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Metabolism is regulated at multiple levels in response to the changes of internal or external conditions.
Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the
concentrations of metabolic enzymes. Thus, integration of the transcriptional regulatory information is necessary to
improve the accuracy and predictive ability of metabolic models. Here we review the strategies for the reconstruction
of a transcriptional regulatory network (TRN) for yeast and the integration of such a reconstruction into a flux
balance analysis-based metabolic model. While many large-scale TRN reconstructions have been reported for yeast,
these reconstructions still need to be improved regarding the functionality and dynamic property of the regulatory
interactions. In addition, mathematical modeling approaches need to be further developed to efficiently integrate
transcriptional regulatory interactions to genome-scale metabolic models in a quantitative manner.
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INTRODUCTION

The application of high-throughput biological techniques
has been increasing in the last decade. Annotated
sequences, biochemical and physiological data are now
available for many organisms, and the most exciting
challenge for systems biology is to describe, integrate and
analyze this huge amount of heterogeneous data in order
to transform them into usable knowledge.
Metabolism is a highly coordinated system which

provides energy and precursors of macromolecules for
cellular functions. The metabolism of most cells is tightly
regulated at multiple levels in response to external or
internal stimuli. Constraint-based mathematical metabolic
models have been extensively used as a tool to simulate
the behavior of metabolic networks, guide metabolic
engineering, and interpret biological data [1]. However,
constraint-based metabolic modeling does not take

account of regulation. Consequently, these models cannot
accurately carry out prediction when the regulatory
mechanisms play a decisive role in defining the behavior
of the system. So, in order to improve their prediction
ability, it is useful to integrate regulatory information into
constraint-based metabolic models. Integration of reg-
ulatory data into genome-scale metabolic models is a
challenge for systems biology, but it could lead towards a
better understanding of mechanisms governing the cell,
and allows the analysis of the relationship between the
environment and the metabolic capabilities of an organ-
ism.
Transcriptional regulation is one of the mechanisms

controlling metabolic activities. The regulatory interac-
tions between transcription factors (TFs) and their target
genes form a transcriptional regulatory network (TRN)
[2], which responds to the amount and kind of exogenous
or endogenous metabolites (input) and adjusts the mRNA
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synthesis of genes for specific metabolic pathways
(output). Genome-scale TRNs have been reconstructed
in many model organisms, such as Escherichia coli and
Saccharomyces cerevisiae, due to the extensive knowl-
edge and experimental data available for these organisms.
Here we will review studies on the reconstruction of the

TRN of yeast, and how it can be integrated into
constraint-based metabolic models. As there have been
many thorough reviews on the methods for the recon-
struction and analysis of TRNs [2–8], the progress that
has been made in S. cerevisiae will be emphasized. For
the integration of TRN reconstructions into metabolic
models, many of the methods were first developed in E.
coli and then extended to eukaryotes in a second stage.
These methods have a general validity, and theoretically
can be applied to any organisms. However, the results
obtained in S. cerevisiae by the current integration
techniques are often unsatisfactory, possibly due to the
high complexity of gene regulation [9], the current limited
knowledge available on such mechanisms, and the
presence of many cellular compartments in eukaryotic
cells. Thus, we are going to represent the current state of
the art of these integration methods and emphasize the
results obtained in S. cerevisiae when possible.

TRANSCRIPTIONAL REGULATION OF
METABOLISM IN S. CEREVISIAE

The metabolic state is determined by multiple factors
including substrate concentrations and the activities of
metabolic enzymes [10]. Protein abundance, covalent
modification and allosteric regulation all affect the
activities of metabolic enzymes. Transcriptional regula-
tion plays a role in controlling the abundances of some
metabolic enzymes through regulating the levels of their
corresponding mRNAs. The transcriptional regulation of
metabolism in S. cerevisiae has been widely studied for
the physiological effects and molecular mechanisms.
From present results we can draw several lessons:
(1) Transcriptional regulation widely occurs in meta-

bolic pathways. Enzymes in carbon (Figure 1), nitrogen,
sulfur, phosphate and oxygen metabolisms are exten-
sively regulated at the transcriptional level in S. cerevisiae
[13,14], with about 100 TFs having been confirmed or
suggested to be involved. In fact, about 40 TFs in S.
cerevisiae are named after their functions in metabolism
regulation, e.g., Adr1p (Alcohol Dehydrogenase Regu-
lator), Rgt1p (Restores Glucose Transport), and Ino2p
(INOsitol requiring).
(2) The contribution of transcriptional regulation in the

regulation of metabolism is reaction- and condition-
dependent. The abundances of metabolic enzymes are
regulated at several other layers (e.g., mRNA degradation,
translation, protein degradation) in addition to transcrip-

tion. Moreover, many metabolic enzymes are regulated at
the activity level. Thus, it is quite natural that changes in
the transcription levels of enzyme genes are often not
consistent with those in corresponding metabolic fluxes in
S. cerevisiae [15–17]. The correlation between gene
transcription and flux is affected by the degree of other
kinds of regulations (e.g., metabolite-enzyme interactions
[18]), and is dynamic under different conditions even for
the same reaction [19,20]. Some reactions for alternative
carbon source (e.g., galactose and maltose) utilization
[21], glyoxylate cycle, gluconeogenesis [16], ergosterol
biosynthesis [19], amino acid metabolism, and nucleotide
metabolism [14] are suggested to be transcriptionally-
controlled. For example, a mutant with disruption of
PUT3, which encodes a transcriptional activator of
proline utilization genes, completely loses the ability to
use proline as a sole nitrogen source [22]. On the other
hand, transcriptional regulation plays only minor roles in
controlling many other metabolic reactions, e.g., glyco-
lysis [15,16].
(3) Diverse input (upstream signal to TFs) and output

(TFs to targets) mechanisms are used by the TFs for
regulation of metabolism. Similar with metabolic
enzymes, the TFs themselves are regulated in abundance
and/or activity levels by upstream signals. In addition,
some TFs are regulated at the cellular location level
(cytoplasm or nucleus). These regulations are achieved
through diverse molecular mechanisms: (a) transcrip-
tional control by other TFs, e.g., repression of gluconeo-
genesis activator gene CAT8 by Mig1p [23]; (b) specific
mRNA degradation, e.g., deadenylation of the mRNA of
glucose repressor gene NRG1 [24]; (c) translational
control, e.g., translation initiation regulation of amino
acid biosynthesis activator Gcn4p through upstream
ORFs [25]; (d) regulated protein degradation, e.g.,
ubiquitin-mediated degradation of peptide transport
repressor Cup9p [26]; (e) proteolytic processing, e.g.,
activation of amino acid utilization activator Stp1p and
Stp2p by protease Ssy5p [27]; (f) covalent protein
modification, e.g., phosphorylation of nitrogen source
utilization activator Gln3p, which controls its cellular
location [28]; (g) allosteric regulation by metabolites, e.g.,
activation of Put3p by proline [29]; (h) regulation by
protein-protein interaction, e.g., inhibition of galactose
utilization activator Gal4p by Gal80p [30]. Actually,
many TFs are under the control of multiple regulatory
mechanisms. For example, the above-mentioned Gal4p is
also regulated at the transcriptional level [30], and Gcn4p
is also regulated at the protein degradation level [31]. To
exert their biological functions, some TFs can differently
act on different targets. For example, when the medium is
shifted from glucose to ethanol, Rds2p activates the
transcription of gluconeogenic genes and represses that of
genes suppressing gluconeogenesis [32]. Similarly, in the
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presence of serine, Cha4p activates the transcription of a
serine catabolic gene and represses that of a serine
biosynthetic gene, with the latter achieved by activating
the expression of a neighboring intergenic non-coding
transcript [33].
(4) Different types of associations exist between TFs

with shared target genes. For example, phospholipid
biosynthesis activators Ino2p and Ino4p form a complex
on target gene promoters, and both TFs are necessary for
inositol synthesis [34]. However, in the case of sulfur
metabolism activators Met31p and Met32p, which are
paralogs binding to the same site on the promoter, only
disruption of both TFs led to methionine auxotrophy,
suggesting redundant functions of them in methionine
biosynthesis [35]. Four TFs involved in nitrogen source
utilization, including repressors Dal80p and Gzf3p and
activators Gat1p and Gln3p, influence each other by both
transcriptional regulation and physical interaction [36].

This kind of associations between TFs needs to be
carefully considered when converted to mathematical
representations.

RECONSTRUCTION OF THE
TRANSCRIPTIONAL REGULATORY
NETWORK

Strategies for establishing TF-target interactions

Regulatory interactions linking TFs (regulatory proteins)
and their targets (regulated genes) are the basic units of a
TRN [37]. As many transcriptional regulatory mechan-
isms are less conserved among organisms [37,38], it is
generally difficult to reconstruct TRNs starting from
protein homology analysis, as can be done for metabolic
network reconstructions [39]. Experimental studies,
biochemical or genetic, bottom-up or top-down, are

Figure 1. Transcription factors involved in the regulation of carbon metabolism in S. cerevisiae. Data were collected from
YEASTRACT [11] and SGD [12] databases. Different metabolic pathways are shown in different colors, except those for non-
fermentable carbon source utilization (13 to 18) sharing dark grey. Abbreviations: G6P, glucose 6-phosphate; GA3P,
glyceraldehyde-3-phosphate; AcH, acetaldehyde; AcCoA, acetyl-CoA; OA, oxaloacetate
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usually needed to establish the transcriptional regulatory
interactions in a specific organism. However, genomic
annotation is also important because it provides useful
information for experiment design (e.g., TF prediction)
and data integration (e.g., sequence conservations)
(Figure 2).
Biochemical approaches can be used to identify direct

interactions between TFs and their target genes. Here
direct interactions mean physical occupancies of TFs on
the promoters of genes. The methods in this field (for
reviews see Refs.[40,41]), especially electrophoretic
mobility shift assay (EMSA) [42] and DNAase footprint-
ing assay [43], have been frequently used to study in vitro
interactions between specific TF-promoter pairs in S.
cerevisiae. Chromatin immunoprecipitation combined
with cDNA microarray analysis (ChIP-chip), which was
first developed in yeast [44], is a powerful in vivo method

to find genome-wide direct targets of TFs. The first high-
throughput ChIP-chip experiment in yeast identified the
targets of 106 TFs in rich medium [9], and a later study
provided interaction information for 203 TFs under more
environmental conditions [45]. The data from these two
studies are used in most TRN reconstruction studies in
yeast (see section Reconstruction and Characterization of
the TRN). The third high-throughput ChIP-chip experi-
ment in yeast mainly focused on proteins involved in the
transcriptional machinery [46]. Alternative ChIP-based
techniques have been developed recently, including ChIP
followed by high-throughput sequencing (ChIP-seq) for
higher resolution, larger coverage, lower noise and more
accurate quantitation [47], ChIP-exo achieving single-
nucleotide resolution [48], and competition ChIP for
determining the residence time of TFs on promoters [49].
As an alternative approach, affinity chromatography with

Figure 2. Strategies for the reconstruction of a functional TRN in S. cerevisiae

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014 33

Modeling of yeast through integrating a transcriptional regulatory network



immobilization of DNA followed by proteomic profiling
can be used to identify the TFs occupying on a specific
promoter in vivo [50].
The results obtained using biochemical approaches

have at least two drawbacks. First, TF occupancy does not
necessarily represent functional regulation, e.g., Leu3p
constitutively occupies its target promoters whether it
functions or not [45]. In some cases, the functional
activation of TFs (e.g., presence of cooperative factors) is
needed in addition to their binding on promoters [51].
Second, the interaction information between TFs and
target genes obtained by biochemical methods does not
contain the directivity (repression or activation) of
transcriptional regulations.
Genetic approaches cannot distinguish direct and

indirect TF-target interactions, but they do provide
information on the existence (if) and directivity (how) of
regulatory functions of TFs. This function information is
very important, because only functional regulations can
be integrated to metabolic models as constraints. In
genetic approaches, usually transcriptional regulations are
perturbed by deletion, suppression, over-expression or
mutation of TF genes first, and then target genes with
affected transcription levels are discovered through
comparative analysis of parent and mutant strains. The
transcription levels of specific genes can be determined
using Northern blotting, quantitative PCR or reporter
gene assay, while genome-wide transcriptional changes
can be measured using transcriptomic technologies such
as microarraysor RNA-seq [52].
In S. cerevisiae, a genome-wide single-gene-deletion

mutant library has been constructed [53], and genes with
significant differential expressions in rich medium
responding to individual deletions of 269 TFs were
identified [54]. A reanalysis of these data estimated that
about 98% of the differential expressions were mediated
by indirect TF-target interactions [55]. These indirect
regulations may be mediated by regulatory cascades
(intermediate TFs) or physiological changes (e.g., dele-
tion of one TF alters the concentration of some
metabolite, which affects gene expression through other
regulatory pathways). Transcriptomic responses to indi-
vidual over-expressions of 55 growth-involved TFs were
also reported in S. cerevisiae [56]. Compared with gene
deletion, the gene over-expression strategy has the
advantage in identifying condition-specific targets of
some TFs even under standard growth conditions [57]. It
should be noted that the function of some TFs may be
masked by paralog compensation when genetic perturba-
tion of one single TF was performed [58].
Transcriptome analysis has also been extensively used

to study the responses of laboratory wild-type S.
cerevisiae strains to environmental perturbations. Some
of the co-expressed gene groups (modules) generated by

clustering analysis of these transcriptome data are
assumed to be “co-regulated” genes under the same TF
(s) [59]. TF-target gene interactions can be predicted from
these co-expression modules, for some TFs themselves
are regulated at the transcriptional level [60]. This method
is particularly meaningful in finding condition-specific
TF-target interactions, as there have been thousands of
transcriptome datasets collected under various conditions
(environments, developmental stages, time-series, etc.) in
S. cerevisiae [61]. However, the correlations between the
expression level of TF itself and those of their targets is
weak for many TFs [62], which seriously limits the
inference of the TRN solely from gene co-expression
data.
TFs regulate the expression of target genes through

occupying specific cis-acting transcription factor-binding
sites (TFBSs). Thus, the “TF-target gene” relationships
are actually the combination of “TF-TFBS” and “TFBS-
target gene” relationships. Knowing the TFBS informa-
tion is important for understanding the molecular
mechanisms of TRNs. In addition, the presence, position,
orientation and combination of TFBSs on promoters
could be used to predict gene expression patterns in S.
cerevisiae [63] and to infer the TRN (see section
Reconstruction and Characterization of the TRN). The
“TF-TFBS” relationships can be determined by in vitro
biochemical methods such as EMSA and large-scale
microarray-based assays. Protein-binding oligonucleotide
microarrays (PBMs) were used to determine the TFBSs of
112 [64] and 89 [65] TFs in S. cerevisiae by different
research groups. A microfluidics-based assay was shown
to have higher sensitivity than PBM, and can measure the
binding affinities of TFs [66]. On the other hand, an
oligonucleotide-binding protein microarray comprising
282 S. cerevisae TFs also succeeded in finding new
interactions between TFs and oligonucleotides [67].
“TF-TFBS” relationships can also be computationally

predicted based on the over-representation of TFBSs in
the target gene sequences of TFs. Target gene sets
identified by both ChIP experiments [48] and genetic
perturbations [56] can be used for computational
discovery of TFBSs, and obviously the former (direct
target gene sets) are more likely to give significant results.
These computational tools were also used to predict
“TFBS-target gene” relationships from other kinds of
gene sets, such as co-expressed [68] or functionally-
related [69] genes in S. cerevisiae. In addition, as
functional TFBSs are usually highly conserved, some of
them can be identified by phylogenetic footprinting (i.e.,
looking for conserved regions after aligning promoter
sequences of orthologous genes from closely related
species) [70,71]. Integration of TFBSs determined by
different approaches can give high-confidence data
[45,72], and combination of fragmental “TF-TFBS” and
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“TFBS-target gene” relationships successfully gave
complete “TF-target gene” interactions, e.g., the discov-
ery of two TFs controlling ribosome biogenesis in S.
cerevisiae [65].
Many of the transcriptional regulatory interactions

obtained using the above approaches in S. cerevisiae have
been manually collected from original literature. The
examples include a review summarizing the early results
of individual TF-target interactions [65], databases
YeTFaSCo [73] and ScerTF [74] extensively collecting
and curating TFBSs, and databases YEASTRACT [11]
and SCPD [75] containing both TFBSs and TF-target
interactions. In the Saccharomyces Genome Database
[12], regulatory relationships between TFs and target
genes are being added for nearly all genes recently [76],
which provide machine-readable data for the S. cerevisiae
TRN research.

Reconstruction and characterizations of the TRN

Interactions between TFs, TFBSs and target genes
obtained from different approaches are complementary
due to their own advantages and drawbacks. For example,
comparison of target genes from biochemical and genetic
experiments found non-occupying regulation and non-
regulatory occupancy of TFs on target genes [54].
Another example is that comparison of TFBSs obtained
using in vivo and in vitromethods found combinational or
“piggy-back” binding of TFs on promoters [72]. Thus,
data of different resources need to be integrated to obtain
high-quality TRN reconstructions [2].
Many algorithms for integrated TRN reconstruction

and validation have been developed, such as those
integrating ChIP data and gene expression data [9,77–
82], TFBS information and gene expression data [83–87],
or all the three types of data [88–90]. The algorithms are
generally based on the assumption that the direct target
genes of a TF should meet more than one of the following
criteria: (1) being detected for the known TFBS of the TF
on the promoter; (2) being physically occupied by the TF;
(3) transcriptionally responding to the perturbation of the
TF; (4) transcriptionally responding to the active condi-
tion(s) of the TF; (5) having related functional annota-
tions. A good example in reconstructing integrative TRNs
is a study on DNA damage response in S. cerevisiae, in
which 30 TFs were first selected based on existing
knowledge, and then gene expression profiling of wild-
type and TF-deleted mutants and ChIP-chip were
performed (both under normal and DNA-damaging
conditions), providing multi-view data for integrative
analysis [91]. For less-studied TFs whose “active”
conditions are unknown, integration of in vitro TFBS
information and co-expression data could be used to infer
the possible conditions for further studies [84]. TF-target

interactions established using low- and high-throughput
methods are also complementary regarding their coverage
and signal-to-noise ratios. An integrative strategy for this
is starting with well-studied small TRN reconstructions,
followed by expanding it using interactions from high-
throughput analyses [92].
The TRN reconstructions are usually represented as

network graphs, in which nodes indicate TFs and target
genes, and arrows indicate transcriptional regulations. In
addition, TRNs were modeled using different mathema-
tical formalisms such as ordinary differential equations,
stochastic equations, Petri nets, or Bayesian networks (for
reviews see Refs.[93–95]). Nevertheless, the lack of high-
throughput experimental methods to measure biochemical
kinetic parameters in vivo, necessary for the description of
the system, limits the application of these approaches to
only the description of small networks [96].
Currently, genome-scale TRN reconstructions were

converted into mathematic models only based on the use
of Boolean logic. This formalism only requires informa-
tion about the structure of the network and the nature of
interactions (activation/repression) between the network
elements [97,98]. The state of elements in Boolean
network is described by an on/off representation, so the
state of the whole network is defined by an n-tuple of 1s
and 0s according to the presence/absence of the particular
elements. However, using the Boolean rules the level of
detail of a system decreases and it is not possible to carry
out quantitative prediction of the behavior of the system.
Matrix based formalism has been used to study the
properties of TRNs [99]. This formalism is based on a
reformulation of the Boolean rules into a matrix
representation. Through the reformulation, the TRN is
described as a regulatory network matrix (R matrix) used
to investigate its functional (expression) states in response
to environmental conditions.
In S. cerevisiae, several large-scale TRN reconstruc-

tions have been reported during the past ten years. Figure
3 lists eleven of these reconstructions, which vary in terms
of the number of TFs, target genes and TF-target
interactions due to different data resources and different
criteria used [9,11,45,46,100–106]. Most of these studies
focused on the structural properties of TRNs, and the
major conclusions from these studies are
(1) The structure of the S. cerevisiae TRN is scale-free

[107], with most target genes having a few TFs and
most TFs regulating a few targets [6,105]. The
favor of links between highly-connected nodes
(hub TFs or genes) and low-connected nodes, and
limiting links between hubs, divide the TRN into
structural modules [104].

(2) From the viewpoint of hierarchical organization,
TFs in top, middle and bottom layers have
significantly different sequence conservations,
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transcript and protein abundances, numbers of
direct targets, and effects on global gene expres-
sions [102,108]. Interestingly, TFs in the middle
layer were found to have the most direct targets.

(3) The structure of the S. cerevisiae TRN is highly
dynamic in responding to condition changes [45].
Local regulatory units of different topological
structures are favored by different conditions, and
most hub TFs are only active under certain
conditions [101].

(4) The TRN of S. cerevisiae is more complex
compared with that of E. coli. A comparative
analysis found that although the total numbers of
TFs are similar, S. cerevisiae has ~5-fold more TF-
target regulatory interactions, and ~12-fold more
co-regulation links between TFs (i.e., two TFs
share a common target), than those in E. coli [107].

INTEGRATION OF TRANSCRIPTIONAL
REGULATORY NETWORK
RECONSTRUCTIONS INTO METABOLIC
MODELS

Constraint-based metabolic models

The concept of genome-scale metabolic reconstruction
has been extensively researched and reviewed in the
literature [5,109]. By using genomic and biochemical data
available, it is possible to reconstruct genome-scale
models of metabolism and analyze them to infer

information about the behavior of the cell. Such models
can be used for simulations and integrative data analysis,
and several toolboxes have been developed for handling
these models, e.g., COBRA [110] and RAVEN [39].
A protocol to generate a genome-scale model includes

different stages [111]. The first stage is the creation of a
draft reconstruction by using a genome annotation of the
organism of interest, and bioinformatics resources such as
databases of reactions [112,113]. The second stage is the
manual refining of the draft reconstruction to improve the
quality of the model. This work is mainly based on the
study of primary literature and includes the formulation of
the biomass equation. The next stages are formed by the
conversion of the reconstructed network into a mathema-
tical model used to carry out simulations and by the
evaluation of the quality of the reconstruction.
Many genome-scale reconstructions of the S. cerevisiae

metabolic network have been developed during the past
decade. A consensus network was reconstructed as a
result of a common effort by researchers to produce a
highly annotated network with a standard nomenclature
(see Ref. [114] and visit http://yeast.sourceforge.net/ for
the consensus yeast metabolic project). Moreover, the
development of new models is still in progress in order to
improve our description of some parts of the yeast
metabolic network such as the lipid metabolism [19,115].
Flux Balance Analysis (FBA) [116] is a mathematical

method based on linear programming through which one
can simulate the behavior of the reconstructed metabolic
network under specific environmental conditions. The

Figure 3. Examples of TRN reconstructions in S. cerevisiae. Abbreviations: PL, primary literature; DB, databases; HC, high-
throughput ChIP-based experiment data; GE, gene expression profiling data; PF, phylogenetic footprinting. a) data not reported; b)
total number of TFs and target genes; c) data in October 2011
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analysis is based on the fact that a reaction network is
subject to a series of constraints that limit its behavior,
such as environmental and physicochemical ones [117].
The constraints define a closed space which contains all
the possible stationary states that the metabolic network
can reach. The more constraints one adds, the smaller the
solution space becomes.
In particular, FBA allows finding a particular solution

(optimal solution) inside the solution space that max-
imizes or minimizes a particular objective function. One
of the most used objective functions is the optimization of
biomass formation, which is a reaction that describes the
incorporation of all necessary precursors like amino acids,
nucleotides and cofactors into cellular macromolecules
that make up the functional cell [118]. Figure 4
summarizes the process of simulation of a metabolic
network. Starting with a metabolic reconstruction and
applying a series of constraints a solution space is defined.
A particular solution inside the solution space is found
using an optimization technique such as linear program-
ming.
FBA is a powerful tool to study the properties of a

metabolic network but it still has some limitations [119].
In particular, FBA can make incorrect predictions when
the regulatory network plays a key role in the definition of
the behavior of the cell [120]. For example, an FBA
simulation of E. coli metabolic network during aerobic
growth in presence of both glucose and lactose predicts an
uptake of both carbon sources at the same time. This
prediction is not in agreement with the experimental result
that the cell prefers glucose over galactose, and
misunderstandings in the final analysis of the process
may arise [121].
Moreover, often the flux distribution obtained from

linear programming is not unique but is part of a set of
different flux distributions that generate the same value
for the objective function. Every optimal flux distribution
describes an alternative pathway usage that maximizes (or

minimizes) the objective function [122,123]. This fact can
lead to several problems. For instance, if there are two
possible metabolic pathways that lead to the same final
product from the same substrate with an equivalent
stoichiometry, FBA is not able to distinguish between
them. As a consequence, they may both be used in the
simulation. So, these miscalculations often occur given
that, for example, isoenzymes are the simplest form of an
alternative pathway involved in this process, and without
addition of extra information FBA cannot predict which
of the isoenzymes is active at a given moment of time. In a
study of the central carbon metabolism in S. cerevisiae,
the prediction of fluxes using different objective functions
was shown to be able to catch the essential feature of the
behavior of a system perturbed by gene knockouts, but
with some shortcomings likely due to the presence of
alternative pathways and regulatory mechanisms [124].

The process of integration of transcriptional
regulation into metabolic models

Two kinds of constraints can be applied to a reaction
network: nonadjustable and adjustable constraints [125].
The first kind is invariable because it is related to
characteristics of the process that can hardly change such
as network topology, thermodynamics, and maximal flux
capacities. In contrast, the second kind (of constraints)
depends on regulatory events so they can vary over time
as well as under different environmental conditions. One
can consider these constraints to be temporal constraints
applied to the metabolic network.
In the first generation of constraints-based models only

nonadjustable constraints were used, while the addition of
adjustable constraints led to the second generation of
constraints-based models [126]. Incorporation of regula-
tion into genome-scale metabolic models is, however, still
a challenge and requires more work.
A small example is useful to clarify the application of

Figure 4. The constraint-based approach for metabolism modeling

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014 37

Modeling of yeast through integrating a transcriptional regulatory network



adjustable constraints. In the network represented in
Figure 5A, the metabolism is represented by a single
reaction that carries out the transformation of the substrate
(M-1) into the product (M-2) using an enzyme (Enz). The
product of the reaction suppresses the activity of the
transcription factor which activates the expression of the
enzyme.
The behavior of this small network can be described by

some simple Boolean rules (Figure 5B). According to
these rules the reaction is active when the substrate M-1
and the enzyme are both present. The enzyme is present
when both the transcription factor and the gene are
present and the product M-2 is absent. This small network
contains five elements, thus all the possible states of the
network are 25 = 32. The reaction can be turned on or
turned off depending on which state the network finds
itself in. It is quite clear that even a simple network can
show a very complex behavior. The most important
consequence of the imposition of regulatory constraints is
that it reduces the solution space of the metabolic network
(Figure 6) and this fact can also be examined using
topological techniques [126].

The rFBA method and its current development

Historically, first attempts to integrate FBA with regula-
tion started with the observation that time constants
characterizing metabolism and regulation differ by one
order of magnitude at least [120]. In particular, the time
constants that describe the behavior of the metabolism are
faster (order of milliseconds) than the time constants that
describe the transcription regulation (order of minutes).
As a consequence, a dynamic process can be simulated as
a sequence of steady states if one looks at the behavior of
metabolic network during a time series as a sequence of
short intervals of time in which the metabolic network
reaches a quasi-steady state.
So the whole time of the simulation is split in several

time intervals in which a quasi-steady state for the
metabolic network is assumed. For the first time interval,
the knowledge of the environmental condition is avail-
able, thus the FBA method can be used in order to
simulate the response of the metabolic network to the
environment. Additionally one can determine the status of
the regulatory network by solving the Boolean equations
for the time interval based on the presence or absence of
particular metabolites, regulatory proteins or fluxes in the
internal environment.
Finally, the output of the simulation is used to update

the environmental condition for the next time interval by
using a numerical integration in order to calculate the new
concentrations of the external species [127]. For each of
the following time steps the state of the regulatory
network is calculated and used in addition to the
environmental condition calculated from the preceding
time step in order to constrain an FBA simulation.
The regulatory constraint process is accomplished by

checking the presence of the enzyme in the specific time
interval based on the results of the regulatory rules. If the
enzyme is not present, the flux of the reaction at the given
interval is set equal to zero. If the enzyme is present, the
flux is determined with FBA simulation in that given time
interval.
As a consequence, the linear optimization for the

metabolic network and the calculation of the state of the
Figure 5. A simple integrated metabolic model (A)
and its representation with a Boolean formalism (B)

Figure 6. The reduction of the solution space of the metabolic network using regulatory constraints
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regulatory network are made in two separate moments,
and the regulation is represented as a time dependent
(adjustable) set of constraints applied to an FBA
simulation. This method is called regulatory FBA
(rFBA) and allows for the prediction of dynamic profiles
of the cell growth [120,121,128].
A common way in order to validate genome-scale

models is by confronting simulated growth and exchan-
ging fluxes with experimental data. Although this is the
common accepted practice, some efforts have been done
to try to validate models studying the correlations
between the in silico calculated and in vivo measured
internal fluxes. This is also important in order to analyze
the ability of the models to predict internal fluxes
[124,129]. One of the limitations of this comparison is
that the number of measured fluxes is limited compared
with the number of fluxes present in a genome-scale
reconstruction. Furthermore, large-scale datasets usually
cover mainly the central carbon metabolism and less other
pathways, e.g., biosynthesis of biomass components like
lipids and nucleotides [130].
Moreover, it is not yet clear what the best methodology

is in order to select reactions which allow the reconstruc-
tion of the whole system state, although recent results
about the observability of complex systems, such as
metabolic network, suggest that in yeast the minimum
number of sensor nodes should be about 10% of the
number of reactions of the genome-scale reconstruction
[131].
An integrated FBA such as rFBA can be used to

overcome this limitation by improving the ability to make
predictions and validate the model by using large gene
transcription datasets available today. On one hand, the
prediction of metabolic flux in a given environmental
condition is possible using integrated FBA and this can
suggest possible interpretations for up or down regulation
of genes. On the other hand, this approach can also allow
for the creation of in silico gene expression arrays and
comparison with experimental data to validate the
integrated model. For instance, Covert and coworkers in
a large-scale simulation of E. coli [128] used their model
to predict differential expression of genes. Afterwards
they compared the in silico gene expression with in vivo
gene expression to update their model by rewriting,
relaxing or removing regulatory rules in order to improve
the prediction ability of their reconstruction in a iterative
fashion.
A large-scale study of an integrated yeast rFBA model

was performed by Herrgård et al. [103]. They recon-
structed a yeast TRN formed by 55 transcription factors
related with the metabolism. Afterwards they integrated
their TRN reconstruction with a genome-scale metabolic
reconstruction and used this integrated yeast model to

study the interactions between the regulatory and the
metabolic networks. They also predicted growth pheno-
types and gene expression changes. This work clearly
showed us how the identification of new interactions and
analysis of different kinds of data in yeast are possible by
using only one model framework.
Herrgård et al. used an iterative approach conceptual

similar to the one used by Covert et al., which was based
on the update of regulatory rules. In fact, they expanded
the regulatory network of the model by using experi-
mental data taken from the literature. This approach
showed that discrepancies between the model predictions
and the experimental data can be used in order to drive
experiments to investigate and identify potential new
target genes for each TF.
Later other efforts for extending rFBA to simulate the

transcriptional regulation of the whole system led towards
the integration of different types of model formalisms to
describe the different process inside the cell [132]. This
means using ordinary differential equation (ODE) when
kinetic parameters are available, in order to simulate the
signaling network and keep using Boolean rules to
simulate the transcription regulatory system. This
approach gave birth to hybrid methods used for E. coli
central metabolism (iFBA [133]) and for a portion of the
S. cerevisiae system (idFBA [134]). The final goal of this
kind of approaches is to build a whole-cell system model
as has been done for Mycoplasma genitalium [135].
The application of this hybrid models showed improve-

ment over the rFBA approach. In particular, the ability of
the model to simulate the dead ends [133] was enhanced.
Dead ends are reactions present in the reconstructed
network but not used in the optimal solution because their
products are not involved in the growth objective
function. However, the metabolic products of the dead
ends are often very important in the cell for other reasons,
for example, they can be mediators of signaling.
In particular, the method called idFBA [134] has been

applied to a module of S. cerevisiae composed by a small
portion of signaling, metabolic and transcriptional
regulatory networks related with high-osmolarity glycerol
response mitogen-activated protein kinase pathway. This
work showed that an integrated system spanning different
time scales can be studied with an integrated FBA based
approach.

The MILP reformulation and the data driven
approaches

In the rFBA method, the TRN and the metabolic network
are analyzed separately and simulated separately. The
presence of alternative solutions for both networks makes
it difficult to integrate them and imposes a requirement for
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selecting which of the steady state solutions have to be
selected for simulating the next time interval. Never-
theless, Boolean rules can be converted into integer
inequalities, and these inequalities can be used to
formulate a mixed integer linear program problem
(MILP). Thus, an integrated model reformulated in
terms of an MILP problem can be obtained by changing
the formalism used in order to describe the TRN. This
MILP reformulation integrates the regulatory structure
with the metabolic model in a single model.
The steady-state regulatory flux balance analysis (SR-

FBA) [136] method is based on the reformulation of the
integrated model into an MILP problem and it was used in
order to find steady state solutions for the metabolic
network and for the regulation network which are
consistent between them. The solutions of the TRN
were mapped on the metabolic network and the coherence
of the integration was studied by checking the consistency
between the states of the TRN and the metabolic network,
in an effort to improve the evaluation of the optima
alternative solutions by classifying each gene based on its
expression and flux activity states.
The SR-FBA approach gave birth to important

development such as the OptORF [137] and the
GeneForce [138] algorithm. The limited and incomplete
information available about the regulatory mechanisms
and the inherent complexity of the system can lead to
incomplete integrated models which can be inconsistent
with experimental evidences. The GeneForce algorithm
was developed to refine and solve inconsistency in large-
scale integrated models by suggesting corrections for the
model to improve its prediction ability. This algorithm
tries to identify the minimum number of rules that can be
violated so as to allow the model to perform the correct
growth prediction, preserving as much as possible the
regulatory rules already applied. Thus, by relaxing the
regulation rules the solution space is remodeled to include
solutions previously eliminated by the first shaping of the
integration process. Moreover, the procedure of correc-
tion of these inconsistencies can suggest hypotheses
which can drive future experiments and lead to new
discoveries.
The GeneForce algorithm follows an approach based

on using the experimental data available to lead
modifications for a model in order to perform a best fit
of experimental data. This data driven approach is
currently applied in a more extended way by other
methods. They are based on using the omics data to
constrain an FBA simulation in trying to integrate directly
gene expression into FBA without using any TRN
reconstruction. Indeed, the process of reconstruction of
a TRN in terms of Boolean rules is time consuming and
difficult, because the literature available have to be

searched manually. Consequently, this process has been
done only for few organisms [103,128,139].
For this reason, the data driven approaches have been

used extensively recently. Several algorithms have been
developed and many examples of this approach are
present in the literature, such as the E-flux [140] and the
GIMME [141] method and sometimes implemented in
one single software [142]. Some of them use thresholds in
order to reformulate the gene expression levels into on/off
description; others try to overcome the use of arbitrary
thresholds (for a recent review see Ref. [143]). Never-
theless, the results performed by data driven approaches
can be limited because of the lack of correlation between
the gene expression and the protein level [144]. However,
this correlation can be improved by using a network based
model [18] under certain circumstances.
Furthermore, the separation between a data driven

method and a regulatory reconstruction driven method is
not clearly defined sometimes. For instance, the prob-
abilistic regulation of metabolism (PROM) [145] algo-
rithm starts from a regulatory network structure and gene
expression data in order to model the transcription
regulation by applying a probabilistic approach. The
PROM algorithm was initially applied to E. coli and
Mycobacterium tuberculosis, and was later applied to S.
cerevisiae to predict the structure of its TRN reconstruc-
tion [146]. Moreover, some methods use the information
available from gene expression and regulatory networks
together to improve the prediction ability of their models.
One relevant example of this approach is the MADE
[147] algorithm which has been applied to a S. cerevisiae
metabolic reconstruction. The MADE algorithm uses
experimental gene expression data by setting a binary
approximation of gene expression changes in different
conditions after a statistical test to evaluate the most
probable approximation. In this way MADE algorithm is
able to formulate an MILP problem and avoid using
arbitrary thresholds. The MADE method has been
integrated during a second stage with the yeast TRN
reconstruction, and this step improved and refined the
prediction ability of the method.

FUTURE PERSPECTIVES

Although many large-scale TRNs have been recon-
structed, and some of them have been integrated into
metabolic models for S. cerevisiae, there are still several
important problems to be solved in this area. Many of the
transcriptional regulatory interactions obtained by bio-
chemical approaches need to be studied for the efficiency
of their functions. In addition, the dynamics of the TRN
need to be described in more detail by examining the
transcriptional regulatory interactions under more envir-
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onmental conditions. For the integration of TRN
reconstructions into metabolic models, only a small
number of approaches used for E. coli have been also
applied to S. cerevisiae so far. The transition from the
modeling of prokaryotic organisms to eukaryotic organ-
isms is challenging due to the increase in complexity of
such organisms and the scarcity of our knowledge about
the regulatory mechanisms.
The merging process of the Boolean logic qualitative

description with the FBA quantitative results limits the
outcome of the integrated system. Even when this
integration is possible, the use of an on/off logic to
describe the regulatory network reduces the ability of the
model to make predictions. The Boolean on/off descrip-
tion of regulatory interactions is not sufficient to catch all
the regulatory events of the cell, because it is not able to
describe the intermediate levels of regulation present in a
continuous system. For instance, when this binary
representation is applied to describe the role of essential
genes, a deletion of such genes due to a down-regulation
event has the consequence that the model is not feasible.
As a result, the development of methods allow a low flux
even when an essential gene is down-regulated, and new
large-scale methods based on non-Boolean formalisms
are advantageous for a better integration of TRN
reconstructions with metabolic models. Some steps
toward this direction have been made with the introduc-
tion of probabilistic and data driven approaches using the
MILP formulation, but other steps can be made by the
extension of rFBA based techniques. Nevertheless, these
are not simple tasks because the improvements of the
experimental methodologies as well as the improvements
of the modeling techniques are necessary in order to gain
more quantitative data about the TRN in the future.
Recently, the efforts to reconstruct the metabolic

network have been extended to create reconstructions of
other systems present inside the cell. This new kind of
modelling is based on an explicit representation of the
elements which carry out the cellular tasks like the
transcription and the translation process. This kind of
reconstruction dramatically improves the dimension and
the level of detail of the model. The reconstruction of E.
coli’s transcriptional and translational machinery [148]
allowed the formulation of the next generation genome-
scale metabolic model (ME-model) and ME-models have
been recently developed for E. coli [149,150] and
Thermotoga maritima [151]. This is a promising
approach for building a scaffold that can be used for the
integration of omics data at several layers of the model.
Nevertheless, if this approach can be carried out for a
eukaryotic organism is an open question. There is a lack
of information about several processes inside the yeast
cell, so it is not clear if it will be possible to create a ME-
model for yeast in the immediate future, although a step

toward this objective has been made with the reconstruc-
tion of the yeast secretory machinery [152].
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