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The concept of “systems biology” is raised by Hood in 1999. It means studying all components with a
systematic view. Systems biomedicine is the application of systems biology in medicine. It studies all
components in a whole system and aims to reveal the patho-physiologic mechanisms of disease. In recent
years, with the development of both theory and technology, systems biomedicine has become feasible
and popular. In this review, we will talk about applications of some methods of omics in systems
biomedicine, including genomics, metabolomics (proteomics, lipidomics, glycomics), and epigenomics.
We will particularly talk about microbiomics and omics for common diseases, two fields which are
developed rapidly recently. We also give some bioinformatics related methods and databases which are
used in the field of systems biomedicine. At last, some examples that illustrate the whole biological
system will be given, and development for systems biomedicine in China and the prospect for systems
biomedicine will be talked about.

INTRODUCTION

The concept of “systems biology” is raised by Hood in
1999, when the human genome draft was nearly
completed. It means studying all components with a
systematic view. Systems biomedicine is the application
of systems biology in medicine. Its aim is to reveal the
patho-physiologic mechanisms of disease. It studies all
components in a biological system holistically (including
the DNA, mRNA, proteins, and small biological
molecules in a cell, tissue or body) under defined
conditions, and reveals the complex interactions between
these components [1].
Systems biomedicine requires a multidisciplinary

approach, with cooperation from experts in different
fields including life sciences, information science,
mathematics, computer science and other disciplines.
Actually, this idea of multidisciplinary cooperation was
proposed by Kamada [2] and Zeng [3] in 1992. Because
of the lack of high-throughput biologic research tools,
systems biomedicine research was hindered for many
years. In recent years, with the development of both
theory and technology, such as omics and bioinformatics,

plus cooperation between different fields, including
biology, mathematics and computer science, systems
biomedicine has received renewed interest.
In this review, we will talk about applications of omics

methods in systems biomedicine, including genomics,
metabolomics (proteomics, lipidomics, glycomics), and
epigenomics. Microbiomics and common diseases omics
are two fields which are developed rapidly. We will talk
particularly about these two fields. As for the tools for
systems biomedicine, bioinformatics is necessary and
important. We will give some bioinformatics related
methods and databases. At last, some examples that
illustrate the whole biological system at the integrative
level will be discussed.

APPLICATIONS OF OMICS

Genomics

Genomics is a broad field. It focuses on the study of the
genomes, includes whole-genome DNA sequencing and
genetic mapping of organisms, and includes studies of
multiple genomic phenomena, such as gene expression
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and gene-gene interation [4]. Rapid advances in genetic
sequencing techniques have revolutionized genetic ana-
lysis, and DNA sequencing at the whole-genome level is
now possible. Despite the completion of the Human
Genome Project in 2003, which revolutionized human
genetics, linkages between genomic data and phenotypic
information are still limited. For this reason, further
approaches are preformed to investigate the relationships
between genotype and phenotype in organisms.

GWAS

Genome-wide association study (GWAS) is a method to
study the association between phenotype and single
nucleotide polymorphisms (SNPs), which are poly-
morphic markers found quite evenly throughout the
genome. GWAS is a revolutionary approach because it
can estimate the genetic association between the entire
genome and a disease in numerous unrelated individuals
at high resolution, and is not affected by previous
hypotheses about genetic associations with disease [5].
Early in 1996, Risch andMerikangas first suggested using
GWAS approach to study the complex causes of human
disease [6]. GWAS results were published in 2005 [7] and
2006 [8], and the technique was given a major kick-start
by the Wellcome Trust Case Control Consortium
(WTCCC) [9].

Monogenic and oligogenic diseases

Monogenic and oligogenic diseases are generally thought
of as simple Mendelian diseases, such as sickle cell
disease (SCD) and β-thalassemia. In 2008, a major
GWAS showed that rs11886868 located in BCL11A gene
strongly affected fetal hemoglobin levels in 4305
Sardinians and in a large number of sickle cell patients
[10]. Another report in 2008 identified an SNP located in
the BCL11A gene that was associated with fetal
hemoglobin levels and pain crises in sickle cell disease
[11]. These findings suggested that BCL11A plays an
important role in regulation of fetal globin expression. As
expected, further research has identified BCL11A as a
specific regulator of the expression of human hemoglobin
[12,13].
Although exon regions only occupy 1% of the genome,

85% of the exon mutations will lead to Mendelian-
inherited disorders. In recent years, whole-exome sequen-
cing (WES) has been a powerful research tool to reveal
novel exon mutations in Mendelian disorders with
obscure etiologies [14–16]. In 2010, a WES study
found a link between Miller syndrome and mutations in
DHODH [17]. Recent WES studies have revealed that de
novo germline SNPs in single genes is the major cause of
rare sporadic malformation syndromes such as Schinzel-

Giedion syndrome, Kabuki syndrome and Bohring-Opitz
syndrome [18–20]. Therefore, the widespread availability
of exome sequencing would promote the study of
diseases, especially for the monogenic and oligogenic
diseases.

Complex diseases

Coronary artery disease (CAD) and myocardial infarction
(MI) are the leading causes of disability and mortality
worldwide [21,22]. Recently, GWAS was used to identify
loci for CAD and discover its risk factors in humans, and
the results were recently reviewed [23]. Several studies
have identified SNP 9q21 as a high risk locus for CAD
[9,24–29]. Further studies have confirmed that the risk
SNP 9q21 could regulate the expression of CDKN2A/B
in humans [30–32]. Recently, a GWAS discovered four
novel risk loci named 2q24.1, 4p32.1, 6p21.32 and
12q21.33 in 33000 Han Chinese cohorts. These findings
could provide new insights into the pathways that
contribute to CAD susceptibility in the Han Chinese
population [33]. As one of the most important risk factors
of CAD, hypertension is also widely studied. There were
two major studies of hypertension using the GWAS
approach in 2007 [9,34]. However, both studies did not
identify markers associated with hypertension on a
genome-wide level. Nevertheless, the following two
studies have identified 8 genetic loci associated with
systolic or diastolic blood pressure and 10 SNPs with
hypertension in subjects of European ancestry [35,36].
GWASs have concluded that the 12q21 locus is associated
with systolic blood pressure in non-European ethnic
groups [37,38]. Moreover, the strengths and weaknesses
of GWAS on hypertension research were reviewed
recently [39].
During the past few years, GWAS has identified

numerous strong associations between genetic loci and
different types of cancer. Some loci, such as 8q24, were
identified as cancer-susceptibility regions for many
unrelated cancers, including prostate cancer [40], glioma
[41], breast cancer [42], colorectal cancer [43], bladder
cancer [44], ovarian cancer [45] and pancreatic cancer
[46]. Therefore, an investigation into those loci may
reveal new mechanisms of carcinogenesis.
Type 2 diabetes (T2D) is one of the most prevalent

metabolic diseases. Before the GWAS era, only one locus
located in glucokinase gene (GCK) had been strongly
associated with fasting glucose levels [47]. GWASs have
identified about 50 risk loci of T2D to date [48–51].
GWASs have also identified a number of SNPs with

other complex diseases, such as auto-immune disease and
psychiatric disorders.
In recent years, many important biologic discoveries

have been made via GWAS. This approach has revealed
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the associations between genomic variants and complex
or monogenic diseases in large populations, especially the
linkages between SNPs and common complex diseases,
such as diabetes, cardiovascular disease (CVD), auto-
immune disease, psychiatric disorders. To date, more than
2000 genetic loci have been identified with significant
association to one or more complex traits [52]. Although
association between risk loci and diseases are well
documented, the mechanisms of these associations
require further research. Furthermore, GWAS may also
discover new targets of complex diseases for drugs [53–
55]. Based on GWAS results, deeper sequencing and
analysis of the risk loci, and integration of the results with
metabolomics or even cellular pathways may reveal some
new, potential avenues for making targeted drugs and
clinical interventions [56].

ENCODE

The aim of the Encyclopedia of DNA Elements
(ENCODE) Project is to determine all the functional
elements in the human DNA sequence. The whole project
is divided into three phases. The initial pilot phase of the
project ran from 2003 to 2007, focusing on the sequence
elements and discovered their biological function
(approximately 1% of human genome sequence) [57].
The second phase covered the whole genome, including
70000 promoter regions and 400000 enhancer regions
[58]. Results of the second phase were published in
September 2012, including 6 papers in Nature, 18 papers
in Genome Research and 6 papers in Genome Biology.
ENCODE’s analysis revealed that about 80% of the
human genome has a “biochemical function.” It also
revealed some new aspects of gene expression and
regulation, and the organization of related information
[58]. The last phase, which is still under way, will finish
the annotation of all human DNA elements, aiding our
understanding of normal life processes, and of mechan-
isms of disease.

Metabolomics

Metabolomics, one of the most important fields in
systems biomedicine, is the study of biochemical
processes. The metabolome consists of many metabolites,
which are the small molecules producted by enzymes in
cells, tissues, organs or organisms [59]. Thanks to recent
technological advancements, thousands of metabolites
can now be measured, fast and quantitatively. Biomarker
discovery by metabolomics can help patients and doctors
make better drug choices.

Proteomics

Proteomics is the study of the properties of proteins, such

as their structures, expression levels, post-translational
modifications, and interactions [60]. In 1989, Fields and
Song devised the yeast two-hybrid (Y2H) method to
probe for protein–protein interactions [61]. High-
throughput Y2H maps have since been generated for
many different species.
An alternative approach, high-throughput co-affinity

purification followed by mass spectrometry (AP/MS), can
also be used to detect protein–protein interactions. In
2008, Yu et al. produced a high-quality binary inter-
actome network (a protein interaction map) in yeast
supported by literature-curated protein interaction data
sets [62]. In 2010, a genetic interaction map of the entire
Saccharomyces cerevisiae gonome displayed more details
of protein–protein interactions in cells, and it also
identified that extensive and precise genetic landscape
mapping could help to explain genetic interactions and
help with drug target identification [63]. Several studies
have highlighted proteins that interact directly with
proteins already known to be implicated in pathogenesis
[64–67]. Therefore, a thorough understanding of the
function and structure of biological networks can reveal
how diseases arise and progress.

Lipidomics

Cellular lipids, which are generated and metabolized by
enzymes, are small molecules with great chemical
diversity. All biological membranes contain amphiphilic
lipids, including glycerophospholipids, sterols, and
sphingolipids. Cellular organelles usually have different,
organelle-specific lipids. Mitochondria, for instance, are
enriched with cardiolipin. Some diffusible and soluble
lipids are usually considered as signal molecules, such as
arachidonic acid, lipoxin B4, prostaglandin H2 and
platelet-activating factor. However, highly non-polar
lipids, which are usually synthesized in the endoplasmic
reticulum (ER), are usually stored in lipid bodies as
energy stores.
In recent years, lipidomics has benefited from novel

analytical approaches, particularly liquid chromatography
(LC) and mass spectrometry (MS) [68]. MS is often
coupled with LC, which can separate a lipid before their
introduction to the ionization source of the mass spectro-
meter. High-resolution hybrid systems couple the advan-
tages of several mass analyzers into a single instrument
and allow for highly accurate mass measurements of ion
species [69,70]. LC/MS has revealed over 500 different
types of lipids in human plasma alone, such as fatty acyls,
glycerolipids, and glycerophospholipids [71].
Clinically, the most important plasma lipids are

cholesterol and triglyceride (TG). Due to the non-polar
character of cholesterol and TG, the lipoproteins
(spheroidal macromolecules) are required for their
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secretion into the plasma. Studies have shown that levels
of these plasma lipids and lipoproteins are linked to the
susceptibility of CVD [72,73]. A comprehensive analysis
of these lipids shows that the compositions of lipids in
atherosclerotic plaques are different from normal plasma
lipids [74]. Further studies have shown that plasma lipid
profiling could be used to test for risk of unstable CAD
[75]. In obese (ob/ob) mice, lipid profiles in liver and their
correlation networks were significantly different when
compared to the control mice [76]. Statins are the most
commonly prescribed drugs for the prevention of CVD,
and work by reducing the level of low density lipoprotein
(LDL) cholesterol in the plasma. Individuals with
different lipid metabolisms respond differently to statin
treatment, and lipidomics could be used to guide the
dosage [77].
Lipid profiling chromatography, MS and nuclear

magnetic resonance (NMR) provide compositional iden-
tification of lipid samples. Proton magnetic resonance
spectroscopy premits the study of biochemistry and
metabolism of lipids in a living cell, and then provides
a specific index to detect the abnormalities and progres-
sion of diseases in vivo [78]. Recently, a novel approach
for lipid profiling, named single-cell laser-trapping
Raman spectroscopy, may directly quantify lipid profiling
in single cell in vivo. This new method could be very
useful for a diverse range of applications in lipidomics
[79].

Glycomics

Glycomics is the quantification of the glycome of a cell,
tissue or organism [80]. Most cells, from prokaryotic
bacteria to mammals, are coated with a glycocalyx (or
‘sugar coat’). In eukaryotes, glycans bond covalently with
proteins and lipids to form the dynamic, structurally
diverse family of glycoconjugates. Glycoproteins and
glucolipids are responsive to a wide range of intercellular
and intracellular biological processes [81].
In recent years, studies have already revealed some

potential biomarkers for multiple sclerosis [82], cancer
[83] and inflammation-related diseases [84] in serum.
Callewaert et al. showed that glycome profiles vary
significantly in different stages of fibrosis [85].
Importantly, glycoproteins are also used in clinical

cancer diagnosis. Therefore, discovering the biomarkers
using glycomics is very beneficial for the early detection
of cancer [86]. Recently, fucosylated α-fetoprotein has
been used as a diagnostic marker of primary hepatocarci-
noma [81]. In the future, discovering biomarkers using
glycomics will not only provide a new paradigm for
understanding the role of the glycome in many biologic
areas, but will also aid the process of clinical disease
diagnosis.

Epigenomics

Maunakea et al. define epigenomes as “the combination
of entire genome-wide chromatin modifications in any
given cell types that directs its unique gene expression
pattern” [87]. Unlike the genome, epigenomes are
highly dynamic in different cell types. Epigenomes,
characterized by DNA methylation, histone modifica-
tions, post-transcriptional regulation via miRNAs, and
post-translational regulation via protein modification,
establish and maintain cell type-specific gene expression
states [88]. Moreover, studies have shown that the
epigenotype plays a critical role in different types of
diseases.

DNA methylation

DNA methylation of cytosine at position C5 in CpG
dinucleotides is the major target for DNA modification in
mammals [89]. DNA methylation is involved in the
regulation of cellular processes, such as embryonic
development, and genomic imprinting [90]. As early as
1983, a linkage between DNA hypomethylation and
cancer was discovered [91]. Recent studies have sug-
gested that loss of genomic methylation is an early event
in cancer [92], and it is known that specific and global
DNA methylation is usually disordered during carcino-
genesis. A recent study showed that the change of DNA
methylation in p15 (INK4b) is strongly associated with
expression of ANRIL on chromosome 9p21 and CAD
[93]. Further studies of methylation could provide new
insights in disease and novel strategies of diagnosis and
therapy.

Histone modifications

In 2008, Wang et al. analyzed 39 histone modifications in
human CD4+ T cells [94]. Histone modifications play a
key role in the regulation of gene expression. For this
reason, histones are increasingly being recognized as
dynamic regulators of gene activity, which are controlled
by several post-translational chemical modifications, such
as acetylation, methylation, phosphorylation, ubiquityla-
tion and sumoylation [95]. Studies showed that altered
histone modifications can lead to many human diseases,
mostly related to cancers. It has been identified that the
global loss of acetylation and trimethylation in H4K16
and H4K20 respectively, for instance, was associated with
breast and liver cancer in studies [96,97]. Recently, a
novel therapeutic strategy for aggressive B cell lympho-
mas through altered histone modifications was identified
[98]. In diabetes development, key genes Pdx1 and Glut4
were proved to be regulated by DNA methylation and
histone modifications [99,100]. Further studies of histone
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modifications are useful to the understanding of both cell
development and the disease therapy.

RNA editing and miRNA

Post-transcriptional modification of mRNA plays a key
role in gene expression regulation and cell development.
Early in 1991, RNA editing was identified as a
determinant controller of ion flow in glutamate-gated
channels in the brain [101]. Recently, common, tissue-
specific methylations of the N6 position of adenosine
(m6A) of mammalian mRNAwere detected, and methly-
tions of m6A were found to be specifically enriched near
stop codons and in 3′UTR [102]. Moreover, RNA editing
is also involved in some disease progress. Studies of 2C-
subtype serotonin receptor RNA editing patterns in
psychiatric disorders were recently reviewed [103].
The noncoding region includes several types such as

microRNA, siRNA, piRNA and long noncoding RNA.
These noncoding RNAs are functional in chromatin
modification, transcription and post-transcription modifi-
cation. Researches demonstrated that noncoding RNAs
played a role in disease and could be diagnostic markers
or therapeutic targets [104,105]. ANRIL, a long noncod-
ing RNA, was found to be associated with CVD by
GWAS. Research demonstrated that ANRIL can regulate
the expression of the CDKN2A/CDKN2B locus and thus
influence the proliferation of vascular smooth muscle cell
and coronary heart disease [31,106]. BACE1-AS level
was found to be elevated in Alzheimer’s disease patients,
and BACE1-AS can regulate BACE mRNA expression
involved in the Alzheimer’s disease pathology [107].
miRNAs relevant to epileptogenesis contain m6A sites

and could be regulated by RNA epigenetic modification
[108]. Mutation and dysfunction of miRNA may lead to
various diseases [109]. Due to the informative nature of
circulating miRNAs, many miRNAs are used as biomar-
kers for tumors. And different biomarkers may reflect
presence of CVD, or tumors in specific tissues and
differentiation of the states [110,111]. One recent study
showed that miRNA-21 could affect myocardial disease
by regulating MAP kinase signaling pathway in fibro-
blasts [112].

Protein modification

Post-translational modifications of protein regulates
protein activation and other cell processes. One recent
study identified nearly 200000 protein post-translational
modification of the sites across 11 eukaryotic species
[113]. Many of these studies suggested that the mutation
of the post-translational target sites were directly or
indirectly involved in disease. For instance, the abnormal
post-translational modifications in prion protein were

shown to be associated with autosomal dominant spongi-
form encephalopathy [114]. The study of post-transla-
tional modifications will improve our fundamental
understanding of the mechanisms of disease.

Mitochondrial genome

Human mitochondria contain a compact circular genome
[115]. The regulation and expression of the human
mitochondrial genome is unique. The first complete
map of the human mitochondrial transcriptome was
supplied in 2011 [116], and this map could enhance the
research of disease-associated variants [116]. Mutations
in the mitochondrial genome have been linked with many
common diseases [117]. Studies showed that dysfunction
of mitochondrial DNA (mtDNA) was involved in
diabetes [118,119], and a recent study identified that
mtDNAmutation C3256T in white blood cells is involved
in atherosclerosis and CAD [120]. Although there is a
clear association between mtDNA mutations and some
diseases, the true relationship between mtDNA mutations
and human health needs further investigation.
With the breakthrough of technology, especially next-

generation sequencing technology, epigenomics is enter-
ing a new era. It is now possible to map dynamic
epigenetic information with precision and speed. Epige-
nomic research may be highly beneficial to our under-
standing of the disease pathology in the future.

Human Microbiome Project

Animals and microorganisms have existed together for
hundreds of millions of years. The harmonious relation-
ship between animals and microorganisms is closely
related to men’s health. Researchers gradually realized the
importance of the microbiome after the implementation of
the Human Genome Project which was launched by the
US National Institute of Health (NIH) in 2007. Metage-
nomics of the Human Intestinal Tract (MetaHIT) was then
initiated in 2008 [121], which aims to sequence 3000
bacterial genomes found in the human gut [122]. NCBI
and DACC have published 800 bacterial genomes so far
[123].
The human body contains various microbiotas, and

each microbiota contains various microbial cells [124].
Researchers have found that these microbiome genomes
have a great influence on human health.

Microbiome diversity and similarity

Intestinal microbiota are dynamic and instable. Almost
99.9% of the human genome is identical, however, there
are extreme differences in the human microbiome [124].
Since some diseases are associated with the microbiome,
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these differences offer profound insights in the field of
personalized medicine.
One of the most important features of the microbiome

is its diversity. Microbiomes vary with the geography,
age, and lifestyle of their human hosts [125,126]. Older
people have a more diverse microbiome. A person’s
microbiome is also different in different regions of the
body. Technologies such as 16S rRNA, stool transplanta-
tion [124] and sequencing of DNA are very powerful.
Ever-decreasing sequencing costs provide large amounts
of microbiomic data, which will aid in our understanding
of the diversity of the microbiome.
In spite of a large amount of differences in human

microbiome, several metabolic pathways are identical
[127]. Stable metabolic pathway is the distinguishing
feature of healthy people which can be employed to
diagnose diseases. If the metabolic pathways deviate from
the normal, a poor health will be the result. This suggests
that it is very important to treat diseases with metabolic
pathways of microorganisms.

Microbiome and diseases

Pathogenesis research at the genome level is insufficient.
From former observations in mouse models to late studies
in human volunteers, a series of evidence has proven that
intestinal microbes play a critical role in diseases.
A complex interaction between bacteria and intestinal

tissue could play an important role in pathogenesis [128].
Germ-free mice receiving microbiota from conventional
mice presented obesity, and this was shown to be
attributed to energy deposition into host adipocytes by
microbiota [129]. The gut microbiome is a marker for
diabetes. Research has indicated that microorganisms in
type 2 diabetes (T2D) patients are more abundant than in
controls [130]. Metabolic disease is affected by a
multitude of factors, but diet plays the biggest role
[131]. Lipopolysaccharides (LPS) and other bacterial
fragments can lead to the development of metabolic and
cardiovascular diseases [132]. Commensal microorgan-
isms have also been linked to asthma. Disrupting the
microbiota of babies has been shown to enhance the
morbidity of asthma [133]. Wang et al. found that gut flora
metabolism of phosphatidylcholine promoted cardiovas-
cular diseases [134].

New model for diseases and prospects

The gut microbiome should be considered as a risk factor
for the development of metabolic diseases. So a new
model comes out to describe the influencing factors of
diseases [135]. The new model emphasizes the impor-
tance of the interaction between gut microbiota and the
host, whereas the old model is only based on environ-

mental and genetic factors. We should attach the
importance of dietary, lifestyle and physiologic character-
istics to health and take microbiome more seriously. We
hope that we can understand the human health more
systematically and use more effective ways to treat
diseases.

Common diseases

One of the aims of systems biomedicine is to reveal the
patho-physiologic mechanisms of diseases. Genetic
diseases are categorized into three types: single-gene
disorders, common complex diseases, and oligogenetic
diseases. The common complex traits are influenced by
many factors, each of which has only a modest effect.
GWAS, epigenomics, metabolomics and microbiomics
are playing important roles in studying the mechanisms of
common disease.

Genome-wide association studies (GWAS)

Genome-wide association studies (GWAS) could be a
powerful instrument to understand the network of
common diseases, and an increasingly large body of
evidence is supporting this theory. A majority of variants
lie within noncoding sequences or within introns, which
are often marked by deoxyribonuclease I (DNase I)
hypersensitive sites (DHSs) [136]. The WTCCC [9]
pointed out that many previously identified genetic loci
were connected in a network of seven common diseases,
and some loci were linked to more than one disease.
Torkamani et al. suggested that due to the genetic links
among diseases, a new way to categorize disease should
be explored [137]. Harold et al. found that Alzheimer’s
disease was associated with CLU and PICALM gene by a
two-stage GWAS [138]. Chen et al. found that rs3803662
and rs10941679 were associated with breast cancer [139].
Yeager et al. identified that in 10286 cases and 9135
controls of European ancestry, chromosome 8q24a was
associated with prostate cancer [140]. Schnabel et al.
reported that thanks to the development of novel
technologies in GWAS, we could understand the com-
plexity of CVD more systematically [141].
The GWAS approach is very promising. It could be

further improved by integrating other omics and technol-
ogies to develop a new strategy to study the network of
common diseases [142].

Epigenomics

A large proportion of mechanisms among common
diseases are elusive only by the strategy of GWAS
[143]. Epigenetic modifications are heritable alterations
of the genome and its feature is that it can change the gene
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expression, but cannot change the DNA sequence.
Epigenetic modifications play pivotal roles in studying
the networks of common diseases, and due to the
development of high-throughput arrays, the high-
throughput study of epigenetic modifications is now
possible [144].
Toyota et al. reported that DNA methylation regulated

diverse functions such as imprinting, genomic stability,
and gene transcription, and it might even be associated
with human tumors [145]. Ivanova et al. reported that
BMP4 promoter methylation levels were directly corre-
lated with tumors and led to bad prognosis [146].
Epigenetic modifications may also have a role in
increasing CVD risk [147].
New opportunities will be provided by epigenome-

wide association studies (EWASs), however, challenges
will also be presented [148].

Metabolomics

Metabolic disturbances can lead to increased morbidity of
common diseases [149]. GWAS could identify the
differences between unhealthy and healthy patients.
Quinones and Kaddurah-Daouk identified that meta-

bolic pathways such as fatty acids, oxidative stress and
mitochondrial function were highly associated with
central nervous system (CNS) disorders [150].
Metabolomics is a new strategy to study metabolites in

urine, blood and tissue and it could be affected by the
microbiome [151]. Metabolic differences between healthy
and unhealthy people can lead to a systematic under-
standing of the network of common diseases.

BIOINFORMATICS: COMPUTING SYSTEMS

BIOMEDICINE

Recent years saw rapid advances in genome sequencing
technology, which boasted the researches in identification
of genes that potentially lead to such “complex diseases”
as hypertension, cardiovascular disease, asthma, and
cancer [152,153]. These complex diseases were proposed
to be caused by a combination of multiple genes and a
multitude of environmental factors. Genetically, their
complexity lies in multiple aspects related to genetic
polymorphisms (e.g., single-nucleotide polymorphisms
or SNPs), gene expression, biological pathway, epigenetic
modifications, noncoding RNA and gene-environment
interactions. Nowadays, by adopting high-throughput
methods, scientists can obtain much information about
SNP genetic spectrum, gene expression profile, and
protein spectrum. Accordingly, bioinformatics methods,
tools, and databases have been developed and used to aid
in the researches to understand these complex diseases at
the systemic level.

Researches in this field are focused on the following
questions: (1) How can genetic susceptibility markers be
identified? (2) How can relationships between epigenetic
markers and diseases be identified? (3) How can
chromatin modification, RNA expression and protein
expression data be combined to analyze the mechanisms
of disease? (4) How can functional modules and
biological pathways be elucidated? (5) How can all the
data in a whole intact system, such as a cell, an organ, or a
whole body be integrated? (6) What databases are
available to guide our research in systems biomedicine?

1. How can genetic susceptibility markers be identified?

Since the completion of the HapMap project, SNP
markers have been widely applied, and GWASs have
been adopted to test the association between SNPs and a
specific disease. A GWAS research often involves 300000
or more SNP markers, evenly spreading across a genome
[154]. GWAS involves powerful statistical test to locate
many common disease genes by constructing and
analyzing high-density SNP maps. By performing the
WTCCC study [9] and German MI (Myocardial Infarc-
tion Family) Study [155–157], Samani et al. identified
SNPs with the strongest associations with coronary artery
disease [24]. Lu et al. applied meta-analysis to identify
susceptibility loci related to coronary artery disease in the
Han Chinese, and identified four new loci related to
coronary artery disease [33]. These findings provide new
insights into pathways contributing to the susceptibility
for coronary artery disease in the Han Chinese population.

2. How can relationships between epigenetic markers
and diseases be identified?

Gene expression must take place accurately at the right
time and place. Normal phenotypic changes of DNA and
histones regulate the expression of gene function.
Systematic study of the important roles of DNA
methylation in the human epigenome, embryonic devel-
opment, gene imprinting, allele inactivation and tumor-
igenesis has become a new research hot spot.
DNA methylation is a crucial epigenetic modification

of the genome. DNA methylation and RNA-Seq data
have implied the correlations between DNA methylation
and transcriptional levels in both the kidney and the liver
[158]. Robertson et al. showed that many human diseases
are associated with aberrant DNA methylation patterns
[90]. Yi et al. described the relationship between tumor
occurrence and the abnormal methylation [159]. Uhlmann
et al. found that tumor marker genes of different
pathological types of glioma cells have different levels
of methylation [160]. Recently, a large number of high-
throughput data sets of methylation and histone modifica-
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tion in normal tissues and diseases have been available
thanks to the usage of next-generation sequencing
technologies, and were collected in databases, such as
e.g., the Cancer Genome Atlas (TCGA) [161], Human
Histone Modification Database (HHMD) [162], Disease-
Meth [163] and MethDB [164–167]. Accordingly, novel
computational tools, including Batman [168], meth-
BLAST [169], MethTools [170] and QUMA [171] to
perform methylation analysis have been developed [172].
Notably, a comprehensive tool—CpG_MPs has been
applied to identify and analyze the methylation patterns of
genomic regions from bisulfite sequencing data [173],
whereas QDMR (quantitative differentially-methylated
regions) implemented a new means of data analysis to
identify DMRs (differentially-methylated regions) from
genome-wide methylation profiles by adapting Shannon
entropy theory [174].

3. How are chromatin modification, RNA expression and
protein expression data combined to analyze mechan-
isms of disease?

DNA microarray technology has offered the possibility to
monitor the activities of thousands of genes simulta-
neously. To identify disease-risk biomarkers, multiple
data mining approaches have been applied to analyze
gene expression profile. According to the models of
learning algorithms, current analytical strategies can be
classified into two groups: unsupervised and supervised
learning methods [175].
Unsupervised learning methods, such as K-means

clustering, hierarchical clustering and principal compo-
nent analysis method, can be used for gene clustering or
sample clustering. For example, gene clustering is often
performed to highlight some functionally related gene
groups and predict the function of those genes [176],
while sample clustering is performed to find different
disease subtypes [177]. In 2000, based on the hierarchical
clustering algorithm, Alizadeh et al. identified two
molecularly distinct spliceosomes in diffuse large B cell
lymphoma tumor patients using DNA microarray data
[178].
Supervised learning methods, including linear discri-

mination, decision trees, artificial neural networks and
support vector machines (SVM), can be used for the
identification of the characteristics of genes and sites
[179]. In 2004, Li, X. et al. developed a novel tree-based
ensemble decision approach, analyzed two publicly
available data sets [175] and identified 20 genes which
are highly significant as related to colon cancer and 23
genes which are molecular signatures of the acute
leukemia phenotype. Furthermore, in 2012, by adopting
learning algorithms, Chen et al. combined genomic,
transcriptomic, proteomic, metabolomic, and autoanti-

body profiles over a 14-month period from a single
individual, and presented an integrative personal omics
profile (iPOP), and revealed various disease risks [180].
With further accumulation of omics profiles from larger
number of individuals, more sophisticated supervised
learning methods are needed to aid in our understanding
of the mechanisms of disease.

4. How can functional modules and biological pathways
be elucidated?

The development of complex diseases is initiated by
multiple etiologies. Analysis of modules and pathways
reflects the trend of system biology, which is about
integration and interpretation beyond individual genes.
However, it is a challenging task to identify common
functional modules and biological pathways associated
with complex diseases.
Statistical methods and software implementing them

have been developed to predict gene functions and have
accelerated the study of genes and their products for
clinical purposes. Based on iPOP-analysis, integrating
clustering analysis and pathway enrichment, Chen et al.
analyzed various omics sets, identified differentially
expressed components and elucidated several important
pathways [180]. By analyzing the contribution of genetic
factors and biological network of pathways in the Kyoto
Encyclopedia of Genes and Genomes (KEGG), Chen
et al. proposed an approach to prioritize risk pathways by
fusing SNPs and pathways for common diseases. This
approach was applied to five common diseases, and the
result revealed that the five diseases not only share
common risk pathways, but also have their own specific
risk pathways [181].

5. How can all the data in a whole intact system, such as
a cell, an organ, or a whole body be integrated?

To explore human genetic disorders and the relationship
among multiple genes at a higher level of cellular and
organismal organization, Goh et al. constructed the
Human Disease Network and Disease Gene Network
[65]. To explore regulatory network models, Califano
et al. proposed an integrative approach requiring the
simultaneous reconstruction of context-specific gene
regulatory network based GWAS data set [182]. By
integrating the disease states of miRNAs, Li et al.
constructed a network of bipartite miRNAs and sub-
pathways [183]. Ye et al. constructed an miRNA-TF co-
regulatory network specifically for T-ALL(T-ALL),
inferred some hub regulators, genes, and their regulation
in the network, and identified important miRNAs and
regulatory modules in T cell acute lymphoblastic
leukemia [184].
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In summary, bioinformatic studies have begun to dig
into the systematic biomedicine and get some promising
results. With the help of bioinformatic approaches and
tools, we can establish biological models and construct
the biological control network, and better understand
context-specific nature of biological process regulation,
thus to gain a new insight into normal cell physiology and
its dysregulation in disease. Biological system is a
dynamic system, and with the development of systems
biomedicine, we can observe the dynamics of the
biological systems further. We assume that reconstruction
of realistic biological model may be one of the most
critical challenges of quantitative biology.

6. What databases are available to guide our research in
systems biomedicine?

Up to now, numerous biological databases have been
developed, which may help researchers in systematic
biomedicine. Here, we introduce some databases related
to complex diseases.
OMIM (Online Mendelian Inheritance in Man).

OMIM is the most authoritative database of human
genetic diseases. It classifies the genetic diseases and
provides creditable and detailed information about
disease heredity and related disease gene loci. (http://
www.ncbi.nlm.nih.gov/omim, http://omim.org/).
GAD (Genetic Association Database). GAD contains a

number of gene and polymorphism information of human
complex diseases. This information comes from the
research and arrangement of previous association analy-
sis, which is convenient for researchers to quickly identify
polymorphism of diseases from many multiple data.
Moreover, this database allows the users to review
submission records. (http://geneticassociationdb.nih.
gov/).
CGAP (Cancer Genome Anatomy Project). The aim of

CGAP is to produce the information by unscrambling the
molecular structure and establish a series of analysis
technologies to dig tumor-related genes, proteins, and
other biological markers. Moreover, it provides informa-
tion resources and technological methods for the study of
tumors. This database contains 7 related modules to share
data, bioinformatics analytical tools and biological related
resources. (http://cgap.nci.nih.gov/).
GeneCards. GeneCards is an integrated database of

human genes, which provides genomic, proteomic,
transcriptomic, and functional information of known
and predicted human genes. This database focuses on
diseases, mutations and SNPs, gene expression, gene
functions, pathways and protein interactions. This
database particularly emphasizes the overall information,
but there is less details about human diseases. It is a
powerful functional genome data and contains external

linkage for related databases, which can provide chro-
mosomal localization, gene expression information,
homologous genes and corresponding proteins for
human diseases. (http://www.genecards.org/).
KEGG DISEASE. The KEGG DISEASE is an online

database to store the information about genes, pathways,
drugs and diagnosis markers of diseases. It includes
information about genetic and environmental perturba-
tions. In this database, every disease has a certain H
number for entry. According to the list of known genetic
factors, environmental factors, diagnostic markers, or
therapeutic drugs, diseases are being organized in KEGG
DISEASE. (http://www.genome.jp/kegg/disease/).
miR2Disease. miR2Disease is a manually built

database that provides information about miRNA dereg-
ulation in various human diseases. It is convenient for
users to get the detailed information on an miRNA-
disease relationship by each entry (http://www.mir2di-
sease.org/) [185].
HEP (Human Epigenome Project-Data). The goals of

HEP are to define, record, and explain the DNA
methylation patterns of the whole human genome in the
major tissue. To date, investigators can freely obtain DNA
methylation spectral data of human 6, 20, and 22
chromosomes. (http://www.epigenome.org/).
HHMD (Human Histone Modification Database).

HHMD is the most comprehensive and systematic
database, which is based on the various experiments
about human genome histone modifications. It contains
the high-throughput experimental data of 43 human
genome histone modifications, and it also provides the
histone modifications information of 9 cancers obtained
by literatures. (http://bioinfo.hrbmu.edu.cn/hhmd).
MethyCancer. This database is a multiple information

database including DNA methylation, mutations, cancer-
related gene, cancer information and CpG island. The aim
of the database is to study the interaction among the DNA
methylation, gene expression and cancer. (http://methy-
cancer.psych.ac.cn/).

INTEGRATION: RESEARCH FROM SYSTEMIC

VIEW

As mentioned above, large quantities of omics data are
accumulating. The final aim of systems biomedicine is to
integrate all these components and to reconstruct a
system. Understanding how complex phenotypes origi-
nate from a certain system is a difficult problem.
Fortunately, some researches into integration have
emerged in recent years.
One report utilized a computational model to simulate

the process of cell divisions of the human pathogen
Mycoplasma genitalium [186]. It first defined 4 types of
substances (metabolites, RNA, protein, and DNA) and 28
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submodels. Multiple external variables affected a cell,
including the geometry, the mass of the cell, the stimuli
that the cell accepted, and the type of host that the cell
lived in. All variables influenced 4 types of substances
and 28 submodels of the cell, and then determined
whether the cell was to divide. This study demonstrated
the application of systematic and quantitative methods to
predict a cell’s status.
Integrative personal omics profile (iPOP) used multiple

omics methods, including genomics, transcriptomics,
proteomics, and metabolomics to study a single indivi-
dual [180]. It analyzed risk factors for some diseases, such
as diabetes and coronary artery disease. It also analyzed
profile transcription, protein, and RNA editing at the
systemic level at different states. By comparing changes
between healthy and diseased states, it revealed systemic
signatures associated with disease. This study is a good
example for the application of systems biomedicine in the
human body.

DEVELOPMENT IN CHINA AND PROSPECT OF

SYSTEMS BIOMEDICINE

Systems biomedicine is an emerging field. In China,
systems biomedicine is developing rapidly in recent
years. Some centers for systems biomedicine have been
built. Specific examples for systems biomedicine include
Peking University Institute of Systems Biomedicine and
Shanghai Center for Systems Biomedicine. These centers
are pursuing interdisciplinary research, focusing on basic
research from the systematic view, and encouraging
applications in clinical medicine.
In addition to the rapid development of systems

biomedicine in recent years, the idea of traditional
Chinese medicine (TCM), which has a long history,
resembles systems biomedicine in many aspects. TCM
focuses on health maintenance, diagnosis and treatment of
diseases on a systemic level, whereas systems biomedi-
cine aims to integrate individual molecules and their
interactions to understand how complex phenotypes arise.
Systems biomedicine bridges TCM and western medi-
cine. In the future, the systems approach will combine
principles of TCM with that of western medicine, and
pave the way for predictive, preventive and personalized
medical practice.
Systems biomedicine will greatly facilitate our under-

standing of disease pathogenesis in the future. It helps to
discover the disease mechanism and helps to prevent,
diagnose and treat diseases in clinics. As we know,
diseases are caused by multiple genetic and environment
factors. For a certain person, disease is caused by some
certain factors. Knowing the detailed information about
one’s genetic background and environment factors from
the systematic view, we could evaluate the disease

susceptibility, offer the proper prevention, and use exact
treatment. The development of systems biomedicine
makes it possible to realize “3P” medicine, that is,
predictive, preventive and personalized medicine.
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