U.S. and China, user participation in research, and academic
reports based on this information. We also investigated DTC-GTend-user value by tracing key updates of companies
provided via health risk reports and evaluating their predictive power. We then assessed the replicability of several
genome-wide association studies (GWAS) based on a Chinese DTC-GT biobank.
Results: As recent entrants to the market, Chinese DTC-GT service providers have published less academic research
than their Western counterparts; however, a larger proportion of Chinese users consent to participate in research
projects. Dramatic increases in user volume and resultant report updates led to reclassification of some users’
polygenic risk levels, but within a reasonable scale and with increased predictive power. Replicability among GWAS
using the Chinese DTC-GT biobank varied by studied trait, population background, and sample size.
Conclusions:We speculate that the rapid growth in DTC-GTservices, particularly in non-Caucasian populations, will
yield an important and much-needed resource for biobanking, large-scale genetic studies, clinical trials, and post-
clinical applications.
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Author summary: Direct-to-consumer genetic testing in China has exploded over the past five years. Chinese DTC-GC
users are overwhelmingly willing to participate in research initiated by service providers. As most of these users are non-
Caucasian, we evaluated the reliability of GWAS-derived polygenic disease reports using populations of predominantly
European ancestry and found that prediction power increased alongside new GWAS loci integration. In assessing the
outcomes of different GWAS, replicability varied among studies with different ethnic backgrounds and sample sizes. We
speculate that Chinese DTC-GT databases represent valuable biobanks for genetic studies and clinical applications.

INTRODUCTION

In the framework of basic medical services, genetic tests
are rarely offered by medical professionals other than
genetic counselors and justice services; from a medical

perspective, such tests are focused on the prevention of
severe Mendelian disorders or birth defects, or tumor
genotyping or paternity tests. In recent decades, however,
technological innovation has enabled large-scale genetic
screening, including population genomics and genome-
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wide association studies (GWAS), significantly expand-
ing our knowledge as to the genetic underpinnings of
common diseases and traits [1,2]. In light of identified
associations between genomic variants and polygenic
traits and the decreased cost of high-throughput genotyp-
ing, several direct-to-consumer genetic testing (DTC-GT)
companies now offer genetic reports without requiring a
medical professional intermediary.
In 2007, 23andMe, a company based in the United

States, became the first DTC-GT service to provide
personal genomics services, sending saliva sampling kits
to users who returned them for analysis against a discrete
subset of several thousand genetic markers. According to
an estimation from MIT Technology Review [3], by
January 2019, 26 million U.S. consumers, or roughly 8%
of the country’s population, had tested their DNA via one
or more such DTC-GT services. DTC-GT user will-
ingness to participate in research has substantially
increased the biobank-scale genotype and phenotype
database; starting in 2012, these companies became active
participants in population genomics and health studies.
From 2013 to 2018, Chinese DTC-GT services delivered
around one million DNA tests to Chinese users [4].
Considering the population volume in East Asia alongside
its non-European background, the Chinese DTC-GT
market represents a potentially valuable contribution to
the academic community with room for development.
DTC-GT services have also aroused concerns and

fomented debates regarding risk assessment reliability,
clinical utility, consumer perceptions, and ethical issues
[5–8]. In some investigations, the reproducibility of DTC-
GT assessments was evaluated among different DTC-GT
companies, reporting high concordance rates for SNP data
but inconsistent disease risk predictions [9–12]. The
predictive power of some reports has also been evaluated
by case studies, and Graves’ disease, type 2 diabetes,
lupus, Alzheimer’s disease, restless leg syndrome, Crohn
disease, age-related macular degeneration, and celiac
disease were found to have the highest prediction power
[7,13]. To the best of our knowledge, large-scale
systematic evaluations of DTC-GT’s genetic assessments,
in particular from the service providers themselves, have
yet to be published. Currently, updates to health reports
intended to integrate new GWAS outcomes may result in
reclassification of one’s predicted risk levels long after
DNA results were delivered, leading to user confusion
and complicating clinical practice. Investigations therein
suggest a reclassification rate ranged from 16.3% to
24.4% [14]. A reassessment of their predictive power,
followed by risk level adjustment, has yet to be under-
taken and thereby undercuts the reliability of different
DTC-GT services.
Compounding this issue, the applicability of GWAS

results and corresponding polygenic risk assessment to

non-Caucasian populations range from uncertain to
downright misleading [15–17] since nearly all GWAS
data comes from studies performed on predominantly
European-ancestry (white) populations [18]. This situa-
tion presents risks and opportunities for DTC-GT services
of non-European populations, such as the Chinese. While
current knowledge may not be in alignment with local
users, large cohort studies with Chinese populations are
on the rise [19,20]. This may enable future GWAS
outcomes from local research with relatively small sample
sizes to be validated by biobank-scale datasets. Increasing
the size and diversity of the global DTC-GT database
could essentially improve GWAS replication efficacy and
new association discovery.
This investigation analyzes user growth, rates of user

participation in research, and academic outcomes of
investigations conducted by major DTC-GT service
providers in the U.S. and China. GWAS-derived DTC-
GT reports were systematically evaluated for reliability
through analysis of the distribution of polygenic risk
scores (PRS) for multiple WeGene polygenic disease
reports and tracing of risk level reclassifications over
time. Results were directed towards assessing purported
increases in predictive power from these companies. We
also evaluated the reproducibility of several GWAS
outcomes from the WeGene Biobank, including trans-
ethnic or cross-ethnic studies, and of investigations with
relatively small sample sizes.

RESULTS

Rapid growth of Chinese DTC-GT market

Founded in 2014 and 2015, respectively, WeGene and
23Mofang are leading the genetic testing upsurge in
China, providing microarray-based, high-throughput
genotyping products to customers similar to analyses
provided by 23andMe and AncestryDNA in Western
nations. Five-year user growth patterns for Chinese DTG-
GT providers (Fig. 1B) are comparable to those for U.S.
pioneers (Fig. 1A). The first wave of rapid growth in
DTC-GT in China emerged in 2017 and 2018 and
benefited from cost reductions in genotyping and a
dynamic capital market in medical and health fields. In
2017, WeGene was the first to offer a whole-genome
sequencing (WGS) service directly to consumers, and
23Mofang followed with a whole-Y chromosome
sequencing and analysis service. In 2019, Hong-Kong
S.A.R.-based CircleDNA entered the Chinese mainland
market, offering a whole-exome sequencing (WES)
service. Recent research estimates that around one million
Chinese had availed themselves of a DTC-GT service as
of 2018 [4].
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Published studies from DTC-GT service providers

DTC-GT databases have also emerged as a valuable
resource for population genomics and genotype-pheno-
type association studies. 23andMe has been an active
participant in the academic community since 2010 [23]
(Fig. 2A), with research focused on human health, traits,
and behaviors. 23andMe is also heavily involved in
ethical, legal and social implications (ELSI) topics
surrounding genetic testing. Chinese service providers
followed suit beginning in 2017. Like their U.S. counter-
parts, Chinese service providers have published studies
on biogeographic ancestry and population genomics
[24–29], and on method development [28,30] (Fig. 2B);
these assessments, however, do not rely on the ethically
problematic large-scale collection of phenotypic data. To
the best of our knowledge, the only published GWAS
study of a phenotypic trait in the Chinese population was
on photic sneeze reflex [31], with no health-related
studies having been published as of 2019.

User participation in genetic research

By October 2019, 98.0% of WeGene profiles (Note: a
single user account may include multiple genetic profiles)
were accompanied by consent to use the genetic and
phenotypic data for research purposes. This is much
higher than the 80% participation rate for 23andMe users
[23]. Among WeGene users, 97.5% of the company’s
profiles allowed access for genealogy matching. Of these,
56.6% have participated in at least one of 662 third-party
trait reports (PocketDNA), contributed by WeGene
customers via the open API platform. User activation
and retention are high, with 86.0% of customers having

visited at least one WeGene online platform (website,
mobile app, WeChat platform) over the past six months,
and 77.1% over the past three months. Averages for
23andMe are approximately 60% over three months [32].
Basic information sharing is also high, with 99.6% of

consented profiles reporting biological sex and 94.9%
reporting date of birth (Fig. 3A). Current residence,
ancestral home (defined as the birthplace of the
participant’s father’s father which is recorded in the
citizen residence registry in China), ethnic group, and
surname were provided by 46.6% to 47.0% of profiles
(Fig. 3A). In phenotype collection, the most provided
traits are height and weight, with over 41,000 reports
submitted (Fig. 3B). Among the 33 research projects on
the WeGene open platform, 15 were self-conducted
investigations, and 18 were collaborative studies.
Among consented profiles, 48.4% have participated in
at least one research project. Over 10,000 responses were
collected from questionnaires about stress and mental
traits, eyelid type, sleep pattern, color recognition, and
blood type (Fig. 3B).

Reclassification of risk level for polygenic health
reports

Three polygenic diseases, Alzheimer’s disease (AD) [33–
66], type 2 diabetes (T2D) [67–92], and schizophrenia
(SP) [20,93–106], were selected to assess user risk level
reclassification, as were growth in user numbers and
report updates following synthesis of added GWAS
outcomes. Normalized PRS and risk levels were calcu-
lated for the first 100, 300, 1,000, 3,000, and 10,000 users
using the first version of WeGene from 2015, and then for
each key update through October 2019 (Supplementary

Figure 1. Customer growth for major DTC-GT service providers in the U.S. (A) and China (B). User information for the U.S. was

acquired from the International Society of Genetic Genealogy Wiki [21]. Chinese data were acquired from a market research report
[4] and news [22].
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Figure 2. Scientific publications from DTC-GT service providers from the U.S. and China. (A) Publications by 23andMe.
(B) Publications from other U.S. and Chinese companies.

Figure 3. WeGene profiles sharing basic information and phenotypes. (A) Percentages of profiles with basic information, including

date of birth, sex, current residence, ancestral home, ethnic group, and surname. (B) The most participated trait collections, led by
height and weight, stress and mental traits, eyelid type, sleep pattern, color, and blood type.
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Table S1, Data S1). Increased numbers of users did not
change the overall PRS distribution per Pearson’s
correlation between user amount and PRS interquartile
range (IQR) at p = 0.66 but did add smoothness. A two-
tailed F-test for the variances of the PRS of two adjacent
sampling points resulted in p> 0.05, with the exception
of a single significant case wherein user numbers
increased from 1,000 to 3,000 for the AD report, which
came out to p = 0.004 (Fig. 4A). As the number of loci
increased along with report updates, the PRS distribution
broadened concomitantly (Pearson’s coefficient: 0.74,
p = 0.0035; two-tailed F-test: p< 0.0001).
Observed risk level reclassification after report updates

occurred on a reasonable scale (Fig. 5). Between two
adjacent versions of reports, 76.2%�12.0% users’ risk
levels remain unchanged, 22.1%�10.7% were reclassi-
fied to an adjacent level, and extreme alterations (high to
low or medium-low, or low to high or medium-high) were
only observed in 0.010%�0.019% of cases.
As most GWAS data were derived from European

populations, cross-ethnic replication of GWAS loci and
applicability of the GWAS-based PRS models remain

unclear. We evaluated the predictive power of polygenic
disease reports by analyzing user feedback on AD family
history. In total, 10,435 individuals reported a family
history of AD, and 1,763 individuals (16.9%) reported at
least one positive AD case in a parent or grandparent. The
predictive power of correlation testing between disease
risk levels and family history is expected to improve
following increasing numbers of users and integration of
new GWAS outcomes, as shown by a trend towards
increased odds ratios and narrower confidence intervals
(CIs) (Fig. 6).

Replicability of GWAS results

Seven association studies were selected for validation in
WeGene Biobank, including single nucleotide poly-
morphism (SNPs) originally identified in European
populations and studies with relatively small sample
sizes.
Studies in Caucasian populations indicated that apoli-

poprotein E (ApoE) genotypes are associated with late-
onset AD [107,108]. Among the 10,435 WeGene profiles

Figure 4. PRS distribution (5th to 95th percentile) changes along with increased numbers of users and report updates for three

polygenic diseases (AD, SP, and T2D). (A) PRS distribution modified after significant increase in amount of user data from the first

version of reports. (B) PRS distribution changes by report update. AD report included 53 loci in the first version and increased to 84
loci by Oct. 2019. The T2D report increased from 18 to 213 loci. The SP report increased from 18 to 300 loci.
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Figure 5. Users’ risk level reclassification for three polygenic disease reports: AD (A), SP (B), and T2D (C). Comparisons conducted

between temporally adjacent reports. Connections are colored by risk level in the report before update. Original risk levels in the
report from the first version (2015-01) are shown in the right-hand color bar.
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that participated in AD report feedback, both the risk
allele type ε4 (OR: 1.43, 95% CI: 1.27 to 1.61, two-tailed
Fisher’s, p = 2.6 � 10–9) and protective allele type ε2
(OR: 0.76, 95% CI: 0.64 to 0.98, two-tailed Fisher’s,
p = 7.9 � 10–4) were significantly associated with AD
family history. We also tried to replicate per-locus
associations of the 84 loci used in the WeGene AD report
(Supplementary Table S2) and found 35 loci with low
minor allele frequency (MAF) (< 0.05) among WeGene
users; among the remaining 49 loci, 12 could be
replicated with normal significance (one-tailed Fisher’s,
p< 0.05), led by rs7412 (p = 0.002), an ApoE-determin-
ing SNP.
Similarly, rs9939609, a SNP in the fat mass and

obesity-associated protein (FTO) gene reported to be
associated with body mass index (BMI) [109], was also
replicated by a correlation test between body weight
categories (overweight: BMI> 28, lean: BMI< 18.5) and
genotypes (Chi-square, p = 0.011), and the rs9939609-
AA carriers presented with significantly higher BMIs than
individuals with rs9939609-GG (23.3 vs. 22.4, one-tailed
t-test, p = 3.4 � 10–11). In another case, among the top 20
loci (ranked by OR) associated with male pattern baldness
(Supplementary Table S3), six out of the eight loci with
MAF≥5% were significantly associated with self-
reported hair loss levels (Chi-square for all genotypes,
one-tailed Fisher’s for high-risk genotypes, p< 0.05 for
both) in WeGene Biobank (Supplementary Table S2).
Conversely, SNPs reportedly associated with cilantro

dislike and soap taste in European populations [110],
were not replicated in WeGene users: rs72921001 was

non-significant (Chi-square test, p = 0.060), and no
rs78503206 polymorphism was found in the database.
Similarly, none of the four SNPs associated with
handedness in a recent study in UK Biobank participants
[111] were found in a Chinese sample size of 7,644
(Chi-square, p> 0.05).
For certain small sample GWAS on East Asians, the

WeGene Biobank could be valuable as a dataset for
GWAS discovery and validation. In a study of 96 Han
Chinese individuals [112], three loci were identified as
significantly or inconsistently significantly associated
with eyelid traits, although none of these presented
among the 13,715 participants reporting eyelid type in the
WeGene Biobank (Chi-square, p> 0.05). Conversely, a
study on 2,980 Han Chinese did not turn up any
significant markers for petaloid toenails [113] despite
the fact that it is a signature trait among Han Chinese.
Similar genotyping methods in over 8,000 individuals
reporting fifth toenail types in the WeGene Biobank,
however, uncovered 32 SNPs that met the genome-wide
significance threshold (p< 5 � 10–8) (unpublished data).

DISCUSSION

The years 2017 and 2018 saw rapid growth in the DTC-
GT market in the U.S. and China. Although less than
0.1% of the Chinese population has performed a self-
assisted DNA test to date, as home to the world’s largest
population, China has the potential to be a powerful force
in the emerging DTC-GT market.

Figure 6. Odds ratio and 95% confidence interval (CI) testing of different AD risk levels with self-reported AD family history along

with increased user numbers and report updates. (A) Odds ratios for 2�2 table of users with relatively high risk (High, Medium-high)

and relatively low risk (Low, Medium-low). (B) Results for 2�2 table for High and Low risk users. Fisher test significance level:
*** p<0.0001; ** p<0.01; * p<0.05.
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User composition limits research diversity and
value of current data

As is to be expected with novel technology, acceptance
and popularity of DTC-GT in China was originally
heavily skewed towards young people. WeGene users
have an average age of 31, and approximately 50% of
their clients are aged 26 to 38. Over 80% of these users
live in first-tier metropolitans. Biased age and residence
compositions have limited clinical research opportunities
and applications of Chinese DTC-GT biobanks and
cohort recruitment and GWAS for less-common diseases,
with a dataset of diagnosed users insufficient to support
these measures. We encountered data limitations in our
evaluation of the PRS model and replication of GWAS
loci for late-onset diseases, such as AD, and were unable
to directly link positive AD cases to particular genetic
profiles. We instead had to rely on user family history as
an alternative, somewhat limiting the replication, exten-
sion, and reliability of our findings. As such, similar to
early 23andMe research endeavors, publications from the
Chinese DTC-GT service providers remain focused on
population genomics and tools [24–30].

Heavy user activity and research initiatives promote
future outcomes

The skewed age composition also confers a benefit in
terms of the openness and willingness to engage in data
sharing among current users, including feedback report-
ing, third-party report participation, and phenotype
collection. DTC-GT companies use comprehensively
connected web-based platforms that include an official
website, mobile app, and social media profiles on WeChat
API and other official media. This likely contributes to
robust user activation and retention and thereby promotes
phenotype collection for research purposes. These
advantages suggest promising academic contributions
from Chinese DTC-GT companies in the future. Chinese
companies interested in replicating 23andMe’s model
could yield Chinese GWAS on human health and other
traits within three to five years. As user numbers increase,
phenotype collection shifts in user composition will
render Chinese DTC-GT-derived biobanks more valu-
able, particularly for studies on disease.

Report reliability and optimization

The core mission of DTC-GT service providers is to
provide increasingly accurate and understandable genetic
reports to customers. Current DTC-GT reports for
polygenic diseases and traits are predominantly generated
by frontloading GWAS outcomes in the absence of
systematical examination and validation [6–8]. Our

examination of the predictive power of multiple poly-
genic disease reports using normalized PRS distribution
indicates a trend towards increasing prediction accuracy
alongside concomitant user growth and the synthesis of
new GWAS results. In the meantime, the scale of risk
level reclassification was shown to be within normal
parameters and is unlikely to cause distress in customers
lacking professional knowledge of genetics.
It is important to note, however, that a large number of

reported SNP associations from other GWAS could not be
replicated in the WeGene user database, likely due to the
application of European-based GWAS against a non-
Caucasian population. We also found that the overall
reproducibility of loci included in such reports remains
unclear, confounding verifiable evaluations. We thereby
propose significant improvements could be made to
phenotype and disease risk predictive models, and
necessary follow-up tasks should include an evaluation
of the reproducibility of different GWAS, an implementa-
tion of new GWAS studies to identify new loci, new SNP
ranking and weight, predictive model selection and
adjustment, precise covariant selection (such as biological
sex, age, and family history) in a complex predictive
model, and ethnicity-specific modeling.

Opportunities for Chinese DTC-GT biobanks

Biobanks are an important data resource for human
genetic research projects, particularly medical cohort
studies and GWAS discovery and replication. The UK
Biobank, with more than 500,000 genotyped participants,
is the largest biobank that is publicly accessible [114], and
has been mined for genetic research across the globe.
Among UK Biobank samples, around 150,000 indivi-
duals were genotyped with microarrays from Affymetrix
that search for 600,000 to 800,000 SNPs and indels. UK
Biobank investigations have produced 944 scientific
papers [114]. Apart from government-financed biobanks,
commercial biobanks like 23andMe have also become
valuable resources for large-scale studies. All 23andMe
users were genotyped with high-throughput arrays from
Illumina and Affymetrix, covering from 500,000 to
900,00 SNPs and indels across versions, similar to the
arrays used by WeGene. 23andMe datasets have been
mined for 130 scientific publications [23], and the
biobanking of 23andMe also possess commercial value
via data purchase and trading with the pharmaceutical
industry [115]. Currently, whole-genome genotyping
(WGG) is used by most biobanks to balance costs,
sample size, scientific interest, and cross-biobank com-
patibility of biobanking.
Our trans-ethnic GWAS replication analyses recapitu-

lated previous studies demonstrating that population back-
ground is a crucial factor influencing the reproducibility of
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GWAS outcomes [15–17]. A biobank with WGG data
from a majority Chinese population is in high demand for
health-related studies and commercial purposes such as
drug development. The most famous open-to-public
human biobank in East Asia is BioBank Japan; no UK
Biobank-like dataset for Chinese or even East Asian
populations generally currently exists. In the absence of an
official biobank, and light of rapid demand growth for
commercial and research datasets alongside robust user
study participation, Chinese DTC-GT-based biobank
shows strong potential in both academic and industrial
contexts.

MATERIALS AND METHODS

Research participants

Participants in the genome-wide association study
(GWAS) validation and health risk level analyses were
drawn from consenting WeGene customers from Shen-
zhen Zaozhidao Technology Co. Ltd., a direct-to-
consumer genetic testing service provider. User statistics,
genotypes, and phenotypes were collected in October
2019.

Ethical approval

Informed consent for online research was obtained from
all individual participants included in the study. The study
was approved by the Ethical Committee of Shenzhen
WeGene Clinical Laboratory. The study was conducted in
accordance with the human and ethical research principles
of The Ministry of Science and Technology of the
People’s Republic of China (Regulation of the Adminis-
tration of Human Genetic Resources, July 1, 2019).

DNA sampling and genotyping assay

Saliva samples for DNA extraction were collected and
stored with an Oragene DNA Sample Collection Kit (OG-
250 or OG-510, DNA Genotek, Canada). DNA isolation
and purification were performed with the Magnetic Saliva
Fast DNA kit DP703-73A (Tiangen, China). Samples
were genotyped at WeGene Clinical Laboratory on one of
two custom arrays: Affymetrix WeGene V1 Array
(596,744 SNPs) by Affymetrix GeneTitan MC Instru-
ment, and Illumina WeGene V2 Array (742,762 SNPs) by
Illumina iScan System.

Quality control of genotype data

Quality control (QC) was performed with PLINK V1.9
[116]. Individuals and SNPs with an overall genotype call

rate lower than 98.5% were excluded. In polygenic risk
score (PRS) distribution and health risk level reclassifica-
tion analyses, individuals with AD, T2D, or SP, and SNPs
with a genotype call rate lower than 80.0% were
excluded.

Phenotype and family disease history

Self-reported phenotypes and family histories were
provided by participants via web-based questionnaires.
Customers who did not fill out these questionnaires were
eliminated from the dataset used for statistical analysis of
the target disease or phenotype.
Body mass index (BMI) Individuals’ BMIs were

calculated from self-reported height and weight using
the following formula:

BMI=weightðkgÞ=heightðmÞ2

Only participants aged from 18 to 65 and with BMI values
from the 5th to 95th percentile were used in statistics.
Hair loss Respondents were asked if they were bald,

and example images for different levels were given for
selecting one of four responses: “no,” “slight,” “medium,”
or “severe”; these were used to classify the respondent’s
phenotype. They were then asked if their father and
mother were bald, with the same four options plus a fifth
for “not sure” for each. Respondents were then asked to
provide dates of birth for themselves and their parents.
“Slight” and “medium” were quantified as “hair loss.”
“Severe” was quantified as “bald” in GWAS replication
analysis.
Family disease history Respondents were asked

whether they have any family members diagnosed with
a specific disease. The family members include the
respondent, the respondent’s father, the respondent’s
mother, the respondent’s grandfathers, and grandmothers.
A participant was marked as positive for disease family
history in any of these family members was reported as a
diagnosed case, otherwise, the respondent was marked as
negative for the disease history. The disease family
histories of T2D, AD, and SP were used in this study.
Cilantro preference Respondents were asked whether

they did or did not like cilantro, and whether or not they
thought it had a pleasant or soap-like taste or aroma; “not
sure” was also provided as an option. These answers were
used to classify phenotypes for GWAS replication.
Handedness Participants were asked to provide their

biological sex and whether or not they were a twin with
options for identical, fraternal same-sex, and fraternal
opposite-sex. They were then asked about handedness
with options for “right-handed,” “left-handed,” “ambi-
dextrous,” and “not sure”; these were used to classify
GWAS phenotype. Subsequently, they were asked for
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their preferred hand in multiple behaviors, including
writing, drawing, throwing, using scissors, tooth-brush-
ing, using a knife, using a spoon, using chopsticks, using
a hand broom, and unscrewing caps with the following
five options provided for each: “right hand only,” “right
hand mostly,” “no preference,” “left hand mostly,” and
“left hand only.” Finally, they were asked about each
parent’s handedness with options for “right-handed,”
“left-handed,” “ambidextrous,” and “not sure.”
Eyelids Participants were asked to classify single- or

double-fold eyelids for each eye, with an additional
option of “difficult to classify” for both; these responses
were used for GWAS phenotype classification. The
participants were also asked to classify the eyelid types
for the right and left eye of each parent with the added
option of “not sure.”
Petaloid toenail Participants were asked whether their

fifth pedal digit (“little toe”) had a petaloid toenail for
each foot. Phenotypes were classified as Petaloid_E
(petaloid toenail on one foot) and Petaloid_D (petaloid
toenail on both feet) in accordance with established
standards [113]. GWAS for Petaloid_E and Petaloid_D
were performed separately.

Odds ratio (OR) normalization, PRS and risk level

All participants were included in OR and PRS calcula-
tions before the participant volume reached 10,000.
Participants for version 2015-01 were acquired from
users up to the first key update (September or October
2017). The impact of report updates was evaluated by
randomly selecting 10,000 more participants plus all
those who provided a corresponding family disease
history and received genetic testing before the first report
update. Risk level reclassification was assessed using
10,000 randomly selected subjects genotyped with the
WeGene V2 Array at all time points.
Allele ORs were converted to genotype ORs before

PRS calculations. If a biallelic OR was not specified in the
original literature, a single risk/protective allele OR was
assigned to the heterozygous genotype, and both risk/
protective alleles were assigned to a homozygous
genotype with the squared allele’s OR. Each SNP’s OR
distribution was log(2)-transformed and adjusted to be
zero-centered in the population using the following
formula:

adjORj,a=log2ORj,a –

P
j,nlog2ORj,n

n

where adjORj,a is the adjusted OR for genotype a of locus
j; ORj,n is the OR of locus j for individual n; and ORj,a is
the original OR of the genotype a of locus j.

For a single health risk report, the PRS incorporating all
risk loci for individual n was:

PRSn=
X

j

adjORj,n

Participant PRS values were classified into five
risk level categories by percentile: Low = PRS< 10th;
Medium-low = 10th£PRS< 25th; Medium = 25th£
PRS£75th; Medium-high = 75th< PRS£90th; High =
PRS> 90th. Participant PRS-based health risk levels
were subject to change according to increased numbers
of users, OR adjustments, and health report update
following incorporation of new GWAS-identified SNPs.

Genome-wide association study

Initial genome-wide association analyses on ordinal or
binary phenotype were performed with PLINK 1.9 [116]
using multiple linear regression models of additive allelic
effects with sex and an appropriate number of genetic
principal components (PCs) as covariates. Detailed
methods will be released when the corresponding
GWAS published.

Statistics and visualization

Statistics were conducted in Python and R with packages
including scipy and numpy. Data visualization was
performed with R and corresponding packages, including
ggplot2, RColorBrewer, ggalluvial, and qqman. Fisher’s
exact test (2�2 table) or Chi-square tests (3�2 genotype
table) were performed to assess independence. A t-test
was performed for mean value comparisons between
parametric statistics. Pearson’s correlation was used to
evaluate correlations between parametric data. P-value
correction for multiple testing was performed with a
Bonferroni adjustment. The significance threshold was set
to p< 0.05 and false discovery rate (FDR)< 0.05. During
GWAS discovery, the genome-wide significance thresh-
old was set to p< 5�10‒8 for SNPs. In GWAS
replication, p< 0.05 was used as the threshold for
statistical significance.

Data availability

In light of our commitment to customer privacy and
privacy regulations from the Administration of Human
Genetic Resource of China, we will not be publishing user
health reports or detailed genotype or phenotype
distributions. For questions about the analyses in this
research or academic collaboration opportunities with
WeGene, please contact the WeGene Research Team by
email (research@wegene.com).
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