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The rapid technological developments following the Human Genome Project have made possible the
availability of personalized genomes. As the focus now shifts from characterizing genomes to making
personalized disease associations, in combination with the availability of other omics technologies, the
next big push will be not only to obtain a personalized genome, but to quantitatively follow other omics.
This will include transcriptomes, proteomes, metabolomes, antibodyomes, and new emerging
technologies, enabling the profiling of thousands of molecular components in individuals. Furthermore,
omics profiling performed longitudinally can probe the temporal patterns associated with both molecular
changes and associated physiological health and disease states. Such data necessitates the
development of computational methodology to not only handle and descriptively assess such data, but
also construct quantitative biological models. Here we describe the availability of personal genomes and
developing omics technologies that can be brought together for personalized implementations and how
these novel integrated approaches may effectively provide a precise personalized medicine that focuses
on not only characterization and treatment but ultimately the prevention of disease.

INTRODUCTION

With the advent of high-throughput technologies genomic
science has experienced great leaps, rapidly expanding its
domain beyond the characterization of short genomic
reads in the early days of sequencing to the possibility of
obtaining personalized genomes, once considered the
holy grail of genomic methodology and technology
development. The value of personalized genomic analy-
sis, and evaluation of variant associations to disease, is
becoming more apparent, even spurring directly to
consumer implementations. Further developments in the
last few years now lead to a more ambitious goal: the
longitudinal monitoring of multiple omics components in
individuals and the characterization of the molecular
changes associated with disease onset in individuals, at an
unprecedented level. In this review we describe techno-
logical and methodological developments in personal
genomics, and the new promise of multiple omics
profiling, including transcriptomes, proteomes, metabo-
lomes, autoantibodyomes and so forth, (sample omics

analysis workflows shown in Figures 1–4). We then
discuss a framework on how such data may be integrated
with a view towards the application of a personalized
precise and preventive medicine, and describe an
implementation of this approach. The technological
developments and methodology allow for inroads into
the future of quantitative personal medicine, which we
can now plan carefully by taking into account not only the
scientific developments that need to be implemented, but
also the social implications coupled to ethical and legal
considerations.

GENOMIC SEQUENCING

In 2001 the completion of the Human Genome Project
(HGP) was announced effectively with the publication of
the first complete human genome sequence. The HGP
came at a hefty $2.7 billion cost using the best technology
of the time, making it seemingly prohibitive to expect
personal genome sequences to be achieved shortly
thereafter. Yet the immense technological advancement,
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spurred by motivation by the National Institute of Health
(NIH) and the National Human Genome Research
Institute (NHGRI) to bring down genomic costs, led to
an unprecedented growth in technology and methodol-
ogy, enabling the drop in sequencing costs (http://www.
genome.gov/sequencingcosts) to continue at a rate
beyond the most optimistic projections of 2001
(< $4000 currently). While initially the human genome
was a combination of multiple individual genomic data
[1–3], the developments by 2008 had allowed the
determination of genomic individual makeup [4–7]. It is
now possible to personalize Whole Genome Sequencing
(WGS), and the dwindling sequencing costs promise the
possibility of affordability for all in the near future [8].
These developments encouraged efforts to characterize
disease on a genomic level, towards the application of an
all-encompassing genomic medicine, at the molecular
level. The initial goals were the characterization of
populations for large studies, now shifting to the
individual.

Multiple technologies development/dropping costs

The HGP relied on technology using Sanger-based
capillary sequencing [1] with an estimated production of
115k base pairs per day (kbp/day) [9]. The NHGRI
spurred progress by encouragement through the $1000
genome program (http://www.genome.gov/11008124-al-
4), leading to the industry development of multiple
massively parallel [10] sequencing platforms (e.g.,
Roche/454, based on pyrosequencing [11–13]; Life
Technologies SOLiD [14–16]; Illumina [5,6]; Complete
Genomics based on DNA nanoball sequencing [17];
Helicos Biosciences [18]; and recently single molecule
real-time technology [19,20] by Pacific Biosciences).
These next generation sequencing platforms are now
being supplemented but what has been termed as third-
generation sequencing, [21], including such nanopore
technologies as announced early in 2012 by Oxford
Nanopore Technologies [22]. The technological develop-
ments and competition resulted in a drastic and continuing
drop in sequencing cost, processing times and exponential
increases in number of reads produced.
An alternative to sequencing the whole genome has

been whole exome sequencing (WES) [23]. This
technology aims to study the exonic regions of the
genome (~2%–3%), which are associated to several
Mendelian disorders. It offers a lower cost option (e.g.,
Illumina, Agilent, and Niblegen platforms, see Clark et al.
for a comparison of the latter two [24]) and has received
immense attention, including the Exome Sequencing
Project (ESP) (see the Exome Variant Server at http://evs.
gs.washington.edu/EVS/), supported by the National
Heart, Lung and Blood Institute (NHLBI).

Quantitating genomic variation

Concurrently with the technological developments, our
understanding of the human genome has grown immen-
sely since the publication of the reference genome in
2003. The aim was to determine the precise role of each
base in the genome and identify genomic variants
(Figure 1). Several collaborative large-scale efforts
pursued such investigations. The International HapMap
Consortium [25,26] tried to identify common population
variants and led to the development of public databases,
such as dbSNP [27] (http://www.ncbi.nlm.nih.gov/SNP/),
which catalogues Single Nucleotide Polymorphisms
(SNPs) (defined as occurring in >1% of the population
to differentiate from Single Nucleotide Variants (SNVs)).
This has revealed great genomic variation both in global
populations [28,29] and populations of admixed ancestry
[30–33].
Typically the technologies involve the assignment of

reads to the reference genome to determine the
structure of the underlying sequence, including variation
(Figure 1). Beyond nucleotide variation, other genomic
differences have been investigated, including small
insertions and deletions (indels), copy number variations
(CNVs) indicating varying numbers of segments and
longer chromosomal segments that contribute to Struc-
tural Variation (SVs) — SVs are defined for segments of
chromosomes larger than 1000 bp (Figure 1A). Such
efforts have been based on microarray methodology [34–
37] and even higher-resolution in structural variants may
be achieved with other methods [38–41]. Structural
variants have been publically made available in the
database of Genomic Structural Variation (dbVAR; http://
www.ncbi.nlm.nih.gov/dbvar/).
Furthermore, functional elements have been exten-

sively catalogued by the Encyclopedia of DNA Elements
consortium (ENCODE; http://genome.gov/encode ~10
production projects), with funding from the NHGRI.
ENCODE data, including regulatory elements and RNA
and protein level elements, have now been released and
the project has received widespread attention [42–45].
The ENCODE project aims at a biochemical genomic
characterization, with a thorough mapping of transcribed
regions, transcription factor binding sites, open chromatin
signatures, chromatin modification and DNA methyla-
tion. Such extensive data still needs to be annotated [46]
interpreted in terms of biological significance, mechan-
isms and connections to phenotype and will likely prove
invaluable in our interpretation of personalized genomic
differences.
Though initially limited by the number of complete

genomic sequences, such data are now continuously
updated and expanded by information from other projects
such as the 1000 Genomes Project [47] as discussed
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Figure 1. Genomic variants. (A) Variation in the human genome. The personal genomic code can differ from the published
reference genome. Basic examples of variation are shown on a single or few base variants (e.g., point mutations, insertions and
deletions), or a larger scale for structural variants (>1000 bp, e.g., large insertions, deletions, inversions, tandem repeats,
translocations). (B) Sample variant analysis workflow. In a genomic variant analysis, for example, after sample preparation and

sequencing the raw files can be passed through quality control (e.g., using FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/
fastqc/) and removing PCR artifacts using tools as Picard (http://picard.sourceforge.net)). Reads are mapped to the genome and
variants are assessed, e.g., mapping with several algorithms, including ELAND II (Illumina), SOAP [221], MAQ and Burrows-

Wheeler Aligner (BWA) [222] and Novoalign by © Novocraft Technologies (http://www.novocraft.com). Read re-alignment can be
performed, e.g., using Genome Analysis Toolkit (GATK) [223], or HugeSeq [211], to call variants, including implementations with
Sequence Alignment Map format Tools (SAMtools) [224], annotation using Annovar [225], SIFT [226] and Polyphen [227] for

determining variant effects on proteomic translation [228]. Furthermore, using a variety of methods the structural variants can be
determined. For example the paired-end mapping method considers how paired-end reads mapped to the reference to assign
deletions and insertions, from reads whose mapped span is longer or shorter than the average span; inversions, from position and
relative orientations of the ends of reads [39,40]. The read depth method allows the possibility to identify the proportional genomic

copy number variation. In the approach of Abyzov et al. [229] the read depth considered as an image is analyzed using image
processing techniques, viz. mean-shift-theory [230]. Programs such as Pindel [231] and BreakSeq [232] consider split-read analysis
to determine breakpoints of insertions and deletions. DELLY [233] by Rausch et al. takes into account paired-end and split-read

methods for determining structural variants. Many packages for analysis are available through the Bioconductor [234] project as
implemented in the freely available R statistical analysis platform (http://www.R-project.org).
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below, which has allowed us to have a better view of the
great variability in each individual genome (~3–4�106

SNPs, > 200000 SVs of varying sizes, ~1500 SVs> 2
kbp), with much of the variation considered rare (1%–
5%). Genome-Wide Association Studies (GWAS) try to
associate the common variants to disease, by combining
the now readily available extensive variant information
and allelic variability, with linkage disequilibrium (a
description of the correlation patterns between proximal
variants). The NHGRI provides a publically available
catalogue of published GWAS (http://www.genome.gov/
gwastudies) [48]. The early expectations of finding
common traits and genomic features unique to diseases
have proven more complicated, as the genomic variability
turns out to be higher than expected and additionally the
genetic variants need further validation.
Use of WGS and WES has been successful in the

identification of somatic mutations. Mendelian disorders
including neurological disorders, and cancer have been
characterized using WES [49–58], including some recent
single-cell studies [59,60]. Genomics may help classify-
ing cancer subtypes, and possible treatment, and such
research is at the center of WGS, with projects such as the
Cancer Genome Atlas [61] (http://cancer-genome.nih.
gov/), and the International Cancer Genome Consortium
(http://www.icgc.org). Additionally, cancer specific pub-
lic databases already are available [62], including a cancer
cell line encyclopedia [63], and genome characterization
has been carried out, for example in ovarian cancer [61],
melanoma [64], lymphocytic leukemia [65], breast cancer
[66–69] and acute myeloid leukemia (AML) [70,71].

Personalized risk evaluation

One of the goals of personalized genome interpretation is
the evaluation of disease risk factors based on an
individual’s variant and allelic distribution composition.
Such information may be compared to similar individuals
with known disease associations to assess whether an
individual shows increased or decreased risk compared to
the control group. A combination of know SNPs and
personalized variants has been found to be effective [72–
75] and has been used in clinical studies; more recently, a
seminal study by Ashley et al. [76] evaluated disease risk
for a patient with family history of vascular disease.
Personalized evaluation of potential drug responses can

be based on the effects of variants [77,78], including drug
selection, sensitivity and dosage estimation, e.g., cardio-
vascular drugs [79], schizophrenia related medications
[80]. For example, PharmGKB (http://www.pharmgkb.
org) provides a curated database of possible genomics
information [81,82], exploring the impact of genomic
variation on drug responses as these relate to expressed

genes and associated pathways and disorders. The future
applications are to include a precise drug dosage for an
individual, avoiding trial and error methods and providing
more effective treatment.
The evaluation of personalized risk based on genomes

is now appearing in direct-to-consumer services. Com-
panies like 23andMe, deCODEme, (and previously
Navigenics), offer to assess individual genotypes and
offer disease based interpretation services based on
Mendelian disorder evaluation and including pharmaco-
genomics responses. These are mostly based on SNPs
evaluation and the tests though limited in scope do offer
interpretation attractive to multiple consumers.

Personal Genomes Project

Presently thousands of genomes have been completely
sequenced. One of the first large scale projects has been
the 1000 Genomes Project [47], that has made its data
publically available, and has encouraged the development
of streamlined bioinformatics tools to analyze the
variation in the individual genomes (Figure 1). This
project aims to combine data from 2500 individuals from
multiple populations, at a 4� coverage.
Another grand scale effort driven by George Church’s

group at Harvard University is the Personal Genome
Project (PGP) [83–85]. The project has been recruiting
individuals who can share their medical and other
information together with genomic information online
(http://www.personalgenomes.org). The volunteers share
full DNA sequences, RNA and protein profile informa-
tion in addition to extensive phenotype information
including medical records and environmental considera-
tions, with all the data made publically available, and
plans to expand to 100000 individuals [86]. One of the
rather unique features of the PGP project is that it differs
in consent of participants as compared to traditional
studies. The ownership of the data is to be open and
publically available without restrictions, not only for the
initial perspective of the study, but open to follow-up or
additional investigations. The scope is participatory, with
the volunteers for the project interacting directly with the
researchers. To address informed consent, participants
pass a basic genetic literacy exam and must understand
the project’s scope. Additionally, they provide complete
medical history, immunization and medications history,
which becomes part of the publically available subject
information. The access to the individual’s data in the
project can be either private to the participant and
researchers only or completely public, depending on the
participant’s choice. The availability of extensive patient
and omic information will be invaluable to researchers in
developing robust analysis models for characterizing
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genomes and disease and the PGP project, and its
publically open structure model, will be at the forefront
of such efforts.

BEYOND THE GENOME: OTHER OMICS

Transcriptomics

Though the genetic code in DNA is the almost identical
(besides cellular variation), different cells have different
gene expressions, corresponding to the kind of cell,
developmental stage and physiological state. The collec-
tion of the transcripts in a cell (e.g., mRNA, non-coding
RNA and small RNAs), the transcriptome, is essential in
our understanding of cell function, and response to
disease. Considerations must include start and end sites of
genes, and coding, alternative splicing and post-transcrip-
tional modifications.
Initially inroads were made using high-density oligo

microarrays, and in-house custom made microarrays [87],
with high-density arrays having resolutions up to 100 bp
[88–91]. While relatively inexpensive, these methods
suffered from relying on prior knowledge of the genome,
and faced technical issues such as background and
saturation effects [92]. Hybridization interactions
between probe sets in short oligo microarrays lead to
spurious correlations [92,93].
The development of RNA sequencing (RNA-Seq)

brought higher coverage, better precision and quantita-
tion, and higher resolution and sensitivity, bringing RNA-
Seq technology and transcriptomics on par with genomic
sequencing [94–98]. RNA-Seq considers reads that

correspond to millions of transcriptomic fragments that
are mapped to the reference genome, to provide
information on transcripts that may not be in the existing
genomic annotation, allowing the search for novel
transcripts, and even identification of SNPs and other
variants, while showing remarkable reproducibility
(Figure 2). Transcriptome profiling has included looking
at cancers [99–101], including breast cancer [102],
gastrointestinal tumors [103] and prostate cancer [104].

Mass spectrometry, proteomics and metabolomics

Gene expression was expected to correlate with protein
levels in a cell and it was thought that methods such as
RNA-Seq would be enough to ascertain the proteomic
expression corresponding to gene expression. Proteins are
expected to be closer to phenotype, as they participate in
every aspect of cellular biology, but their expression
levels are difficult to quantitate, partly because of
translational control in cells, possible degradation and
sampling issues [105–107]. The development of electro-
spray ionization brought mass spectrometry (MS) to the
field of proteomics and the possible identification of
thousands of molecules based on mass [108–112]. This
has enabled not only the cataloguing of proteins, but also
querying post-translational modifications [113,114]. As
the techniques matured, liquid chromatography tandem
mass spectrometry (LC-MS/MS) has become standard,
and novel instruments (e.g., Velos family [115] by
Thermo Scientific; quadrupole time-of-flight mass spec-
trometers (QTOFs) by Agilent) allow unprecedented
precision to enable the development of methods to
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Figure 2. RNA-Seq analysis. In RNA-Seq analysis, short reads can be assembled and then mapped to the reference genome
(with tools such as Illumina’s ELAND, MAQ and BWA [222], Bowtie [235–237], SOAP [221], and others). A recent protocol by
Trapnell et al. [238] describes in detail the use of dedicated RNA-Seq programs from the Tuxedo suite, such as TopHat [239],

Cufflinks [240,241] and an R implementation called CummeRBund as a Bioconductor package (an alternative is to run these directly
or using GenePattern [242,243], which also includes possible reconstruction by Scripture [244]). Other programs such as DESeq,
another package in Bioconductor, can also help test for differential expression [245]. The numerous analyses availabilities are now

publically discussed online, in a forum (http://SEQanswers.com/) that discusses many other examples and all aspects of the
mapping process [246].
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identify thousands of proteins (~4000–6000 over 2 days),
and quantitate protein levels [73,116] (Figure 3). One set
of methods uses stable isotopic labeling by amino acids in
cell culture (SILAC) to label cell in light and heavy
isotopes of amino acids providing double spectral peaks
in MS for identification and quantitation [117–120] —
this method is now supplemented by ‘spike-in’/‘super’
SILAC which has been used to measure biopsy tumor
proteomes [121]. Another possibility is to use isobaric
tags for relative and absolute quantitation (iTRAQ)
[122,123] or tandem mass tag (TMT) labeling
[73,124,125], and other methods, including spiking in
peptides for absolute quantitation. Finally, it is possible to
employ label-free methods for quantitation, which do not
rely on tags, including integrating signal methods and MS
spectral counting [126–131].
In comparison to whole transcriptome profiling, the

numbers of proteins identified in proteome profiling tend
to be less in comparison, particularly since low peptide
levels cannot be amplified (cf. polymerase chain reaction
methods for sequencing methods). Additionally, the
current bottom-up (shotgun) proteomics methodology
uses digestion with endopeptidases such as trypsin to
obtain peptides of small enough mass to be identified by
MS/MS, resulting in many fragments that cannot be

identified in MS, which may possibly be alleviated by top
down approaches that do not employ a digestion step
[132–136]. However, proteomics provides insights that
are missing from transcriptomic analysis, especially given
the low correlations between protein and transcriptome
differential gene expressions [73,137–142].
Multiple proteomes have been quantitatively profiled,

including characterization of ovarian cancer [143], an
integrated approach that combines transcriptome and
proteome information in a human cancer cell line by
Nagaraj et al. [144], integrative gastric cancer character-
ization and effects of post-translational modifications
[145], and looking for biomarkers in other cancers
[146,147].
In addition to developments in proteomics, MS has

encouraged the study of small molecules. The behavior of
small molecules in cells though difficult to track provides
insight into many common disorders. The set of all
cellular small molecules is collectively called the
metabolome. Metabolic processes are vital in biological
pathways and a systems analysis of molecular cell
complexity might lead to biomarker discovery, and
possibly disease risk assessment, diagnosis and treatment
[148]. Similar to proteomics, metabolomics can employ
mass spectrometry to identify compounds [149] (Figure
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Figure 3. Proteome analysis. In quantitative proteomics using mass spectrometry typical approaches employ trypsin digestion
coupled with tagging methods— non label-free methods include use of isotopic labeling (SILAC) or isobaric tagging (iTRAQ, TMT).
One typical bottom-up-approach setup uses a combination of high affinity liquid chromatography coupled with two rounds of mass

spectrometry (LC-MS/MS) to fractionate peptides for identification and obtain their mass spectra. Raw files may be analyzed using
vendor software or converted to open formats (such as .mzXML, .mzData or the current standard .mzML [247–249], e.g., using
MSConvert [250]). The mass spectra can be mapped to known protein using a protein library, or less frequently de novo assembled,

using an array of programs (e.g., X!Tandem [251], SEQUEST [252], Mascot [253], Open Mass Spectrometry Search Algorithm
(OMSSA) [254], Proteome Discoverer by Thermo Scientific, or MassHunter Workstation by Agilent). Quality control includes
estimation of false discovery rates (FDR), often using a reverse database search [105,255,256]. Quantitation can be carried out to

estimate relative levels of proteins in different samples (employing standardization and normalization of average sample ratios to a
unit mean). Finally annotation is made using databases such as UniProt or NCBI. Some of the analysis can be performed using
suites and programs, such as PEAKS [257], the Trans-Proteomic Pipeline (TPP) [258–261], multiple tools from ProteoWizard [250],
OpenMS [262–264] or vendor complete solutions Proteome Discoverer and MassHunter Workstation mentioned above. Multiple

other programs for mass spectrometry are available (e.g., see http://www.msutils.org).
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4) and cataloguing is under way, with thousands of
metabolites identified by structure, mass and occasionally
associated biological processes [150–161]. The identifi-
cation of compounds can be based on MS/MS application
and use of known compound spectra, or via use of
standards against which mass spectra are compared. The
profiling of metabolic components on an individualized
basis can provide insights into pharmacogenomics and
personalized medications, in addition to potential bio-
markers, for example cholesterol levels and coronary
artery [162,163]. The metabolomics of cancer has been
extensively studied [164–166] and Type 2 Diabetes has
been investigated [167], and in vivo interactions with
proteins are being evaluated [168].

Other omics

Genomes, transcriptomes and metabolomes have received
widespread attention and currently offer the most
quantitative data, provided by robust and comprehensive
omics technologies, both in terms of experimental, as well
as computational methodology. However multiple other
omics are available, and these numbers are increasing,
with a few notable technologies mentioned below:
� Autoantibodyomes: In addition to profiling of

proteins directly, the reactivity of proteins to autoanti-
bodies may be profiled on a large scale. Spotted protein
arrays [169–173] have been implemented to study for
example effects in cancer [174], immune response [175]
and recently diabetes [176]. Another approach is the
Nucleic Acid Programmable Protein Array (NAPPA)
constructed by spotting plasmid DNA to effectively

express and code the proteins on the array and used for
immunoprofiling [177,178]. Furthermore functional pep-
tide arrays have also been constructed [179,180].
Complementary technologies such as bead-based immu-
noassays are also being actively developed, such as the
Luminex xMAP assay [181].
� Microbiomes: Omics profiling could also include

mapping of the personal microbiome, the complete set of
microbes in an individual (e.g., found mainly on the skin
or in the gut, conjunctiva, saliva and mucosa) using
possibly a combined omics approach to look at genetic
makeup and metabolic components [182–187]. The
human microbiota (http://www.human-microbiome.org)
have been associated to obesity [188] and diabetes
[189,190] and have also been suspected to play an active
role in the development of immunity [191]. The dynamic
monitoring of microbiome-related changes can help
identify the specific microbiota involved in disease
responses, elucidate microbiome-host interactions and
how the individual variability in components impacts
developmental and metabolic processes.
� Methylomes: In addition to genomics, epigenomic

information, such probing the methylome, i.e., identifying
all genomic sites of cytosine methylation [192,193],
might provide information about differentiation and
regulation of gene expression. Methylation analysis and
data interpretation can be challenging [194,195] but
methods are improving as more data becomes available.
Methylome analysis has now been carried out in blood
components [196], stem cells [197] and ovarian cancer
[61], and it might prove invaluable in assessing
epigenomic effects on individual development and
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Figure 4. Metabolome analysis. In metabolomics analysis chromatography columns are used for purification and preparation of
samples coupled to mass spectrometry (gas chromatography (GC) or liquid chromatography (LC)-MS); standards for specific

compounds may also be used in parallel for positive identification. Raw files may be analyzed using vendor software or converted to
open formats (such as .mzXML, .mzData or the current standard .mzML [247–249], e.g., using MSConvert). The spectral data may
be aligned for retention time and mass intensity calibration, e.g., using XCMS [265–267], SIEVE by Thermo Scientific, Matlab

toolboxes by MathWorks, MassHunterProfiler by Agilent, MzMine [268,269]. After quality control and statistical analysis, masses of
interest can be annotated using databases, e.g., Metlin [155,156], KEGG [151], MetaCyc [153,270,271], Reactome [157–161].
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health.

PERSONALIZED MEDICINE

The developments of the many different omics technol-
ogies outlined above have given us tremendous insight
into the human genome and associations to diseases,
especially with the rise of the personal genome. The
NHGRI recognizing the importance of these develop-
ments and the directions necessary to enhance health care,
outlined in 2011 a vision for the future of personalized
medicine [198] encompassing five domains of develop-
ment that included understanding the structure of
genomes, their biology, improving our understanding of
the biology of disease, advancing medicine and improv-
ing the effectiveness of healthcare. The aims had been set
to a shift towards personalized medicine within two
decades, but the availability of the technology and
constant decreasing costs have made pilot investigations
of personalized medicine a current possibility [73].
Genetic variation has proven adequate for understanding
group differences in disorders, but a truly personalized
implementation needs to consider an individual. Clin-
icians are already considering molecular markers in their
evaluation of patients, and particularly cancer [199–203].
The typical clinical diagnosis involves the observation of
symptoms traditionally confirmed utilizing a small set of
molecular markers. In diseases that share a common set of
symptoms, some rare, such diagnosis is often complicated
and prolonged, especially for heterogeneous disorders
that need additional information to enable classification
and subsequent specific treatments. Genetic and environ-
mental factors create additional variability in disease
severity, progression and treatment responses. Thus,
traditional assays together with the aforementioned
current omics technologies, that allow monitoring of
thousands of molecular components, will facilitate and
accelerate differential diagnostics and sub-classification
through utilizing a more complete set of disease markers.
A personalized approach will result in better targeting of
diseases, introduce higher precision through measurement
of larger sets of molecular components and ideally
implemented at an early age to assess disease risk and
have a preventative rather than retrospective treatment
focus.
A personal approach is by its nature an n = 1 study,

which helps eliminate variation between individuals that
are treated as a group, but still requires some verification
and establishment of a baseline for comparison. As such,
the profiling of healthy physiological states in a long-
itudinal approach may provide such a basis, if multiple
time points with similar physiological state makeup are
sampled. Multiple omics can supply multiple supporting
datasets at each time point, with each complementary

technology providing additional supporting information
for a baseline establishment. This introduces the concept
of complete omics monitoring of individuals over time,
making personalized medicine a more dynamic proposi-
tion. The dynamic changes of molecular components may
be associated to the individual’s changing physiological
states, and mapped onto pathways to identify the onset
and progression of disease, including possible preventive
measures. In our suggested implementation, termed
integrative Personal Omics Profiling (iPOP) which we
followed in the study discussed below [73] we integrate
the omics components discussed above in a longitudinal
approach with three essential steps (Figure 5):
I) Risk estimation: As discussed above the personal and

common genomic variants determined in an individual
genome can be associated to disease [76], with pharma-
cogenomic evaluation to determine possible drug
response. An early age whole genome sequencing,
possibly at birth, can provide a list of possible increased
risk disorders and lead to taking preventive measures.
This may be done in combination with a complete
medical and family history, as for example implemented
in the PGP project, and in conjunction with classical
clinical risk factor profiling.
II) Dynamic profiling of multiple omics: Starting with a

healthy or ‘steady state’ baseline, by monitoring changes
in the molecular components over multiple time points,
drastic or gradual changes in physiological states might be
assessed and the dynamic onset of disease profiled, and
possibly prevented. Such profiling may be done on blood
components, which are easily obtainable currently in the
clinic. The individual blood components are excellent
reflectors of generalized physiological state of an
individual, as the blood circulates and receives inputs
from multiple tissues throughout the body. The compo-
nents may be processed to track multiple omics, such as
transcriptome, proteome, metabolome and autoantibody-
ome, etc., which as mentioned offer complementary
information, especially given the modest correlation
observed between transcriptomic and proteomic compo-
nents [137–142]. A recent study of profiles of tumors
changing over time also employed an integrative
approach on genomic and transcriptomic components
[204]. Implementing this monitoring on healthy indivi-
duals will allow the monitoring of disease onset and
physiological changes from various healthy, disease and
recovery states, and following thousands of molecular
component levels and responses at corresponding phy-
siological states.
III)Data integration and biological impact assessment:

The multiple omics data can be analyzed individually to
characterize their temporal response profile. This may be
done using standard statistical time-series analysis,
extensively used in all quantitative disciplines, such as
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physics, economics and finance, as discussed by Bar-
Joseph et al. [205]. The dynamic signature of the signals

for each molecular component can be studied for
autocorrelation, periodicity or spikey behavior, corre-
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Figure 5. iPOP for personalized medicine. The framework described in the text employs multi-omics analyses (see above and
Figures 1–4) that may be implemented for individuals. In step I) Risk estimation for disease is carried out using a whole genome
sequencing to perform variant analysis coupled to medical history, environmental considerations and pharmacogenomics

evaluations. In step II) Dynamic profiling of multiple omics using an array of technologies follows multiple omics longitudinally in a
subject as they progress through their different physiological states, including healthy, disease, and recovery states. Thus
thousands of molecular components are collected over time for III) Data integration and biological impact assessment, using
temporal patterns to obtain matched omics information, correlate and classify responses, compare against pathway databases and

visualize components, e.g., current pathway tools include DAVID [206,272], KEGG [151], Reactome [157–161], Ingenuity Pathway
Analysis (IPA); networks can be visualized using Cytoscape [207], various R packages through Bioconductor [234], Matlab by
MathWorks and several others. The future iPOP implementations may be gathered into a curated database of iPOP-disease

associations that may help in categorizing an omics dynamic response to a catalogued physiological state and disease onset, with
potential diagnostic capabilities.
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sponding to causal changes or abnormal physiological
state conditions resulting from the onset of disease,
infections, or environmental effects. The different classes
of temporal response can be checked for biological
pathway and gene ontology enrichment [151,157–
161,206–210], and corresponding disease associations
in comparison to a database of other longitudinal profiles
(coupled to complete electronic records of omic and
medical histories). Such a database is a necessary and
powerful resource towards the realization of personalized
medicine based on omics data profiling.

Example implementation of personalized medicine: iPOP

To show the feasibility and practical applicability of iPOP
we profiled a healthy individual, 54, over a period of
initially 14 (now 33) months [73]. This initial time series
covered healthy states, and two viral states, including a
human rhinovirus (HRV) infection at the initiation of the
study and a respiratory syncytial virus (RSV) infection
289 days later. The iPOP used blood samples to extract
omic components from peripheral blood mononuclear
cells (PBMCs) and serum, which were analyzed to obtain
a complete DNA, RNA, protein, metabolite and autoanti-
body profile. Initially a complete medical exam was
performed with standard clinical tests before time-point
profiling began. In a first step, WGS with two platforms
was carried out (Complete Genomics and Illumina, at
150- and 120-fold coverage respectively) and WES with
three platforms (Nimblegen, Illumina and Agilent) and
helped identify a large number of variants (> 3�106

SNPs; > 2�105 indels; > 2000 SVs). Using multiple
platforms allowed us to determine high-confidence and
novel variants (using HugeSeq [211]). Evaluation of
genetic disease risks based on variants was carried out,
both by looking for known disease associations using
dbSNP and the Online Mendelian Inheritance in Man
(OMIM, http://omim.org/) database and using the RiskO-
Gram algorithm [76] which integrates information from
multiple alleles to assess risk against a similarly matched
data cohort. This revealed significantly increased risk for
various disorders, including open angle glaucoma,
dyslipidemia, coronary artery disease, basal cell carci-
noma, type 2 diabetes (T2D), age related macular
degeneration and psoriasis. This encouraged the subject
to follow up on these disorders, and also start monitoring
glucose and glycated hemoglobin (HbA1c) levels, which
surprisingly increased beyond normal levels following the
RSV infection, and the subject was diagnosed by his
physician for T2D 369 days into the study. Related to
T2D, pharmacogenomic considerations revealed a possi-
bly favorable (glucose lowering) response to diabetic
drugs rosiglitazone and metformin, should treatment
become necessary. Furthermore, the autoantibodyome

profiling of the subject (Invitrogen ProtoArrays profiling
of 9483 protein reactivities to Immunoglobulin G (IgG))
revealed increased reactivity in multiple proteins, includ-
ing DOK6 (related to insulin receptors), and GOSR1,
BTK and ASPA, previously reported to show high
reactivity by Winer et al. in insulin resistant patients
[176]. The subject initiated and still maintains a strict
dietary and exercise regiment supplemented with low
doses of acetylsalicylic acid, which helped him control his
glucose and HbA1c levels, which after a considerable
time period (~months) have now returned to normal
levels.
In addition a range of omics were profiled over time for

up to 20 different timepoints over the span of the study
including high coverage transcriptome (RNA-Seq of
PBMCs, 2.67 billion reads mapped to 19714 isoforms
corresponding to 12659 genes), proteome (MS of
PBMCs, identifying a total of 6280 proteins; 3731
consistently across most timepoints), metabolome (MS
of serum, profiling 6862 and 4228 metabolites during
periods of HRV and RSV infections respectively, with
~20% identified based on mass and retention times alone).
The dynamic transcriptome, proteome and metabolome
profiles were analyzed in a novel integrated framework
based on spectral analysis of the time series. This allowed
the identification of temporal patterns in the combined
data, corresponding to biological processes that varied
with physiological state changes, including the onset of
T2D seen in multiple omics components, and common
signatures of HRV and RSV infections. While several
gene associations to pathways were known, multiple
genes showed similar patterns that had not been reported
before and merit further investigation.

OTHER CONSIDERATIONS AND FUTURE

DIRECTIONS

The iPOP study discussed above revealed the complex-
ities and characteristics of personal genomes, transcrip-
tomes, proteomes and metabolomes and showed the
feasibility of personalized longitudinal profiling that can
provide actionable health information. Multiple omics
data integration still presents a formidable challenge and
merits further development. Each omics technology
produces different kinds of data, including multiple
formats (e.g., data files range from simple text, and
extensible markup, e.g., .xml, to vendor closed-source
formats). Additionally, each omics set requires its own
quality control analysis, further confounded by different
error and noise levels associated to the different
technologies. As each of the data sets also presents
different signal and noise distributions, this makes
uniform normalization approaches across omics challen-
ging, especially if considering multimodal dynamic data.
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Furthermore, the amounts of information per omics set
can vary, e.g., ~5000 proteins, ~20000 transcript iso-
forms, ~6000–10000 metabolites, ~9000 autoantibody-
protein reactivities and so forth. Hence, gene-centric
approaches, that integrate data corresponding to, asso-
ciated or interacting with the same genes, will not always
work, as the different components may not match. The
integration of information per component is made more
difficult with multiple existing gene and protein annota-
tions, often resulting in a many-to-many map in the gene-
protein integration, and correspondingly lacking
metabolite-protein/gene annotations and associations.
Finally, if considering dynamic datasets, this also results
in multiple instances where time points might be missing
data for some of the molecular components (especially
evident in mass spectrometry and shotgun proteomics,
where proteins are identified through different peptides).
These complications of omics data integration necessitate
that each individual omics data set is analyzed indepen-
dently up to normalization, and then integrated with the
other information. New integrative methodology has to
account for such different normalizations, missing data,
and also integration that is not gene-based, but rather
incorporates time-series analyses, as for example was
carried out in the iPOP study [73]. Classification of
changes by temporal response, and possibly interaction
data leads to an interpretation of components based on
shared similar dynamics and avoids some of the issues of
insufficient annotations and missing information. Such an
interpretation lends itself to a clinical setting where
dynamic changes are associated to varying personalized
physiological states, and may be adopted by the medical
community.
To facilitate the wide adoption of the methods into

personalized medicine, the integrated data analysis will
require optimization of current computational tools to
rapidly and efficiently handle as well as visualize the
multiple omics data. As a first step, the amount of
computation time for different analyses must be reduced
from days (in the case of mapping sequence data and
quantitative proteomics in current omics analyses pre-
sented above) to hours or less to have immediate
relevance to active medical examinations. Secondly,
better visualizations of omics data, though difficult, are
also necessary, as multidimensional information is
difficult to collate, present, and interpret (many efforts
are addressing this, e.g., Circos plots that allow multiple
sequence information to be displayed together are now
widely adopted [212]). Incorporating such information
with clinical data and phenotypes presents a new
challenge, requiring browsers that combine temporal
information with multi-dimensional omics sets. We
believe network analysis [213–217] presents an excellent
visualization and integration possibility, allowing the

combinations of multiple levels of networks, dynamically
changing, that will include cellular information, compo-
nent and corresponding disease temporal progressions, as
well as medical assay data in a modularized approach.
The computational analyses and visualization of omics
data integration also reveal the known need to manage
large amounts of data [218,219], both in terms of
processing power, as well as storage capacity and
maintaining easy accessibility, especially for the practi-
cing clinician — with the recent advent of cloud
computing providing one possible solution. Finally, the
combination of omics data with medical records presents
another challenge, with privacy and ethical issues that
must be considered. Such improvements and standardiza-
tion of approaches will help make the analysis available in
a clinical setting and an increasingly larger set of patients,
while encouraging the early adaptation of the integrated
approaches by the scientific community towards perso-
nalized medicine applications.
As technology improves we expect to see advance-

ments in each omics implementation discussed above. In
terms of sequencing, continual improvements in depth
and read length will allow unambiguous precise sequence
mapping and additionally the querying of lower gene
expression, coupled to higher accuracy in variant calling.
With sequencing times becoming faster (e.g., whole
genome sequencing in ~5–30 hours depending on plat-
form at deep, ~100� coverage), and hardware more
compact, eventually such technology will be available in
the clinic, enabling the incorporation of all genomic,
transcriptomic, microbiomic and autoantibodyomic pro-
filing as parts of regular medical examinations. Corre-
spondingly, mass spectrometry improvements (including
table-top hardware now available) will improve mass
accuracy, and higher sensitivity, allowing increases in the
number of proteins identified and better quantitation,
which can already be implemented in a clinical setting.
The MS improvements in combination with better
metabolite cataloguing will also improve the identifica-
tion of small molecules. The protocol and methodology
advancements will allow using a smaller volume of
patient sample needed for iPOP (decreasing from ~80 mL
to drops of blood) making it feasible to probe the omics on
more regular basis for each patient, even providing home
kits to send in self-collected samples (akin to what is
already implemented to some degree by companies, e.g.,
23andMe, that collect saliva samples for phenotyping).
The technological and methodological advancements

will allow for effective iPOP implementations with
multiple patients, but it will still take some time to
evaluate what constitutes actionable information and
which components will be most informative. Once these
relevant components are identified monitoring technolo-
gies can be further developed to help possible clinical
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implementations. This will certainly be alleviated by
multiple iPOP studies providing the necessary aggregated
information. However, clinical and psychological con-
cerns need to be addressed and the possible impact to
patient health being of paramount importance, in a
medical process in which the patient is actively
participating [220]. Such active participation requires
the training of the public and health professionals to an
understanding of genomic information, and how this
omics knowledge impacts their health, and their families.
Genetic counseling is a necessity, and the number of
trained genetic counselors is steadily increasing. Informed
consent will be necessary, but this requires an under-
standing of basic genomic terms that are not apparent to
non-experts. To facilitate this, probably school curriculum
adjustments will be needed to enable early education of
the public.
The emergence of quantitative Personal Omics,

including genomes transcriptomes, proteomes, metabo-
lomes and other omics allows us to now combine them to
yield personalized actionable health care information.
Such research is at the forefront of medical science, and
may help the characterization of disorders and the
implementation of precise personal medicine aimed
towards prevention rather than treatment. Careful forward
planning, coupled to the continuing interest and participa-
tion of the public, government agencies and researchers,
assures that the development of personalized omics will
proceed beyond possible hurtles into a novel approach for
the 21st century health care implementations.
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