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Mining relationships between microbes and the environment they live in are crucial to understand the intrinsic
mechanisms that govern cycles of carbon, nitrogen and energy in a microbial community. Building upon next-
generation sequencing technology, the selective capture of 16S rRNA genes has enabled the study of co-occurrence
patterns of microbial species from the viewpoint of complex networks, yielding successful descriptions of phenomena
exhibited in a microbial community. However, since the effects of such environmental factors as temperature or soil
conditions on microbes are complex, reliance on the analysis of co-occurrence networks alone cannot elucidate such
complicated effects underlying microbial communities. In this study, we apply a statistical method, which is called
Boolean implications for metagenomic studies (BIMS) for extracting Boolean implications (IF-THEN relationships)
to capture the effects of environmental factors on microbial species based on 16S rRNA sequencing data. We first
demonstrate the power and effectiveness of BIMS through comprehensive simulation studies and then apply it to a
16S rRNA sequencing dataset of real marine microbes. Based on a total of 6,514 pairwise relationships identified at a
low false discovery rate (FDR) of 0.01, we construct a Boolean implication network between operational taxonomic
units (OTUs) and environmental factors. Relationships in this network are supported by literature, and, most
importantly, they bring biological insights into the effects of environmental factors on microbes. We next apply BIMS
to detect three-way relationships and show the possibility of using this strategy to explain more complex relationships

within a microbial community.
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INTRODUCTION

The recent advancement of next-generation sequencing
technology has enabled the direct capture of all genetic
materials in a microbial community [1,2]. It is therefore
possible to carry out in vitro studies involving a small
number of microbial species [3—5], as well as sequence
and assemble millions of microbial genes, as exemplified
by the recent increase of large-scale metagenomic studies
in soil [6-8], air [9,10], marine life [11-15], human [16—
18] and many others [19,20]. Direct sequencing of
hypervariable regions of the 16S rRNA genes, a simple
and low-cost approach, profiles the taxonomic composi-

tion of the microbial community in an environmental
sample [21-24]. Through clustering analysis, 16S rRNA
sequencing data can be transformed into operational
taxonomic units (OTUs) of microbial species. For
example, Dotur [23] and Mothur [25] employ a
hierarchical clustering algorithm, which builds a hier-
archical tree from the sequencing data, and then report
clusters of sequences (OTUs) according to a user-defined
sequence dissimilarity threshold. ESPRIT [26] accelerates
hierarchical clustering by adopting k-mer distance to
avoid unnecessary sequence comparisons and performs
complete-linkage clustering. UCLUST [26] and CD-HIT
[27,28] use a greedy incremental clustering algorithm for
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faster clustering. CROP [22] takes a soft-clustering
approach known as the Gaussian mixture model to
accommodate sequencing errors and genetic variants in
the sequencing data. Combining these methods has also
been proposed to achieve a reasonable trade-off between
efficiency and quality in the inference of OTUs and their
abundance levels, resulting in such online pipelines as the
Visualization and Analysis of Microbial Population
Structure (VAMPS) project (http://vamps.mbl.edu/index.
php). With these methods, compositions of a microbial
community and abundance levels of microbial species can
be inferred.

Microbes seldom live alone; instead, they live in a
community composed of many species, forming complex
relationships. Mathematically, such relationships are
described as complex networks. For example, co-
occurrence patterns of microbial species can be inferred
and encoded into a co-occurrence network, where vertices
are typically OTUs and edges indicate two OTUs co-
occurring at high frequency across multiple samples. Co-
occurrence networks have been successfully applied to
the study of microbial species in soil [6—8], marine life
[11-15], and, more recently, human health [16-18].
However, even though co-occurrence networks reveal
direct and indirect functional associations between
microbes, they cannot capture and explain the asymme-
trical effects of environmental factors on microbial
species inside a microbial community.

Therefore, in this study, we extend Sahoo’s method
[29] and propose a bioinformatics approach called
Boolean implications for metagenomic studies (BIMS)
to detect Boolean implications between microbial species
and environmental factors using 16S rRNA sequencing
datasets from a microbial community. A Boolean
implication can be viewed as following a simple IF-
THEN rule. For example, “IF environmental factor A is
high, THEN microbial species B is abundant.” Such
simple rules describe intrinsic mechanisms that govern
microbial communities and are essential to the under-
standing of relationships not only between microbes but
also between microbes and the environment they live in. It
should be noted that Boolean rules are general in nature in
contrast to the positive and negative correlations widely
used in identifying co-occurrence relationships. Under
these circumstances, that A and B are positively
correlated would indicate that “IF A is high, THEN B is
high, and IF A is low, THEN B is low”, while the Boolean
implication can only state that “IF A is high, THEN B is
high”, and thus it describes more relationships than the
former.

We demonstrated the validity of BIMS through
comprehensive simulation studies, showing the reason-
able high power it can achieve at a very stringent false
discovery rate (FDR). To accomplish this, we applied

BIMS to real marinel6S rRNA sequencing datasets and
detected a total of 6,514 pairwise relationships at the FDR
level of 0.01. Based on these high-confidence relation-
ships, we constructed a Boolean implication network
between OTUs and environmental factors, demonstrated
the consistency between relationships in this network and
biological knowledge thus far gained about the effects of
microbial interaction with environmental factors. Further,
we demonstrated how complicated relationships inside a
microbial community can be explained by using three-
way Boolean implications.

RESULTS
Data sources

We extracted a dataset that contained abundance levels of
126,999 OTUs and records of 21 environmental factors
across 336 environmental samples from the VAMPS
project (http://vamps.mbl.edu/diversity/diversity.php).
Briefly, from this resource, we selected 21 environmental
factors and 27 subprojects that contained marine microbes
sampled from different oceans, with each subproject
containing a certain number of samples obtained in the
same location, but at different times. Removing samples
with insufficient measurements of environmental factors,
we collected a total of 336 samples. For missing
environmental factors, we further adopted a linear
interpolation strategy to fill in missing values. We then
performed an additional filtration step to remove microbes
that appeared in less than 30% of the total samples. It
should be noted that such filtration can benefit subsequent
analysis by (i) significantly reducing the number of
OTUs, thus leading to much lower computational burden
and (ii) effectively decreasing the noise introduced by
OTUs occurring infrequently, thus improving the robust-
ness of the analysis. After the filtration, only 188 types of
OTUs were retained for further analysis.

Simulation studies

We analyzed distributions of abundance levels for the 188
OTUs and 21 environmental factors across the 336
samples. The results show that the fraction of low-
abundant (abundance level =0) samples for OTUs is on
average 87.71% (£0.23%), while that for environmental
factors is on average 51.36% (£6.06%). This observation
suggests that the abundance data of OTUs are very sparse,
even though we have removed microbes that appeared in
less than 30% of conditions. We further enumerated
pairwise combinations of these 209 objects (188 OTUs
and 21 environmental factors), and analyzed the number
of possible Boolean implications based on the statistical
tests described in the Method section. Results show that
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the number of possible low — high and Boolean opposite
implications are relatively small, while the number of
possible high — low implications is relatively large
(Figure S1).

We then assessed the effectiveness of our approach
through simulation experiments. For each type of
Boolean implication, we simulated 100 positive cases
and 100 negative controls, mixed them up, and applied
our method to detect the positive cases. We calculated the
power of a method as the fraction of positive cases
detected at the FDR 0.01. Results, as shown in Figure 1,
suggest that our BIMS method using the Fisher’s exact
test as the first stage is effective in the detection of
Boolean implications, since, in most combinations of
statistical thresholds, the method achieves reasonably
higher power at a low false discovery level. Overall, we
successfully detected 545 true relationships out of a total
of 600 simulated implications at a stringent FDR level of
0.01 when p, =9, yielding a power of 90.83%. On the
other hand, the method using the chi-squared-like statistic

as the first stage is slightly less effective in that this
strategy successfully detected 539 true relationships out
of'a total of 600 simulated implications at a stringent FDR
level of 0.01, yielding a power of 89.83%. This
observation is consistent with the common understanding
that, in general, an exact test has higher power than an
approximation.

To examine the contribution of the tests in the first
phase, we repeated the above simulation experiments with
the error checking step removed. As shown in Figure 1,
the chi-squared-like statistic detected 366 true relation-
ships out of a total of 600 simulated implications at an
FDR level of 0.011 when p, =10, yielding a power of
61%. To examine the contribution of the tests in the
second phase, we repeated the above simulation experi-
ments with the error checking step removed. As shown in
Figure 1, just with the second phase we successfully
detected only 241 true relationships out of a total of 600
simulated implications, yielding a power of 40.17%. We
therefore conclude that the two-stage design is more
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Figure 1. Comparison of the power of four methods potentially used for detecting Boolean implications changes with x,

on simulated data. Setting 7; =0.1 and different values of 1,, we generate 100 positive relationships for each type of Boolean
implication and respectively mix them with 100 negative relationships. We then respectively apply (i) method 1: using the Fisher's
exact test as the first stage; (ii) method 2: using the chi-squared-like statistic as the first stage; (iii) method 3: using only the chi-
squared-like statistic; (iv) method 4: using only the second phase for each simulated datum. Bars show the power of methods. From
the comparison, we can see that the method 1 always has the highest power.
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powerful than either the first or the second stage alone.

We also observe that the power of our method is
apparently related to the parameters 7 and u, used to
produce simulated data. With the increase of pu,, the
power of our method increases, while the increase of T
causes a decrease in power as shown in Figure S2. This
phenomenon is consistent with our expectation that a
larger u, leads to a higher power by simulating high
abundance values that are significantly larger than the low
abundance values, while a smaller 7 also leads to higher
power by producing samples that are more consistent with
the desired Boolean implication. From the simulation
results (Figures 1 and S2), we also notice that the method
is relatively less powerful in detecting low — high and
high — low relationships. Two reasons may account for
this phenomenon. First, the fractions of low-abundant
samples for OTUs are in general much higher, leading to
the smaller number of possible low — high and Boolean
opposite implications. Second, the negative relationships,
which are simulated by sampling two objects from the
real data and then permuting the labels of one object have
a certain degree of similarity with the high — low
relationships.

To explore the influence of the sample size to the power
of BIMS, we vary the sample size and identify Boolean
implications at the FDR of 0.01 in each situation. The
results, as summarized in Figure S3, suggest that our
method tends to achieve higher power with a sample of
larger size. To compare BIMS with the method based on
the Pearson’s correlation coefficient, we simulated 100
positive cases and 100 negative controls for each type of
Boolean implication (with 77 =0.1 and p,= 10), mixed
them up, and detected the positive cases with these two
methods. Briefly, BIMS successfully detected 547 true
relationships out of a total of 600 simulated implications
at a stringent FDR level of 0.01, yielding a power of
91.17%. In contrast, the method based on correlation
coefficient detected a total of 217 relationships at the
significant level of 0.05, yielding an accuracy rate of only

36.17%. We therefore conclude that our method is
capable of capturing relationships missed by the method
based on correlation coefficient.

Pairwise Boolean implications detected

Focusing on the 21 environmental factors and a total of
188 OTUs that appear in at least 30% conditions, we
identified a total of 6,514 Boolean implications at a low
FDR (0.00945) using BIMS with the Fisher’s test in the
first stage. We also noticed that using the chi-squared-like
strategy in the first phase resulted in the detection of only
3,910 implications, all of which were detectable by the
Fisher’s method, again suggesting the higher power of
using the Fisher’s exact test. As shown in Table 1, we
found that only 7 of these Boolean implications are
symmetric (Boolean equivalent or Boolean opposite). In
the simulation studies, we showed that the expected
number of possible Boolean implications of these two
symmetric relationships is not significantly less than the
others (Figure S1); therefore, the above finding suggests
that microbes are more likely to have complicated
asymmetric relationships instead of simple linear ones.
For the four types of asymmetric relationships, we only
found 16 low — high implications. We can account for
this observation in one of two ways, either 1) the expected
number of possible implications of this type is much
smaller than the others (Figure S1) or ii) low-abundant
microbes do not, in general, imply high-abundant
microbes. Finally, we find that the high — low relation-
ship is dominant. This observation may also be explained
in two ways: (i) the expected number of possible
implications of this type is itself much larger than the
others (Figure S1) and (ii) a high-abundant species of
microbe does imply a low-abundant one because most
microbes will compete for resources. Based on the
converse negative proposition, meaning IF “Aj,, —
Biow” THEN “Bpigh — Apign”, the number of low — low
is equal to the number of high — high (Table 1).

Table 1. Number of different pairwise Boolean implication relationships of marine microbe species and environmental
factors.
Sparse quadrant Relationship Number
Only one sparse quadrant low-low low — high 16
low-high low — low 340
high-low high — high 340
high-high high — low 5804
Two diagonal sparse quadrants low-low
high-high Boolean opposite 0
low-high
high-low Boolean equivalent 14
Total 6514

Focusing on the 21 environmental factors and a total of 188 OTUs that appear in at least 30% conditions, we identified a total of 6,514 Boolean
implications at a low FDR(0.00945) using BIMS with the Fisher’s test in the first stage.
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We further varied the threshold in the selection of
OTUs from 10% to 50% and identified Boolean
implications at the FDR of 0.01 in each situation. As
summarized in Figure 2, a looser value of the threshold in
general results in the identification of more implications,
while a more stringent value usually leads to the detection
of fewer implications. However, in all situations, the
fractions of symmetric relationships were less than 3%,
again suggesting the rarity of the linear implications.
Consistent with the previous analysis, Boolean implica-
tions of the high — low type were most common, while
low — high and Boolean opposite relationships were rare.
We conjectured that the sparse nature of OTU abundance
levels could account for the rarity of the two types of
relationships (low — high and Boolean opposite) that
require fewer points in the low-low quadrant. We also
noticed that the number of the low — low relationships
was almost the same as that of the high — high relation-
ships and that both types of relationships were large,
possibly because many OTUs belong to the same colony.

Pairwise Boolean implication network

We then constructed a Boolean implication network
among the 209 objects with BIMS relying on the Fisher’s
exact test as the first stage. The resulted network consists
of 181 nodes (162 OTUs and 19 environmental factors)
and 6,514 edges (Boolean implications) (Figure S4).
Among these edges, 4,934 are between OTUs, 38

between environmental factors and 1,542 connecting
OTUs and environmental factors (Figure S5A). Further-
more, on average, each OTU connects with 26.89 OTUs
and 4.19 environmental factors, while each environmental
factor connects to 39.79 OTUs and 2 environmental
factors. This network is fully connected. Without
considering environmental factors, the subnetwork con-
sisting of only OTUs can be separated into a giant
connected component (175 nodes and 4,934 edges) and 8
singletons.

Observing the network as a whole, it is interesting to
note that most Boolean relationships existing among
microbes, as shown in Figure S5A, reflect the close and
wide connections of OTUs. This is consistent with a
previous study [12] that demonstrated the dominance of
relationships between microbes rather than those between
microbes and environmental factors. One possible reason
for this phenomenon is that some environmental factors
which may influence microbial abundance are not
measured at all. It is also possible that the relatively
stable ocean, especially deep sea, environment, compared
to changes in environmental factors, nutrients or interac-
tions with other microbes, most likely drives changes of
composition and abundance in the marine microbial
community [12].

We analyzed network topology characteristics for the
subnetwork of OTUs using the Network Analyser plugin
in Cytoscape [26]. As shown in Figure S5B, the clustering
coefficient of this network is 0.097, much larger than that
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Figure 2. Number of different types of Boolean relationships found in networks. We chose different numbers of OTUs based on
occurrences in more than different percent of all samples for constructing Boolean implication network. The number of Boolean
relationships found in each network are summarized. In all cases, Boolean implications of the high — low type are most common,

while the low — high and Boolean opposite relationships are rare.
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of a random network of the same scale (0.036), while the
characteristic path length for this network is 2.028, similar
to that of a random network (2.242), suggesting that this
OTU network may have a “small-world” property [30].
Furthermore, the distribution of the shortest path length
(Figure S5C) shows that the shortest path length for this
network is between 1 and 3, indicating that most microbes
in the resulting network are closely linked by a high level
of dependence, a phenomenon consistent with the
conclusion from clustering coefficient analysis. The
small-world property in ocean microbes was found
previously [12], suggesting that most microbes are
gathered in a certain community and that very few of
them are independent. From Figure S5B, we observe that
some microbes with high clustering coefficient (or “hub’)
might be analogous to microbial ‘keystone species’ which
play central roles in a microbial community. It is also
suggested that the small-world pattern makes a network
more robust to changes and perturbations, essentially
because the network would change dramatically if highly
connected nodes were lost [31].

We further visualized a subnetwork and gave several
relationships found as examples to show the power of
BIMS. As shown in Figure 3A, this network consists of
60 nodes and 228 edges. Among the nodes, 42 are OTUs
and 18 are environmental factors. Among the edges, 67
are between OTUs, 16 between environmental factors,
and 145 connect OTUs and environmental factors.
Particularly, some environmental factors have high
degrees (Figure 4) (e.g., depth, degree =20; chlorophyll,
degree = 14; silicate, degree =13; temperature, degree =
10), indicating their important effect on the abundance of
marine microbes. We then extracted these environmental
factors and their neighbors to obtain subnetworks that
describe Boolean implications between important envir-
onmental factors and OTUs (Figure 3B). This network
shows that these important environmental factors (e.g.,
temperature, depth, chlorophyll) play a central role in
their small-world pattern, providing awareness of the
conditions that either favor or disfavor particular OTUs
and may thus be of great significance to our understanding
of marine environments.

As shown in Figure 3B, the relationship “depth high —
chlorophyll low” is consistent with the conclusion of a
previous study [32]. As the sampling depth increases, the
intensity of light decreases, leading to weaker photo-
synthesis. As a consequence, chlorophyll content
becomes low. Another high — low relationship that
occurs between temperature and an OTU named Alpha-
proteobacteria 03 29 is illustrated in Figure 5A. Since
the sample points in the high-high quadrant are very
sparse, the abundance of Alphaproteobacteria 03 29 is
low if the temperature is high. The relationship “depth
low — salinity low” is also consistent with a previous

work [32], which reports that the shallow coastal waters
are diluted by the impact of freshwater inflows. The
low — low implication also exists between salinity and
Gammaproteobacteria 03 58, and the scatter plot in
Figure 5B verified this relationship. A high — high
relationship between Gammaproteobacteria 03 46 and
Gammaproteobacteria 03 75 is also found and verified in
Figure5C, indicating that these two OTUs coexist in one
community as gammaproteobacteria. An equal relation-
ship is found between the environmental factors depth_-
start and depth_end, as shown in Figure 5D, which results
from the fact that the sampling method restricts the place
of sampling within a range of one meter.

Three-way Boolean implications detected

To reduce the computational burden, we detected three-
way Boolean implications using the chi-squared-like test
as the first stage. To this end, we first assessed the
capability of BIMS by performing a simulation study
similar to the pairwise case. Briefly, 10 types of three-way
Boolean implications exist that corresponded to 10
different sparse situations of eight quadrants among
three simulated variables (Figure S6). We then generated
1,000 true Boolean implication relationships (100 for
each type) and 1,000 false relationships in a manner
similar to that of the pairwise case and applied our method
to detect Boolean relationships. The results showed that
864 out of the 1,000 true relationships were successfully
found at an FDR of 0.00583, yielding a power of 86.4%,
thus supporting the validity of this method in the detection
of three-way Boolean implications.

We then assessed various choices of thresholds o and p
for the real data in Figure S7, which shows the empirical
relationship between these two parameters and the FDR
value. The figure suggests that ¢ between 2.0 and 3.0 and
p=0.1 can typically control the FDR at a low level
(<0.01). In order to examine the robustness of the
threshold o to the final results, we calculated FDRs
under different values of o between 2 and 3. Results, as
shown in Figure 6, suggest the robustness of o to the
number of Boolean implications identified. Therefore, we
selected 0 =2.2 and p=0.1 as the thresholds for § statistic
and R statistic, respectively, in our analysis.

We then applied BIMS to detect three-way Boolean
implications in the real data. To reduce the computational
burden, we only selected 13 environmental factors and 24
OTUs that appeared in more than 60% conditions. At a
stringent threshold value (FDR =0.0063), we detected a
total of 2,186 relationships, as summarized in Table 2. For
example, we found a Boolean implication “depth low &
temperature low — Betaproteobacteria_ 03 1 high”, sug-
gesting that Betaproteobacteria_03 1 is more abundant in
the shallow waters where the temperature is low. The
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Figure 4. Environmental factors at the centers of four subnetworks. The four environmental factors with high degree, depth
(degree = 20), chlorophyll (degree = 14), silicate (degree = 13) and temperature (degree = 10), indicate their important role on the
abundance of marine microbes. From these four subnetworks, we can observe OTUs favored or disfavored by the four

environmental factors.

implication “temperature high & Bacteroidetes 03 1
high — Bacteroidetes 03 14 high” indicates that Bacter-
oidetes 03 14 and Bacteroidetes 03 1 may belong to the
same species that prefer a warm environment. An
implication “chlorophyll high & nitrate high — Gamma-
proteobacteria 03 32 low” implies that Gammaproteo-
bacteria 03 32 might be a photosynthetic bacterium
requiring nitrate to perform photosynthesis. Since little
prior knowledge exists about three-way relationships
among OTUs or between OTUs and EFs, finding support
in the literature for these Boolean implications is
impossible. We therefore manually checked several
relationships identified by the three-way scatter plot
(Figure S8). As shown in Figure S8A, in the plot for the
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implication of “depth high & latitude low — Alphapro-
teobacteria_03 1 low”, the points in the high-low-high
quadrant are fewer than found in other quadrants, leading
to the intuitive conclusion that the abundance of
Alphaproteobacteria 03 1 is relatively low when the
depth is high and the latitude is low. In Figure S8B, we
also found that points belonging to the high-high-high
quadrant are significantly reduced in comparison to
other quadrants in the plot for the implication of “depth
high & temperature high — Alphaproteobacteria 03 2
low”, Therefore, when the depth is high and the
temperature is relatively high, we can conjecture that
the abundance of Alphaproteobacteria 03 2 is also
relatively high.
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Figure 5. Verification of relationships found by BIMS. A visual examination of the scatter plots is a straightforward way to
check the quality of the results. (A) Temperature high — Alphaproteobacteria_03_29 low. The points in the high-high quadrant are
sparse, so intuitively we obtain the high — low Boolean implication relationship between X variable and Y variable. (B) Salinity
low — Gammaproteobacteria_03_58 low. The points in the low-high quadrant are sparse, so intuitively we can get the low — low
Boolean implication relationship between X variable and Y variable. (C) Gammaproteobacteria_03_46 high — Gammaproteo-
bacteria_03_75 high. The points in the high-low quadrant are sparse, so intuitively we can get the high — high Boolean implication
relationship between X and Y variable. (D) Depth_start equal to depth_end. The points in the low-low and high-high quadrants are
both sparse, so intuitively we can get the Boolean equivalent relationship between X and Y variables.

Discussion

In this paper, we proposed BIMS to detect Boolean
implications between microbial species and environmen-
tal factors from multiple 16S rRNA sequencing datasets.
We demonstrated the validity of BIMS by simulation
studies and then applied it to the real datasets. Based on
identified pairwise relationships, we constructed a
Boolean implication network between OTUs and envir-
onmental factors. Relationships in this network are either
supported by literature or provide biological insights into

the understanding of interactive effects of microbes and
environmental factors. Our BIMS method should shed
more light on capturing more complicated relationships
than simple liner ones. We further extended our study to
three-way relationships and showed the possibility of
relying on such combinatorial Boolean implications to
explain complicated relationships among multiple factors
inside a microbial community.

To explore relationships between microbial species,
existing methods typically rely on pairwise correlation
coefficients derived from abundance levels. This strategy,
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though suitable for explaining such relationships as co-
occurrence or co-abundance, cannot explain why a
microbial species is abundant or absent in a community
and how microbes interact with each other and environ-
mental factors. The opinion of Boolean implication,
together with BIMS for detecting such relationships, is
most suitable for exploring such complicated logics and
hence provides practical reasoning for relationships in a
microbial community. Moreover, the network view of all
detected Boolean implications further suggest compli-
cated regulation relationships. In this sense, BIMS offers
a new platform for mining metagenomics data.
Compared to the raw method of Sahoo’s [29] to detect
Boolean implication, in BIMS the process of detecting
Boolean implication relationships, which relies on exact
statistical tests, has slightly higher power, even though it
results in slower running time. Therefore, how to improve
the power of this process while keeping the merit of low
computational burden will be a direction for our future
work. In addition, the discretization of continuous
abundance levels to binary factors has the benefit of
filtering out noise, but may also result in loss of power. It
is therefore desirable to develop a model from the
viewpoint of regression to handle continuous abundance
levels directly. Finally, although we are currently focused
on relationships between environmental factors and
OTUs, we can extend BIMS to explore relationships
between environmental factors and microbial genes
assembled from metagenomics data. One caveat to this
ambition involves the vast number of microbial genes,
which would place an enormous computation burden on

the process of detecting Boolean implication with Fisher’s
exact test.

METHODS

Workflow of BIMS

The study is predicated on the idea that the relationship
between an OTU and an environmental factor (EF) can be
described using a Boolean implication, and that such
Boolean relationship can also be used to characterize the
effect of an environmental factor on a microbial species.
A total of six types of pairwise Boolean implications
between two objects can be identified [29] (Figure S9),
and can be described by 1) Ajow — Bhign, ii) Ajow — Biows
1ii) Apigh — Bhighs 1V) Anigh — Biows V) Anigh — Bhign and
Alow - BlOW’ and Vl) Alow - Bhigh and Ahigh - B10w~ It
should be noted that the last two rules correspond to the
positive and negative correlations respectively. Here the
relationship v) Apigh — Bhign and Ay, — Bioyw 1s said to
be ‘Boolean equivalent’ and vi) A,y — Bpign and
Anigh — Biow is said to be ‘Boolean opposite’. We assume
that such Boolean relationships, while having exceptions
under some situations, should exhibit sufficient stability
across a large number of conditions and, hence, be
detectable through measured numerical values of these
objects.

Therefore, we propose a bioinformatics approach
(BIMS), as illustrated in Figure 7, to detect Boolean
implications from 16S rRNA sequencing data of a marine
microbial community. Two inputs of BIMS include (i)

0.025

0.020\;
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Figure 6. Robustness of the threshold for S statistic chosen by FDR. To evaluate the significance of the relationships found
by Boolean implication based on our collected data, we computed a FDR for each network constructed with a certain threshold ¢. By
changing threshold o between 2 and 3, we obtain different FDR values and then choose o with an acceptable FDR. The
experimentally calculated FDR decreases with the increase of the statistical cutoff threshold. When the threshold of S statistic
increases by 0.1 from 2 to 3, the calculated FDR decreases. For all networks which consist of different fractions of samples, when
the threshold grows to 2.2, the FDR decreases to 0.01. Hence, 2.2 can be chosen as the cut-off threshold of S statistic.

136 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2014



Boolean implication for metagenomic studies

Table 2. Number of different Boolean implication relationships in three-way network of marine microbe species and

environmental factors.

Sparse quadrant Relationship Number
Only one sparse quadrant low-low-low x0&y0 — z1 9
low-low-high x0&y0 — z0 178
low-high-low x0&yl — z1 23
low-high-high x0&yl — z0 631
high-low-low x1&y0 — z1 4
high-low-high x1&y0 — z0 256
high-high-low x1&yl — z1 65
high-high-high xl&yl — z0 1020
Two diagonal sparse quadrants low-low-low
high-high-high x & y opposite to z 0
low-low-high
high-high-low x & y equal to z 0
Total 2186

To reduce the computational burden, we only selected 13 environmental factors and 24 OTUs that appeared in more than 60% conditions. At a stringent

threshold value (FDR =0.0063), we detected a total of 2,186 relationships.

multiple 16S rRNA sequencing datasets, and (ii)
measurements of environmental factors. The output of
BIMS is a Boolean implication network for the effects of
environmental factors on the OTUs. In this network,
nodes are either OTUs or environmental factors, and
directed edges represent Boolean implications between
the nodes. Furthermore, each edge is labelled with one of
the six types of Boolean implications.

We first pool multiple metagenomic datasets (samples)
together and cluster sequencing reads using such cluster-
ing tools such as Dotur [23], Mothur [25], SLP (single
linkage preclustering) [24], Uclust (heuristic clustering)
[33], or CROP (Bayesian Clustering) [22] of multiple
metagenomic datasets to infer OTUs. Next, we estimate
raw abundance levels of the OTUs in a sample by
counting the number of reads for each OTU in the sample.
In the case that the abundance levels of OTUs have
already been inferred, one can simply skip this step. After
that, we perform a filtration step by removing OTUs that
are absent (0 read count) from a predefined fraction
(default set to 30% in our study) of all samples and
normalize the abundance levels of OTUs for each sample
by dividing their read counts over the total number of
reads of all the remaining OTUs in the same sample.
Then, we infer pairwise Boolean implications for the
remaining OTUs and environmental factors. To accom-
plish this, both abundance levels of OTUs and numeric
measurements of environmental factors are discretized
into categorical values of 1 and 0, followed by adopting a
two-phase hypothesis testing procedure based on the
contingency table of two objects. Finally, we combine all

the inferred pairwise Boolean implications into a Boolean
implication network.

Data discretization and inference of pairwise
Boolean implications

We use StepMiner, which is used to extract binary signals
from microarray time-course data [34], to determine
threshold values for discretizing abundance levels of
OTUs, as well as the values of environmental factors, into
binary (“low” versus “high”) values. Briefly, we sort
abundance levels of an OTU across multiple datasets in
non-decreasing order and then fit an increasing step
function to the ordered data in order to minimize the
difference between the fitted and original values.
StepMiner evaluates every possible step position using
linear regression in order to identify the optimal position.
At each position, it calculates an F statistic, which equals
to dividing the regression mean square with the error
mean square fitted values. Since this F statistic follows an
F-distribution, a corresponding p-value can then be
calculated as the tail probability of the realized value in
this distribution. The step position having the minimum p-
value is chosen as the threshold for discretization. A value
above or below the threshold is discretized into 1 (high) or
0 (low), respectively.

We detect the Boolean implication between two objects
using a two-phase hypothesis testing procedure [29]
(Figure S10). This is achieved by constructing a
contingency table to represent occurrence frequencies of
combinations of the discretized abundance levels for the
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two objects. Then, in the first step of the procedure, we
apply a series of Fisher’s exact tests to detect whether a
potential Boolean implication exists between the two
objects. If the sample size is large, we use a chi-squared-
like statistic in this step, according to the literature
[29,35]. In the second step, we employ a sparcity test to
determine whether an implication does, indeed, exist.
For example, when testing Ao, — Bhign, We first obtain
a contingency table by counting frequencies for each of
the four combinations of abundance values, say low-low,
low-high, high-low and high-high, denoted by a, a1,
ag, a1y, respectively. Then, we test which of these
combinations occurs more rarely than the others using the
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Fisher’s exact test. Specifically, we first compute the
proportions as pgg =dgo/(doo + @10) and po; =aoy /(a0 +
a,1), and then define the null hypothesis in Hy : pog =po1»
and the alternative hypothesis as H; : pgo<pg;, to test
whether ay is truly sparse. Repeating this procedure for
each of the four situations, we are able to know which
combinations are rare and further claim a potential low —
high relationship if the low-low combination is the only
rare case. However, if the sample size is large, the Fisher’s
exact test may not be practical based on the increased
computational burden needed to compute hypergeometric
distributions. We therefore follow the literature to perform
a test based on a chi-squared-like statistic if every cell in
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the contingency table is not very rare (e.g.,=5). In detail,
we calculate a test statistic as

(E()O B 000)
\% EOO ’

where Oy, and E,, denote the observed and expected
numbers of occurrence for the low-low combination,
respectively, and are calculated as Oy =ag, and Eyy =
dpe X A0/ dee With age = ago + @1, deo=agy + ajo and
Qe =dgo + ag; + @19 + a;;. Since this test statistic indi-
cates the rarity of samples in the low-low combination
and can therefore be used with an appropriately selected
threshold o (e.g., between 2.0 and 3.0) to determine the
existence of such combination.

In the second phase, we consider erroneous points
observed in the sparse quadrant and calculate the
maximum likelihood estimate (MLE) of the error rate as:

Ryy = - <@ + @) ,

2 doe e
where agy/ag, and ag/a,o are the MLE for the binomial
distribution in two combinations, respectively, and Ry is
the average of the two MLEs. Since R, should be low if
the low-low quadrant is sparse, making it possible to reuse
this statistic with a predefined threshold p (e.g., 0.1) to
further filter out false positive cases that pass the test of
the first phase.

Soo =

Construction of a Boolean implication network

We evaluate the significance of each Boolean implication
using the following three threshold values, the p-value in
Fisher’s exact test, o in the chi-squared-like test, and p in
the sparsity test. We combine all discovered Boolean
implications into a network. To this end, we compute a
FDR to indicate the proportion of Boolean implications
that may be discovered by chance. In detail, we first
permute abundance values of OTUs and numeric
measurements of environmental factors separately and
then apply the statistical tests to identify Boolean
implications in the permuted data. Repeating these two
steps a number of n (default » =150) times, we compute
the FDR as the average number of Boolean relationships
discovered in the randomized datasets divided by the
number of Boolean implications identified in the original
data. With properly selected threshold values for a small
FDR (default<0.01), we detect pairwise Boolean
implications.

Extension to three-way Boolean implications
It is suggested that very rarely do microbes live in a single

species community [1]. Existing studies have shown that
combinations of environmental variables are more

predictive for microbial changes over time when
compared with individual environmental variables
[36,37]. Therefore, we further study the relationships
among multiple objects (OTUs and EFs) by extending the
inference of pairwise Boolean implications to three-way
relationships such as “Aj,,, and Byjgh — Chign” (IF
environmental factor A is low and environmental factor
B is low, THEN the abundance of microbial species Z is
high).

Given the discretized binary abundance levels of each
object, we obtain eight combinations of abundance values
for every three objects, e.g., low-low-low, low-low-high,
low-high-low, low-high-high, high-low-low, high-low-
high, high-high-low, high-high-high. We denote the
numbers of samples that belong to the eight combinations
as dooo> 001> 4010, do11> d100> 41015 41105 @111, TESpeC-
tively (Figure S11). Following the same procedure for
detecting the pairwise Boolean relationships, we again
adopt the two-phase hypothesis testing procedure to
detect the Boolean implication among three objects.
Specifically, when one or two or three quadrants are
sparse after a statistical test and enough high and low
abundance values are available for each object for a
threshold, a Boolean implication potentially exists. To
this end, we first determine the corresponding relation-
ships, as shown in Table 2, between the sparse situations
of eight quadrants and the types of Boolean implication
and then examine which quadrant is sparse (Figure S6).

For example, to test if the number of observed data in
the low-low-low combination is sparse or not, we will use
either the Fisher’s exact test or the chi-squared-like
method in the first stage. Particularly, using the latter, we
calculate a test statistic as

(EOOO B OOOO)
Vv EOOO ’

where Oy, and Eyy, denote the observed and expected
numbers of occurrence for the low-low-low combination,
respectively, and can be calculated as Oy = ayo9 and Eygg
= 0ee X dage X Uua)/Tase With dges =ag00 + o1 + 10
+aj11,  dege = ao00 T Aoo1 T @100 T A101>  deed = A000 T
1o + 00 + @110 and deee = dgoo + doo1 + @o10 + a0+
+ay90 + ay10 + a111- This test statistic indicates the rarity
of samples in the low-low-low combination and can be
used with threshold o to determine the significance of
such combination. Repeating this procedure for each of
the eight combinations, we are able to determine the
potential Boolean relationship. In the second phase, the
observed values in the sparse quadrant are considered
erroneous points, and the MLE of the error rate is
computed as:

1/a a a
R000§< 000+ 000+ ooo>’

So00 =

Apee Qo0 [229%))
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which is the average of three MLEs for three dimensions
to measure the error rate of the observation for the low-
low-low combination. The value should be low if the low-
low-low quadrant is sparse. Finally, a three-way Boolean
implication is identified if both tests in both steps are
passed.

Simulation models

We assess the effectiveness of BIMS through a series of
simulation studies. Briefly, for each of the six pairwise
Boolean implication models, we mix a number of
simulated positive cases with the same number of
negative controls and see how many positive cases can
be identified at a given level of FDR. In detail, a negative
control is simulated by sampling two objects from the real
data and then permuting the label of one object. A positive
case is simulated using the following probabilistic model.
Let X'and Y be two objects sampled from the real data and
a and f fractions of low abundant samples of X and 7,
respectively. Let p be the probability that both X and Y are
low abundant. We have the joint probabilities

PX=0Y=1)=a—p, PX=1,Y=1)=1-a—f +p.

The range of parameter p should be restricted since, in a
Boolean implication, either one or two of the above joint
probabilities should be significantly smaller than the
others. For example, for X,y — Yiow, P(X =0,Y=1)
should be significantly smaller than the other three, while
in an Boolean equivalent relationship, both P(X =0,Y =
1) and P(X=1,Y=0) should be significantly smaller
than the other two. To simulate this constraint, we set T
as the upper limit of the smaller probabilities and T as the
lower limit of the larger probabilities, and thus the range
of p can be determined. For example, in the X, — Yiow
relationship, the constraint is

PX=0,Y=0)>T, p>T,
P(X=0,Y=1)<T, p>a-T,
PX=1,Y=0)>T, p <p-T,
PX=1,Y=1>T, p> fra+T,—1

We can therefore sample a p uniformly from its range to
simulate the joint probabilities of a positive case and
further generate a number of 7 (the number of samples in
the real data) points according to these probabilities.
Furthermore, to obtain continuous abundance data, we
sample from two normal distributions: N(u,1) and N(
ta,1) (u<p) for the low and high abundance points,
respectively. Using the same method, we can generate the
Boolean implication relationship for other types (Xjow —
Yhighs Xhigh_>Y10W= Xhigh_)Yhigh) with different con-

straints of p (see Supplementary Materials for details).
SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at
DOI 10.1007/s40484-014-0037-3.
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