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Fluctuating environments pose tremendous challenges to bacterial populations. It is observed in numerous bacterial
species that individual cells can stochastically switch among multiple phenotypes for the population to survive in
rapidly changing environments. This kind of phenotypic heterogeneity with stochastic phenotype switching is
generally understood to be an adaptive bet-hedging strategy. Mathematical models are essential to gain a deeper
insight into the principle behind bet-hedging and the pattern behind experimental data. Traditional deterministic
models cannot provide a correct description of stochastic phenotype switching and bet-hedging, and traditional
Markov chain models at the cellular level fail to explain their underlying molecular mechanisms. In this paper, we
propose a nonlinear stochastic model of multistable bacterial systems at the molecular level. It turns out that our
model not only provides a clear description of stochastic phenotype switching and bet-hedging within isogenic
bacterial populations, but also provides a deeper insight into the analysis of multidimensional experimental data.
Moreover, we use some deep mathematical theories to show that our stochastic model and traditional Markov chain
models are essentially consistent and reflect the dynamic behavior of the bacterial system at two different time scales.
In addition, we provide a quantitative characterization of the critical state of multistable bacterial systems and
develop an effective data-driven method to identify the critical state without resorting to specific mathematical
models.
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INTRODUCTION

Bacteria in the wild exist in ever-changing environments
and have to surmount the challenges posed by environ-
mental fluctuations. Numerous experiments have con-
firmed that multiple distinct phenotypes can coexist
within an isogenic bacterial population [1–10]. This
phenotypic heterogeneity in genetically identical cells has
received increasing attention in recent years since it could
help the bacteria to survive in rapidly changing environ-
ments [11,12]. In the framework of traditional population
genetics, a bacterial population enhances its fitness via

genetic changes caused by mutation or recombination.
However, extracellular conditions can change so rapidly
that adaptation only by mutation or recombination would
be too slow. One solution to this problem is to allow
individual cells to stochastically switch among multiple
phenotypes without genetic changes, a phenomenon
widely known as stochastic phenotype switching [13–
18]. Generally, the multiple phenotypes within an
isogenic bacterial population result from the multiple
steady-state expression levels of a group of stress-related
genes. Such kind of gene expression pattern with multiple
steady-state expression levels are widely known as
multistability [3,7].
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Phenotypic heterogeneity is a widespread phenomenon
in the bacterial realm. Examples of phenotypic hetero-
geneity include lactose utilization in Escherichia coli
[19], competence development in Bacillus subtilis [20–
22], sporulation in Bacillus subtilis [23–26], and
persistence in Mycobacterium tuberculosis [27–29]. The
potential function of phenotypic heterogeneity with
stochastic phenotype switching is generally understood
to be a bet-hedging strategy [7,12,30,31], a term
originating from finance. In response to fluctuating
environments, a heterogeneous bacterial population
could optimize its fitness by altering the proportion of
cells in each subpopulation via stochastic phenotype
switching to achieve an optimal ‘investment portfolio’.
To study the evolution of heterogeneous bacterial

populations, a number of Markov chain models have been
proposed at the cellular level [1,6,14,16,17,32–34]. These
models assumed a priori that the bacterial population has
multiple distinct phenotypes. In these chain models, each
phenotype is modeled as a state of the Markov Chain and
stochastic phenotypic switching is modeled as the state
transition of the Markov chain. However, these models
take phenotypic heterogeneity and stochastic phenotypic
switching for granted and fail to account for their
underlying molecular mechanisms.
Recent research has demonstrated that phenotypic

heterogeneity within isogenic bacterial populations often
results from the feedback circuitry of the gene regulatory
network [35,36]. To account for the molecular mechanism
of phenotypic heterogeneity, a number of deterministic
models have been proposed at the molecular level
[19,22,27,29,37]. In these models, different steady states
of gene expression are described as different stable fixed
points (attractors) of a deterministic system composed of
several ordinary differential equations which are written
down based on the regulatory relationship of the gene
network. However, deterministic models cannot provide a
correct description of many important experimental
phenomena, such as stochastic phenotype switching and
bet-hedging. In every deterministic model, if the expres-
sion level of an individual cell lies in an attraction basin at
a particular time, it will never leave this attraction basin
and thus phenotype switching will never occur.
Although deterministic models can give rise to multiple

attractors and attraction basins, they do not allow
transitions among different attraction basins. One solution
to this problem is to consider stochastic effects, which
allow the system to transition among different attraction
basins and thus drive stochastic phenotype switching.
This fact is analogous to the simulated annealing
techniques in optimization problems, in which noise is
indispensable to make the search escape from the trap of
local minimum points and reach the global minimum
point. To better understand the role that stochastic effects

play in bistable systems, Qian and coworkers studied the
relations between deterministic and stochastic nonlinear
dynamics in great detail [38–43]. However, their models
are usually so abstract and oversimplified that they cannot
be directly applied to practical problems with experi-
mental data and observations.
Stochastic effects are extremely important not simply

because they are indispensable for the model to generate
phenotype switching, but because gene expression is an
inherently stochastic process. Recent developments of
single-cell and single-molecule experiments have shown
that many important cellular processes, such as transcrip-
tion, translation, replication, and gene regulation, are
inherently stochastic [44–53]. Due to stochastic effects,
the expression levels of the stress-related genes in a
multistable system will have a multimodal distribution.
In this paper, we propose a unified nonlinear stochastic

model of multistable bacterial systems at the molecular
level based on a core double-positive-feedback gene
network. By studying its stochastic nonlinear dynamics,
we show that our model not only provides a clear
description of phenotypic heterogeneity, stochastic phe-
notype switching, and bet-hedging within isogenic
bacterial populations, but also provides a deeper insight
into the analysis of multidimensional experimental data,
such as gene expression data and the data of more
comprehensive indicators like the forward scatter (FSC)
and the side scatter (SSC) measured by flow cytometry.
Next, we use the mathematical tool of large deviation

theory established by Freidlin and Wentzell [54] to show
that every multistable dynamical system under a small
random perturbation can be approximated by a Markov
chain with multiple states, each corresponding to an
attraction basin of the multistable system. In this way, our
stochastic model at the molecular level can be reduced to
a Markov chain model at the cellular level. This justifies
the wide applications of previous Markov chain models of
population evolution, in particular, the Markov chain
model proposed by Lander and coworkers [33] about the
dynamics of the phenotypic proportions in human breast
cancer cell lines.
In addition, we point out a widespread misunderstand-

ing on the analysis of gene expression data, inspired by
our recent work about antibiotic resistance in Escherichia
coli. Previous studies tended to think that phenotypic
heterogeneity can be identified by the multistable
expression of a single pivotal gene (reviewed in Refs.
[2,7]). However, phenotypic heterogeneity in bacterial
populations often results from the interaction of a group
of stress-related genes. We use simulation results to show
that in many cases, the expression data of a group of genes
give rise to an apparent multimodal distribution, however,
we cannot observe the multistable expression if we only
focus on the expression data of a single gene. This
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suggests that the traditional method to identify phenotypic
heterogeneity by measuring the expression of a single
pivotal gene is sometimes ineffective.
Finally, we use our stochastic model to provide an

answer to the important question of identifying the critical
state of multistable bacterial systems. In our stochastic
model, there is a saddle lying on the boundary of two
adjacent attraction basins which characterizes a critical
state between two steady states of gene expression. The
critical state is not targeted in the previous work since it is
rarely observed in experiments and cannot be estimated
by simple statistical analysis of gene expression data.
However, the identification of the critical state has drawn
increasing attention in recent years since it is closely
related to the early diagnosis of complex diseases [55,56].
In this paper, we develop an effective method to identify
the critical state of multistable bacterial systems using the
time-course data of gene expression without resorting to
specific mathematical models.

METHODS

The parameters used to draw the figures in the main text
are chosen as α = 1, β = 2, γ = 0.8, K = 0.05, δ = 0, and n =
6. The inducer concentration a and the two noise levels, ε
and η, are chosen appropriately when drawing different
figures.

RESULTS

Model

In natural bacterial systems, phenotypic heterogeneity and
stochastic phenotype switching always originate from the
feedback circuitry of the regulatory network which
governs a group of stress-related genes. To better
understand the general principles behind phenotypic
heterogeneity, we illustrate the gene regulatory networks
that govern some best-understood multistable systems in
bacteria (Figure 1A–D). A crucial similarity shared by
these examples is that the wiring of the gene regulatory
network forms a double-positive-feedback loop. To
establish a unified model of these bacterial systems, we
focus on the core double-positive-feedback gene network
depicted in Figure 1E, where, protein X is the product of a
pivotal stress-related gene, i.e., gene X, protein Y is a
transcription factor which activates the expression of gene
X, and A is an inducer whose concentration reflects the
fluctuations in extracellular environmental conditions,
such as fluctuations in temperature, pH, and concentra-
tions of nutrients and toxins [23,27].
We use lowercase letters x, y, and a to denote the

concentrations of X, Y, and A, respectively. Since gene
expression is an inherently stochastic process, the

dynamics of x and y can be described by the following
two-dimensional system of stochastic differential equa-
tions (SDEs):

_x=– αðx –Fða, yÞÞ þ
ffiffiffiffiffi
2ε

p
�x,

_y=– βðy –GðxÞÞ þ
ffiffiffiffiffi
2η

p
�y,

8<
: (1)

where F(a, y) describes the activation of protein X by
inducer A and protein Y, G(x) describes the activation of
protein Y by protein X, and α and β are two parameters
characterizing the response speeds of proteins X and Y,
respectively. In addition, �x and �y are two independent
standard white noises satisfying �xðtÞh i= �yðtÞ

� �
=0 and

�xðtÞ�xðt#Þh i= �yðtÞ�yðt#Þ
� �

=δðt#– tÞ. Since the fluctua-
tions in the levels of proteins X and Y can be different, we
use two noise levels ε and η to describe their stochastic
fluctuations. We emphasize here that noise in gene
regulatory networks generally comes from a great number
of sources and may not be subsumed into white noises.
Fortunately, the specific noise distributions will hardly
affect the main results of this paper. To make our
discussion friendly to both theoretical and experimental
biologists, we would like to use white noises to describe
noise in gene expression. For the rationality of this
assumption, please see Discussion.
If we ignore stochastic effects, then the stochastic

system (1) can be reduced to the following deterministic
system as the two noise levels, ε and η, tend to zero:

_x=– αðx –Fða, yÞÞ,  _y=– βðy –GðxÞÞ: (2)

We note that the fixed points of this deterministic system
are the solutions to the following equations: x –Fða,
GðxÞÞ=0 and y=GðxÞ. In natural bacterial systems, the
most common expression of Fða,GðxÞÞ has the following
form (see Supplementary Information):

Fða,GðxÞÞ= gxn

K þ xn
þ ð�aþ δÞ, (3)

where the Hill function gxn=ðK þ xnÞ with n> 1
describes the activation of gene X by protein Y, the term
μa describes the activation of protein X by inducer A, and
the term δ describes a basal expression level of gene X
independent of the activation of protein Y.
It turns out that the deterministic system (2) has one or

three fixed points under different inducer concentrations
(Figure 2A). To be specific, the inducer concentration a
has two threshold levels, a0 and a1. If a< a0 or a> a1, the
system has only one fixed point (Figure 2A). If a< a0, the
only attractor (xL, yL) describes the phenotype of low-
expressing cells in which gene X is inactivated. If a> a1,
the only attractor (xH, yH) describes the phenotype of
high-expressing cells in which gene X is activated. If
a0< a< a1, however, the system has three fixed points,
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including two attractors, (xL, yL) and (xH, yH), and a saddle
(xM, yM) (Figure 2A, B), where the two attractors describe
the phenotypes of low- and high-expressing cells,
respectively, whereas the saddle is a critical state between
the two steady states of gene expression. Mathematically,
each attractor of a deterministic system has an attraction
basin, and two adjacent attraction basins are separated by
a boundary (Figure 2B).

Phenotypic heterogeneity and bet-hedging

In the recent decade, single-cell and single-molecule
experiments have made significant progresses and shown
that gene expression is an inherently stochastic process.
Although deterministic models, such as the deterministic
system (2), can give rise to multiple attractors and
attraction basins, they cannot provide a correct descrip-

Figure 1. Schematic models of bacterial systems with phenotypic heterogeneity. (A–D) Examples of naturally occurring
bacterial systems with phenotypic heterogeneity. (A) Lactose utilization in E. coli [19].(B) Competence development in B. subtilis [20].
(C) Sporulation in B. subtilis [23]. (D) Persistence inM. tuberculosis [29]. (E) The core double-positive-feedback gene network shared
by A–D. X (red) is the product (protein or mRNA) of a pivotal stress-related gene. Y(blue) is a transcription factor which activates the
expression of gene X. A (green) is an inducer whose concentration reflects extracellular environmental conditions.
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tion of stochastic phenotype switching and bet-hedging.
These two facts show that the reduction from the
stochastic system (1) to the deterministic system (2) is
inappropriate.
In the following discussion, we focus on the stochastic

system (1) in which the two noise levels, ε and η, are
strictly positive. Although the system does not satisfy
detailed balance, we can still obtain an approximate
steady-state probability distribution ps(a, x, y) of the
system (see Supplementary Information), which has the
following form:

psða, x, yÞ=
1

Z
exp –

1

ε
Uða, x, yÞ

� �
, (4)

where Z is a normalization constant and U(a, x, y) is an
approximate global potential, also called landscape, of the
system defined as

Uða, x, yÞ=εβ
2η

ðy –GðxÞÞ2 þ α!
x

0
ðu –Fða,GðuÞÞÞdu:

(5)

We make a crucial observation that the fixed points of
the deterministic system (2) are exactly the solutions to
the equation ∂xUða, x, yÞ=∂yUða, x, yÞ=0. This shows
that the attractors of the deterministic system are the local
minimum points of the approximate global potential U(a,
x, y) and thus are the local maximum points of the steady-
state distribution ps(a, x, y). From Figure 2C–E, we see
that the steady-state distribution of the levels of proteins X
and Y is controlled by the inducer concentration a. If
a< a0, the steady-state distribution has only the left peak,
suggesting that the bacterial population contains almost
exclusively low-expressing cells under favorable condi-
tions (Figure 2C). If a0< a< a1, the steady-state
distribution has both the left and right peaks, each
corresponding to a phenotype. With the increase of the
inducer concentration, a larger fraction of cells will switch
from the low- to the high-expressing subpopulation to
maximize survival (Figure 2D). If a> a1, the left peak of
the steady-state distribution disappears, suggesting that
the bacterial population contains almost exclusively high-
expressing cells under unfavorable conditions (Figure
2E). The above discussion clearly explains how the bet-
hedging strategy could help the bacterial population better
adapt to rapidly changing environmental conditions.
Generally, the steady-state gene expression levels in a

multistable bacterial system have a multimodal distribu-
tion, which can be viewed as the superposition of multiple
monomodal distributions, each concentrated within an
attraction basin. The attractors are the locally most-
probable states and thus are most likely to be observed in
experiments. Based on the stochastic system (1), we
simulate the time course of the levels of proteins X and Y

in a single cell (Figure 2B). The simulation result shows
that the gene expression data are generally distributed
around the attractors and are rarely distributed around the
boundary of the attraction basins. These facts clearly
show that each phenotype of a bacterial population cannot
be simply described as an attractor of the deterministic
model, but should be understood as a monomodal
distribution concentrated within an attraction basin.

A widespread misunderstanding on the analysis of
gene expression data

Phenotypic heterogeneity in isogenic bacterial popula-
tions often results from the interaction of a group of
stress-related genes and biochemical species. Previous
studies tended to think that phenotypic heterogeneity can
be identified by the multistable expression of a single
pivotal gene (reviewed in Refs. [2,7]). In experiments,
however, it often happens that the steady-state expression
data of a single gene does not display a multimodal
distribution, and only when a subpopulation of cells are
sorted out to start from some extreme initial conditions,
the multimodal distribution can be observed at certain
times before reaching the steady state. Thus it is rather
difficult to determine whether the bacterial population has
multiple phenotypes or not. To explain these experimental
phenomena, we point out that phenotypic heterogeneity
often results from the interaction of a group of stress-
related genes and may not be observed if we only focus on
the expression data of a single gene. In our recent study
about antibiotic resistance in Escherichia coli (unpub-
lished work), we found that the expression data of the
hydrolase gene only lead to a monomodal distribution,
whereas the expression data of a group of stress-related
genes lead to an apparent multimodal distribution.
We now use our stochastic model to account for this

interesting phenomenon. Based on the stochastic system
(1), we simulate the steady-state levels of proteins X and
Y in 500,000 virtual cells under a set of model parameters
(Figure 2F). From the simulation result, we see that the
two-dimensional gene expression data are distributed
around two attractors in the phase plane and lead to a
bimodal distribution, which can be viewed as the
superposition of two monomodal distributions. Although
these two monomodal distributions are concentrated
within two different attraction basins in the phase plane,
there is an obvious overlap between their marginal
distributions, whose superposition, which represents the
steady-state distribution of the level of protein Y, has only
one peak (Figure 2G). This suggests that the traditional
idea to identify phenotypic heterogeneity by the multi-
stable expression of a single pivotal gene is sometimes
ineffective. The above discussion also shows that our
stochastic model can help us gain a deeper insight into the
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Figure 2. Stochastic description of multistability. (A) Numbers of fixed points under different inducer concentrations. The
curve represents the Hill function y=gxn=ðK þ xnÞ and the lines represent the function y=x – ð�aþ δÞ. The intersections of the curve
and the line give the positions of the fixed points. (B) The simulation data of the time course of the levels of proteins X and Y in a
single cell. When a0 < a< a1, the deterministic model has three fixed points, including two attractors and a saddle, which lies on the
boundary of two attraction basins. The expression levels of the cell stay around the two attractors at most times and cross the
boundary around the saddle. (C–E) The steady-state probability distribution of the levels of proteins X and Y. (C) When a< a0, the
steady-state gene expression levels have a monomodal distribution, which attains its unique maximum at the attractor (xL, yL). (D)
When a0 < a< a1, the steady-state gene expression levels have a bimodal distribution, which attains two maxima at both the two
attractors, (xL, yL) and (xH, yH). (E) When a> a1, the steady-state gene expression levels have a monomodal distribution, which
attains its unique maximum at the attractor (xH, yH). (F)The simulation data of the steady-state levels of proteins X and Y in 500,000
virtual cells under a set of model parameters. The two-dimensional gene expression data are distributed around two attractors and
thus lead to an apparent bimodal distribution. (G) The marginal distribution of the level of protein Y based on the two-dimensional
gene expression data. The blue and red curves represent the marginal distributions of low- and high-expressing cells, respectively,
and the black curve represents the marginal distribution of all cells. There is an obvious overlap between the marginal distributions of
low- and high-expressing cells, resulting in a monomodal overall marginal distribution.
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pattern behind multidimensional experimental data.

From the molecular level to the cellular level

We have seen that our stochastic model provides a clear
description of phenotypic heterogeneity and bet-hedging
within isogenic bacterial populations at the molecular
level. However, more widely used models in the previous
work are Markov chain models at the cellular level. These
models assume a priori that the bacterial population has
multiple distinct phenotypes, each of which corresponds
to a state of the Markov chain and can switch to other
phenotypes with certain transition rates. This raises the
question of whether the two kinds of models, our
stochastic model at the molecular level and the Markov
chain models at the cellular level, are consistent in some
way or not. We now use the mathematical tool of large
deviation theory established by Freidlin andWentzell [54]
to answer this question.
The Freidlin-Wentzell theory is mainly concerned

about the dynamic behavior of a multistable dynamical
system under random perturbations, such as the stochastic
system (1), when the noise level is not too large. The
conclusions of the Freidlin-Wentzell theory are not very
intuitive at first sight and the proofs of them are rather
tedious. Readers who are interested in the mathematical
aspects of the Freidlin-Wentzell theory may refer to
[54,57]. To make readers understand this useful mathe-
matical tool, we would like to list the major results of the
Freidlin-Wentzell theory as follows.
Basic Result 1. No matter how small the noise level is,
the accumulation of the stochastic forces will make the
system escape from the trap of an attraction basin and
enter another attraction basin. Before the system escapes
from an attraction basin, it will spend most of the time
staying around the attractor and spend little time staying
around the boundary of the attraction basin. These facts
can be seen from our numerical simulation in Figure 2B
and Figure 3A.
Basic Result 2. Each point x in an attraction basin has a
local potential V(x) called the quasi-potential. If the
system has a global potentialU(x), as in Equation (5), then
the quasi-potential V(x) can be calculated explicitly as

V ðxÞ=2ðUðxÞ –Uðx0ÞÞ, (6)

where x0 is the attractor in this attraction basin. When the
system escapes from one attraction basin to another, it
must cross the boundary around a specific point y0 where
the quasi-potential attains its minimum. In most cases, the
minimum point y0 of the quasi-potential on the boundary
is exactly the saddle of the system. These facts can be seen
from our numerical simulation in Figure 2B.
Basic Result 3. The time needed for the system to escape

from an attraction basin is referred to as the escape time.
The escape time T from an attraction basin approximately
follows an exponential distribution. The mean escape
time Th i, which is approximately the time constant of the
exponential distribution, has the form of

Th i¼: k exp 1

2ε
V0

� �
, (7)

where k is a positive constant, ε is the noise level, and V0 =
V (y0) is the minimum value of the quasi-potential on the
boundary. By Basic Result 2, if the system has a global
potential U(x), then V0/2 =U(y0) –U(x0), which repre-
sents the potential difference between the minimum point
y0 of the potential on the boundary and the attractor x0.
These facts can be seen from our mathematical deriva-
tions in Supplementary Information.
It is a well-known result that the time needed for a

Markov chain to make a state transition follows the
exponential distribution. The Freidlin-Wentzell theory
tells us that the escape time from each attraction basin
approximately follows an exponential distribution. This
shows that if we combine each attraction basin into a
state, then the stochastic system with multiple attractors
can be approximated by a Markov chain with multiple
states at the time scale of exp(1/ε). When the noise level ε
is small, exp(1/ε) becomes very large. This shows that the
approximate Markov chain reflects the long-term
dynamic behavior of the stochastic system.
According to the above discussion, each stochastic

model of a multistable system at the molecular level can
be reduced to a Markov chain model at the cellular level.
These two kinds of models at two different levels are
essentially consistent and reflect the dynamic behavior of
the system at two different time scales. For instance, the
stochastic model (1) proposed in this paper has two
attraction basins when a0< a< a1, and thus can be
approximated by a Markov chain model with two states,
each corresponding to a phenotype. If the feedback
architecture of the gene network becomes more compli-
cated, then the stochastic system may possess three or
more attraction basins and thus can be approximated by a
Markov chain model with three or more states. For
examples of Markov chain models with two, three, or four
states, readers may refer to Refs. [16,17,33].

Stochastic phenotype switching

To survive in rapidly changing environments, a hetero-
genous bacterial population may allow individual cells to
stochastically switch among multiple phenotypes, ensur-
ing that some cells are always prepared for an unforeseen
environmental fluctuation. This kind of phenotype
switching is stochastic and temporary: An individual
cell may switch to an alternative state at a random time
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and switch back again after some random time. Even
without a significant change in environmental conditions,
stochastic phenotype switching still exists. Stochastic
phenotype switching has been observed in a wide range of
bacterial species. As an example, upon encountering
nutrient limitation, a minority of Bacillus subtilis cells
transiently enter the competent state with the capability
for DNA uptake from the environment before returning to
vegetative growth [20].
To better understand the principle behind stochastic

phenotype switching, we simulate the time course of the
level of protein X in an individual cell based on the
stochastic system (1) (Figure 3A). The simulation result

shows that the cell switches between the low- and high-
expression states at certain random times. The Freidlin-
Wentzell theory shows that the escape times TL and TH
from the low- and high-expression states approximately
follow exponential distributions. The mean escape times,
TLh i and THh i, have the following form (see Supplemen-
tary Information and Basic Result 3):

TLh i¼: 2πffiffiffiffiffiffiffiffiffiffiffi
κLκM

p exp
1

ε
ΔUL

� �
,

THh i¼: 2πffiffiffiffiffiffiffiffiffiffiffiffi
κHκM

p exp
1

ε
ΔUH

� �
,

(8)

Figure 3. Stochastic phenotype switching driven by stochastic forces. (A) The simulation data of the time course of the level
of protein X in a single cell. The cell switches between the low- and high-expression states at certain random times. (B) The simplified
dynamics of the stochastic system (1) as a two-state Markov chain. (C) The steady-state behavior of the system when the noise level
ε is zero. The curve represents the one-dimensional effective potential U(a, x,G(x)). If the low-expressing cells are sorted out at a
particular time, then all cells will stay in the low-expression state forever and phenotype switching is impossible. (D) The steady-state
behavior of the system when the noise level ε is positive. The accumulation of stochastic forces will drive individual cells to surmount
the potential barrier and make a state transition.
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where ΔUL and ΔUH are the potential differences between
the saddle and the two attractors (Figure 3C) and κL, κM ,
and κH are the curvatures of the one-dimensional effective
potential U(a, x,G(x)) at xL, xM, and xH, respectively. At
the time scale of exp (1/ε), the dynamic behavior of the
stochastic system (1) can be approximated by a Markov
chain model with two states (Figure 3B).
According to Equation (8), the mean escape time is an

exponential function of the potential barrier. The higher
the potential barrier, the longer time is needed for a cell to
make a state transition. Equation (8) also shows that the
mean escape times have the time scale of exp (1/ε). This
suggests that stochastic phenotype switching is a long-
term dynamic behavior of the system. When the noise
level ε is small, the escape time may be longer than the
time of cell division. For a fraction of cells, stochastic
phenotype switching may not occur in a single cell cycle,
and thus they can pass their phenotypic state to the next
generation.
If there were no stochastic effects, the phenotype of

each individual cell would never change. Specifically, if
the low-expressing cells are sorted out at a particular time,
then all cells will stay in the low-expression state forever
and phenotype switching is impossible (Figure 3C). In the
presence of stochastic effects, however, the accumulation
of stochastic forces will drive individual cells to surmount
the potential barrier and make a state transition (Figure
3D). This suggests that stochasticity in gene expression is
the driving force for stochastic phenotype switching.

Importance of the critical state

We have seen that at certain ranges of the inducer
concentration, the two attractors of the stochastic system
(1) are separated by a boundary, forming two attraction
basins. The saddle of the system lies exactly on the
boundary of the two attraction basins (Figure 2B) and thus
characterizes a critical state between the two steady states
of gene expression. This saddle is not targeted in the
previous work since it is rarely observed in experiments
and cannot be estimated by simple statistical analysis of
gene expression data. However, the identification of the
critical state has drawn increasing attention in recent years
due to the following three reasons.
First, the saddle represents a critical level of gene

expression. Recent studies on complex diseases show that
any disease progression can be divided into a normal
state, a pre-disease state, and a disease state [55,56],
similar to the low-expression state, the critical state, and
the high-expression state described in this paper. Once the
expression levels of the disease-related genes in a person
is close to the saddle, we have good reasons to believe that
this person is in a pre-disease state and is at high risk of
disease progression. This suggests that the identification

of the critical state is closely related to the early diagnosis
of complex diseases.
Second, the saddle is the most important point on the

boundary of two adjacent attraction basins. According to
the Freidlin-Wentzell theory, when the system escapes
from one attraction basin to another, it must cross the
boundary around a specific point where the quasi-
potential attains its minimum. To see this, we simulate
the time course of the levels of proteins X and Y in an
individual cell based on the stochastic system (1) (Figure
2B). The simulation result shows that the protein levels of
the cell stay around the attractors at most times and cross
the boundary of two attraction basins around the saddle,
which is exactly the minimum point of the potential U(a,
x, y) on the boundary.
Third, the saddle characterizes a critical state of the

transition between multiple attraction basins. To accom-
plish stochastic phenotype switching, the system needs
first to climb up the potential from one attractor to the
saddle, and then to fall down the potential from the saddle
to another attractor. Before reaching the saddle, the
accumulation of stochastic forces will drive the system to
climb up the potential against the potential gradient. This
process in general will take rather a long time. Once the
system crosses the saddle, it will reach another attractor
along the potential gradient in a very short time. This
shows that the dynamic features of a multistable system
before and after reaching the saddle are totally different.
To be more precise, let Tu denote the time needed for the
system to climb up the potential and let Td denote the time
needed for the system to fall down the potential. The
Freidlin-Wentzell theory shows that the ratio of Tu to Td
has the time scale of exp(1/ε). This suggests that the
process of climbing up the potential is much longer than
that of falling down the potential, which is consistent with
the old saying: Diseases come on horseback, but go away
on foot.

Identification of the critical state

The critical state of a multistable system is important in
many ways. Thus it is natural to ask whether we can
identify the critical state in an effective way based on the
noisy data of gene expression. Recently, Chen et al. [58]
have developed a method of identifying the leading
network in complex diseases by evaluating a kind of
network entropy, and Gore et al. [59] have used generic
statistical indicators to provide early warning signals for
catastrophic collapse in the budding yeast population.
Inspired by their ideas, in this section, we shall develop an
effective method to identify the critical state of a
multistable system using the time-course data of gene
expression. Moreover, we shall validate the effectiveness
of our method through both theoretical derivations and
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numerical simulation.
We have seen that at certain ranges of the inducer

concentration, the pivotal gene, gene X, has two steady-
state expression levels, xL and xH, and a critical expression
level xM. We assume that we have measured the level of
protein X in each individual cell within a bacterial
population at two times, t and t + h, where the interval h
of two successive measurements is chosen to have the
time scale of 1/ε, which is much shorter than the time
scale exp (1/ε) of stochastic phenotype switching.
Intuitively, if the protein level in an individual cell is
around xL or xH at time t, then the protein level at time t +
h should be also around xL or xH since the interval h is
much shorter than the time needed for stochastic
phenotype switching (Figure 4A). However, if the protein
level in an individual cell is around xM at time t, then the
protein level at time t + h will become rather scattered
since the critical state is rather unstable (Figure 4A).
Let x(t) denote the level of protein X at time t, whose

value can differ significantly between two individual
cells. The above discussion illuminates us to define the
variance D(x) at x as the variance of x(t + h) conditioned
on the information of x(t) = x. More precisely, we define
the variance D(x) at x as

DðxÞ=Varianceðxðt þ hÞ xðtÞ=xÞ,j (9)

where Variance ðZÞ= ðZ – Zh iÞ2� �
is the variance of the

random variable Z. According to the above discussion, the
variance D(x) around xL or xH should be small since the
distribution of x(t+ h) will be rather concentrated if x(t) is
around xL or xH, whereas the variance D(x) around xM
should be large since the distribution of x(t + h) will be
rather scattered if x(t) is around xM. This suggests that we
may detect the critical state by seeking the maximum
point of the variance function D(x).
We next validate the above intuitive discussion from

the theoretical point of view. In fact, the theoretical
expression of the variance functionD(x) has the following
form (see Supplementary Information):

DðxÞ¼: ðxH – xLÞ2pLðxÞpHðxÞ

þ ε
pLðxÞ
κL

þ pHðxÞ
κH

� �
, (10)

where pL(x) and pH(x) are two functions (see Supplemen-
tary Information for specific expressions) satisfying pL(x)
+ pH(x) = 1. We denote the maximum point of the
variance function D(x) by xmax. By Equation (10), we can
easily see that xmax satisfies

pHðxmaxÞ=
1

2
þ ðκL – κHÞε

2ðxH – xLÞ2κLκH
: (11)

In order to find the location of the maximum point xmax,

we depict the graph of the function pH(x) in Figure 4B,
from which we see that the function pH(x) is sigmoidal
with a critical transition around xM. With the decrease of
the noise level ε, the slope of the function pH(x) at xM
tends to infinity. This fact, together with Equation (11),
indicates that when the noise level ε is small, the
maximum point xmax of the variance function D(x) is
very close to xM. This suggests that the variance function
D(x) may provide a clear signal for the position of the
critical state.
A natural and important question is that whether we can

estimate the variance function D(x) from the noisy data of
gene expression. The answer is of course affirmative.
Recent experimental techniques such as fluorescent
labeling and microfluidic devices allow us to measure
the expression level of the pivotal gene in each individual
cell within a bacterial population at a series of times t1, t2,
…, tm with interval h. We assume that the experimental
data of the n-th cell have the form of x(n, t1), x(n, t2),…, x
(n, tm), where x(n, ti) represents the expression level of the
n-th cell at time ti. For each time ti, if x(n, ti) is in a given
small neighborhood of x, we pick out its next datum
x(n, ti + 1), whereas if x(n, ti) is not in the given small
neighborhood of x, we throw away its next datum. By
evaluating the sample variance of those data which are
picked out, we can obtain a good estimation of the
variance D(x) at x.
To validate the effectiveness of our method, we

simulate the time course of the level of protein X in
4,800 virtual cells based on the stochastic model (1) and
estimate the variance D(x) at several discrete levels of x
(red circles in Figure 4C), from which we see that the
simulation result coincides perfectly with the theoretical
result (blue line in Figure 4C). Moreover, we see that the
variance function D(x) changes drastically around xM,
whereas there is no significant change in D(x) around xL
and xH (Figure 4C). This suggests that our method is
effective in detecting the critical state of a multistable
system using the noisy data of gene expression, even if no
detailed mathematical model is available.
Before leaving this section, we would like to point out

that our method of identifying the critical state is not only
effective in simple multistable systems with stable fixed
points, but also effective in complicated multistable
systems with periodic orbits or stable limit cycles, in
which case the time-course data of the system will
oscillate. To see this, we consider the following two-
dimensional system of SDEs:

_x ¼ yþ
ffiffiffiffiffi
2ε

p
�x,

_y ¼ – x3 þ xþ
ffiffiffiffiffi
2η

p
�y,

8<
: (12)

where ε and η are two noise levels and �x and �y are two
independent standard white noises. If ε = η = 0, then the
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stochastic system is reduced to a deterministic system
whose phase portrait is illustrated in Figure 4D. The
origin (0, 0) (orange dot) is the only saddle and thus is the
only critical point of the system. Interestingly, the stable

and unstable manifolds at the critical point match up
exactly, forming two homoclinic orbits. Moreover, the
system has many periodic orbits inside and outside the
two homoclinic orbits.

Figure 4. Identification of the critical state. (A)The simulation result of the level of protein X at two times, t and t + h, for an
ensemble of 760 samples. The samples at time t + h are rather concentrated if the protein level is around xL or xH at time t, whereas
those are rather scattered if the protein level is around xM at time t. (B) The graph of the function pH(x). The function pH(x) experiences
a critical transition around the critical state xM. With the decrease of the noise level ε, the slope of the function pH(x) at xM tends to
infinity. (C) The variance function D(x). The variance D(x) at x is defined as the variance of the level of protein X at time t + h

conditioned on the information that the protein level equals x at time t. The blue line represents the theoretical curve of the variance
function and each red circle represents the simulation result based on the simulated dynamics of 300 virtual cells. The variance
function changes slowly around the stable fixed points, xL and xH, and experiences a drastic change around the critical state xM. (D) A
multistable stochastic system with periodic orbits. The lines with arrows give the phase portrait the system. The origin (0, 0) (orange
dot) is the unique critical point (saddle) of the system. The system has many periodic orbits inside and outside the two homoclinic
orbits. We simulate the dynamics of the system at time h = 3.5 for an ensemble of 60 samples under two different initial values (red
and orange dots). The green dots represent the samples at time h when the system starts from the point ( –1, 0.45) (red dot) on a
periodic orbit and the blue dots represent the samples at time h when the system starts from the critical point (orange dot).
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To see whether our method can be applied to identify
the critical point of the stochastic system (12), we
simulate the dynamics of the system at time h = 3.5 for
an ensemble of 60 samples under two different initial
values (red and orange dots) (Figure 4D). The simulation
result shows that the samples at time h (green dots) are
rather concentrated if the system starts from the point
( – 1, 0.45) (red dot) on a periodic orbit, whereas the
samples at time h (blue dots) become rather scattered if
the system starts from the critical point (orange dot). This
suggests that the variance at the critical point is much
larger than the variances at the points lying on the periodic
orbits. Accordingly, we see that our method of identifying
the critical state by seeking the maximum point of the
variance function may be applied to various complicated
multistable systems, not restricted to simple multistable
systems with stable fixed points, such as the stochastic
system (1).

DISCUSSION

Comparison with the previous work

Multistability in biologic systems has been widely studied
in recent two decades and it has become an important
recurring theme in cell signaling. In this paper, we study a
class of multistable biologic systems, i.e., heterogeneous
bacterial populations with stochastic phenotype switching
and also provide a data-driven method to identify the
critical state of multistable bacterial systems. In recent
literature, an influential paper about multistability is the
paper of Angeli et al. [60], who studied a large class of
biologic systems with positive feedbacks and also
provided a method of detecting bistability, bifurcations,
and hysteresis in these systems. The themes of their paper
is closely related to ours. Thus we find it necessary to
discuss the similarities and differences between their
paper and ours.
First, both the paper of Angeli et al. [60] and ours

studied multistability in biologic systems with a positive-
feedback network. Recent studies show that multistability
always arises in biologic systems that contain a positive-
feedback loop and it has been proved that the existence of
at least one positive-feedback loop is a necessary
condition for the existence of multiple steady states
[61–63]. In our paper, we show that phenotypic hetero-
geneity in bacterial populations often results from the
underlying double-positive-feedback gene networks,
which is consistent with the above theoretical results.
Second, the paper of Angeli et al. [60] studied the

deterministic nonlinear dynamics of multistable biologic
systems and our paper studies the stochastic nonlinear
dynamics of heterogenous bacterial populations. In fact,
deterministic models may lead to phenotypic heteroge-

neity, but they cannot explain the widely observed
phenomena of stochastic phenotype switching and bet-
hedging. In our paper, we use our stochastic model to
provide a clear description of stochastic phenotype
switching and bet-hedging within heterogenous bacterial
populations and study the role that stochastic effects play
in generating these important experimental phenomena.
Third, in the paper of Angeli et al. [60], the relationship

between the deterministic model of multistable systems
and the widely used Markov chain model of population
evolution is not clear. In our paper, we use the Freidlin-
Wentzell theory to show that our stochastic model at the
molecular level can be approximated by a Markov chain
model at the cellular level, which reflects the long-term
dynamics of multistable bacterial systems, when the noise
level is small. It turns out that only by considering the
stochastic dynamics of multistable bacterial systems can
we unify the models at the two different levels.
Fourth, the paper of Angeli et al. [60] provided a

possible method to detect multistability and bifurcations
in a class of multistable systems satisfying the so-called
“monotonicity” and “open-loop steady-state response”
assumptions. Their method strongly depends on the
properties of the system when the feedback is blocked. To
detect multistability and bifurcations, the response data of
the open-loop, feedback-blocked system to input stimuli
must be obtained. This requirement is obvious too strong
for realistic biologic systems. In our paper, however, we
provide an effective data-driven method to identify the
critical state of multistable biologic systems. In our
method, only the time-course data of gene expression in
individual cells are needed, even if no detailed mathe-
matical model is available.

Rationality of our stochastic model

In our stochastic model, we have used white noises with
two different noise levels to describe the stochastic
fluctuations in proteins X and Y, respectively. In this
subsection, we shall explain the rationality of this
assumption. The content of this section is somewhat
technical. Readers who are unfamiliar with the knowledge
of stochastic processes can skip this part.
In fact, the most precise model of the gene network in

living cells is the chemical master equation (CME) [64].
Mathematically, the CME is the equation satisfied by the
probability distribution of a Markov jump process which
describes the copy number fluctuations of all participating
macromolecules in the gene network. However, the
dimension of the CME model is often so high that the
theoretical expressions of many important quantities
related to the system cannot be explicitly calculated.
This makes the CMEmodel difficult to be directly applied
to practical problems with experimental data and
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observations.
To simplify the CME model, Kurtz [65–67] proved in

his pioneering work that every CME model can be
approximated reasonably well by the so-called chemical
Langevin equation when the volume of the system is
large. Mathematically, the chemical Langevin Equation
[68] is the equation satisfied by the probability distribu-
tion of an SDE model which describes the concentration
fluctuations of all participating macromolecules in the
gene network. To be more precise, we assume that there
are n macromolecules involved in the gene network
whose concentrations are denoted by x1, x2, …, xn. The
general form of an SDE model which governs x1, x2, …,
xn is given by

_x=biðxÞ þ
ffiffiffiffiffiffi
2εi

p Xn
j=1

�ijðxÞ�j,  i=1, 2, � � � , n, (13)

where x = (x1, x2,… , xn), b(x) = (b1(x), b2(x),…, bn(x)) is
the drift coefficient of the SDE, σ(x) = (σij(x))n�n is the
diffusion coefficient of the SDE, and �1, �2, …, �n are n
independent standard white noises. Mathematically, it can
be proved that when the matrix σ(x) is bounded from both
below and above, almost all the major properties of the
SDE model related to the Freidlin-Wentzell theory will
change little if σ(x) is regarded as the identity matrix
[54,57], in which case the SDE model (13) can be
simplified as

_xi=biðxÞ þ
ffiffiffiffiffiffi
2εi

p
�i,   i=1, 2, � � � , n, (14)

In fact, the SDE has been applied to model the
concentration fluctuations of macromolecules in gene
networks in some previous studies [20]. Some reviews on
this topic can be found in Refs. [69–71].
In the core double-positive-feedback gene network

depicted in Figure 1E, there are only two participating
macromolecules, proteins X and Y, if the inducer
concentration is regarded as a parameter. In this case,
the simplified SDE model (14) is exactly our two-
dimensional stochastic model (1). To make biologists,
especially experimental biologists, understand the main
results of this paper, we would like to use white noises to
describe stochasticity in gene expression and use the
simplified SDE (14) to model multistable bacterial
systems. Under this simplification, our stochastic model
(1) can be simply understood as the random perturbation
of the traditional deterministic model.

Strengths and deficiencies of the SDE model

Just as George Box’s famous saying goes, all models are
wrong, but some are useful. Our model is no exception. In
this paper, we use the SDE to model the concentration

fluctuations of the participating macromolecules in the
gene network of heterogenous bacterial populations.
However, the SDE model proposed in this paper has
some deficiencies. In fact, in living bacterial systems,
some macromolecules, such as mRNA and protein
molecules, may exist at very low copy numbers [52], in
which case the concept of concentration makes no sense.
Thus the SDE model cannot provide a good approxima-
tion of the CME model when the copy numbers of the
participating macromolecules are very small.
However, compared with the CME model, the SDE

model proposed in this paper has many strengths. First,
the dimension of the CME model is often too high to be
directly applied to practical problems with experimental
data and observations. If the gene network of the bacterial
system contains n macromolecules and the maximal
possible copy numbers of these n macromolecules are N1,
N2,…, Nn. Then the dimension of the CME model will be
N1N2 … Nn. However, the SDE model compresses the
dimension of the system to a large extent. If the gene
network of the bacterial system contains n macromole-
cules, then the dimension of the SDE model is only n.
This makes the system easy to be analyzed and makes
many important quantities related to the system easy to be
explicitly calculated.
Second, the mathematical theory of the SDE model is

well developed, whereas that of the CME model is poorly
developed due to its high complexity. In this paper, we use
the Freidlin-Wentzell theory to explain stochastic pheno-
type switching and bet-hedging within isogenic bacterial
populations and the consistence between our stochastic
model and the traditional Markov chain models of
population evolution. We believe that an analog of the
Freidlin-Wentzell theory must exist in the CME model.
However, such a theory for the CME model is not well
developed up till now.
Third, the CME model is so abstract that it is not easy

for biologists to understand and follow. In fact, without
some deep mathematical knowledge, it is very difficult to
understand the relationship between the CME model and
the traditional deterministic model. However, the SDE
model can be simply viewed as the random perturbation
of the deterministic model. This makes the SDE model
easy to be understood for both theoretical and experi-
mental biologists.
Due to these reasons, we choose to use the SDE to

model heterogenous bacterial populations, instead of the
CME. We believe that the SDE, or equivalently, the
chemical Langevin equation, which does not lose much
information of the complicated CME, is a useful tool in
the modeling of gene regulatory networks with inherent
noises and in the analysis of the stochastic nonlinear
dynamics of biologic systems.
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Potential of our stochastic model

Given the small size of a cell and the small copy numbers
of participating macromolecules, cellular processes dur-
ing gene expression are inherently stochastic. In this
paper, we establish a unified nonlinear stochastic model of
multistable bacterial systems at the molecular level based
on a core double-positive-feedback gene network (Figure
1E) and provide a clear description of phenotypic
heterogeneity, stochastic phenotype switching, and bet-
hedging within isogenic bacterial populations. Although
we have used the expression levels of two stress-related
genes to establish our model, we point out here that the
variables in our model are not necessarily the expression
levels of the stress-related genes, but can include more
comprehensive indicators measured by flow cytometry
and other techniques, such as FSC (roughly proportional
to cell size), SSC (roughly proportional to cell granularity
and complexity), and the ATP concentration (positively
correlated with total cell energy).
In our recent study about antibiotic resistance of

Escherichia coli (unpublished work), we found that the
one-dimensional expression data of the hydrolase gene
only lead to a monomodal distribution, but the multi-
dimensional expression data of a group of stress-related
genes lead to an apparent multimodal distribution. This
phenomenon is described in this paper. Our simulation
result shows that although the expression data of a group
of genes are distributed within multiple attraction basins,
their marginal distribution may overlap to a large extent
so that we may not be able to observe a multimodal
distribution if we only focus on the expression data of a
single gene. In our future work, we shall further apply the
general framework discussed in this paper to the specific
problem of antibiotic resistance of Escherichia coli.
Biologic systems with multistability are ubiquitous in

nature. Some fundamental cellular processes, such as
decision-making processes in cell cycle progression [72],
cell fate determination [73–76], and apoptosis [77,78],
display multistable features. In addition, multistability is
also involved in disease progression, which can be
divided into a normal state, a pre-disease state, and a
disease state [55,56]. Although various multistable
biologic systems have different feedback regulatory
networks, the mathematical structures behind them are
quite similar. We hope that the stochastic approach
discussed in this paper can give enlightenment to the
understanding of biologic systems with multistability and
to the analysis of the related new phenomena and new
questions.

SUPPLEMENTARY MATERIALS
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