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Abstract
Purpose of Review Individuals with autism spectrum disor-
ders (ASD) commonly also suffer from gastrointestinal (GI)
dysfunction; however, few animal model studies have system-
atically examined both ASD and GI dysfunction. In this re-
view, we highlight studies investigating GI dysfunction and
alterations in gut microbiota in animal models of ASD with
the aim of determining if routinely used microbiology and
enteric neurophysiology assays could expand our understand-
ing of the link between the two.
Recent Findings Gut–brain axis research is expanding, and
several ASD models demonstrate GI dysfunction. The inte-
gration of well-established assays for detectingGI dysfunction
into standard behavioural testing batteries is needed.
Summary Advances in understanding the role of the gut–
brain axis in ASD are emerging; however, we outline standard
assays for investigating gut–brain axis function in rodents to
strengthen future phenotyping studies. Integrating these find-
ings to the field of animal behaviour is one of the next major
challenges in autism research.

Keywords Autismmousemodels . Cognition, behavioural
assays . Gastrointestinal dysfunction .Microbiome .

Comorbidities

Introduction

Autism spectrum disorder (ASD) is a prevalent
neurodevelopmental disorder affecting as many as 1:45 chil-
dren in the USA [1]. Diagnosis is based on behavioural traits
presenting as impaired social communication and repetitive
and/or restrictive behaviours [2]. Along with these core diag-
nostic traits, individuals with ASD experience a range of co-
morbidities that vary in severity and combination between in-
dividuals and negatively impact quality of life. Gastrointestinal
(GI) dysfunction is more prevalent in individuals with ASD
than in the general population [3], and emerging well-
designed clinical studies have identified differences in the mi-
crobes that inhabit the GI tract in individuals with ASD com-
pared to controls [4–7]. In this review, we outline the potential
for animal studies of ASD to elucidate biological mechanisms
associated with gut–brain axis changes. We will focus on two
genetic models (the chromodomain helicase DNA binding pro-
tein 8 and serotonin transporter (CHD8 and SERT) mouse
models, respectively) and two environmental models
(valproate (VPA) and maternal inflammation activation (MIA))
of autism because GI abnormalities including altered microbial
populations (dysbiosis), in addition to core ASD-relevant behav-
ioural phenotypes, have begun to be investigated in these
models. These studies are notable for quantifying GI dysfunc-
tion and reporting microbial dysbiosis. Here, we provide an
overview of how animal models provide a powerful preclinical
tool for understanding biological causes of ASD in the drive to
identify targets for new therapies.
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Results

Use and Validity of Animal Models in ASD Research

The number of animal models of ASD has dramatically in-
creased since the generation of the first genetic mouse model
of autism in 2007 [8]; currently, more than 30 models have
been reported. Animal models of neurodevelopmental disor-
ders (NDD) are an essential research tool—they allow detailed
investigation of associated pathology through the use of pow-
erful but invasive techniques on a background of controlled
environmental and genetic factors. Although a single animal
model cannot fully replicate the entire disorder state observed
clinically, it can, however, model the expression of distinct
traits or endophenotypes (including comorbidities) [9] to en-
able an in-depth analysis of pathological mechanisms and
provide potential therapy targets for future clinical applica-
tions. In this review, we focus on recent studies assaying
gut–brain axis changes in rodent models of ASD (Table 1).

In studying underlying biological mechanisms of NDDs, it
is important that animal models adhere to criteria regarding
face validity (phenotypes demonstrated by the model relevant
to patient diagnostic traits, that is, for ASD, impaired social
interaction/communication and repetitive and or restrictive in-
terests), construct validity (the method of generation of the
model is relevant to pathology, e.g. a genetic mutation identi-
fied in individuals with ASD) and predictive validity (rescue
of phenotypes by clinically relevant treatments). Numerous
standardised behavioural analyses are now well established
for rodent models (reviewed in [20••]).

Assays Relevant to Gut–Brain Axis Function

In addition to the social and communication impairments in
ASD, repetitive or restricted behaviours are core to the

disorder. Repetitive behaviours or deficits in response control
in ASD are thought to be symptoms of dysfunction in execu-
tive processing, which impacts other cognitive functions such
attention and cognitive flexibility [21, 22].

Modelling some of the complex cognitive and executive
processes often assessed in the clinic, novel behavioural tools
such as the rodent touch screen cognitive tests have emerged.
This technology allows a systematic and comprehensive anal-
ysis of the cognitive profile of rodent models of a NDDwithin
a single testing environment [23, 24]. Moreover, different
cognitive domains relevant to the disorder such as mental
flexibility, response control and attention can be measured,
with strong translational implications [25, 26].

The role of the central nervous system (CNS) in behaviour
is well studied in animal models of ASD; however, the in-
volvement of microbes and GI function is a new and rapidly
emerging area of research. The complex enteric nervous sys-
tem (ENS) of the GI tract, also known as the ‘second brain’,
contains roughly equivalent numbers of neurons as the spinal
cord. Interactions between the CNS and GI tract occur via
multiple neural and endocrine pathways. Predominant neural
pathways include the peripheral nervous system (e.g. the va-
gal nerve, sympathetic nervous system and ENS). The micro-
biota residing in the GI lumen also impact CNS function;
however, the precise pathways involved are not well defined.
The ENS is required for GI motility and secretion and com-
prises two neuronal plexuses adjacent to longitudinal and cir-
cular muscle layers in close proximity to microbes in the gut
lumen (see [27•] for review). There is also significant cross
talk between the immune system, the microbiota and the ner-
vous system which impact behaviour. The ENS regulates GI
function and is located in close proximity to microbial popu-
lations in the lumen of the GI tract. Gut microbes produce
metabolites that function as neurotransmitters and have been
established to modulate mood and behaviour; however, our

Table 1 Gut–brain axis studies in animal models of ASD

Animal model GI phenotype Reference

CHD8 antisense knockdown zebrafish Reduced enteric neuronal numbers and slow GI transit. Bernier et al. [10]

CHD8 heterozygous mice Shorter GI tract and tendency for slower GI transit Katayama et al. [11]

SERT G56A Slower motility, slower GI transit, fewer neurons,
reduced villus height and colonic crypt depth,
reduced intestinal permeability

Margolis et al. [12••]

Poly(I:C)/MIA mice Increased intestinal permeability, increased
interleukin-6 (IL-6) in gut, altered microbiota,
increased levels of 4-EPS (4-ethyl phenylsulphate)
in serum, ASD-like behavioural abnormalities in
the offspring

Smith et al [13]; Hsiao et al. [14];
Choi et al. [15••]

Prenatal VPA exposure mice Increased inflammation in gut, brain, altered
microbiota, ASD-like behavioural abnormalities
in male offspring

de Theije et al. [16]; de Theije et al.
[17]; Lucchina and Depino [18];
Kazlauskas et al. [19]

Examples of animal models in which gastrointestinal abnormalities and/or altered microbial populations have recently been identified include genetic
models of ASD, environmental models such as maternal inflammation activation (MIA) and exposure to the antiepileptic, valproate (VPA)
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understanding of the precise pathways involved is in the early
stages [28, 29]. For example, recent findings from animal
models demonstrate that gut microbes regulate serotonin
levels and in turn mood and behaviour via their influence on
microglial cells in the CNS [14, 30••], but the role of the ENS
in this process is only beginning to be understood.

Multiple approaches for assaying gut function are routinely
used in enteric neuroscience research and can be incorporated
into phenotyping studies of ASD animal models. These also
have the potential to be combined with microbial and cogni-
tive behavioural assays for a multidisciplinary holistic view
across the major components driving interactions. This multi-
disciplinary approach will be crucial for improving our under-
standing of the complex systems physiology underlying behav-
ioural impairments in ASD and the development of novel
therapies. The gut houses the largest immune system in the
body, and the immune and nervous systems are in constant
bidirectional communication [13, 15••, 31–35]. Gut microbi-
ota interact closely with neuroimmune pathways [13, 31–34,
27••, 28••, 29••] and play an important role in educating the
developing immune system [28, 36•, 37]. Gut microbial pop-
ulations are additionally modified by environmental factors
such as diet [37–39] and stress [29], and these are areas that
are currently actively being researched in ASD models.

Recent advances in sequencing technology and bioinformatic
analysis have exponentially increased the understanding of the
microbiome in animal models. Initial studies of the microbiome
began through culturing of individual, primarily pathogenic, or-
ganisms [40]. High-throughput sequencing now allows the
cataloguing of entire microbiomes on different hierarchical
levels including chromosomal DNA (genomic), transcribed
RNA (transcriptomic) and protein production (proteomic) levels.
A combination of techniques allows a holistic approach of the
microbial community function and how the microbiome itself
may have multifaceted interactions within the gut and brain.
Microbiome studies must take into account a number of envi-
ronmental factors (e.g. home cage housing, diet, age of weaning)
as well as ensuring that they are designed to allow sufficient
statistical power to provide robust outcomes. High-throughput
techniques need to be complemented by traditional culturing,
where possible, and temporal and spatial analysis of microbes
of interest as well as the application of ecological theory to the
complex and continuously evolving microbial community.

In this review, we highlight established assays in the fields
of enteric neurophysiology [12, 41–45], microbiology
[46–48] and rodent cognitive behaviour [20••, 23–26,
49–54] that in combination will expand our knowledge of
gut–brain axis function in animal models of ASD (Fig. 1).

Gut–Brain Axis Studies in Rodent Models of ASD

ASD aetiology is complex and likely to be the due to a com-
bination of genetic and environmental factors in many cases.

Therefore, we review pertinent studies of two genetic and two
environmental models of ASD in which GI dysfunction and/
or microbial dysbiosis is present in order to highlight the use
of techniques useful for identifying aberrant gut–brain axis
function in animal models in this field. Recent findings sug-
gest ASD-associated mutations in two genes; the chromatin
remodelling gene, CHD8, and the solute carrier family 6
member 4 gene (Slc6a4) encoding the serotonin transporter
(SERT) protein confer GI dysfunction in animal models [10,
11, 12••]. Similarly, studies using the maternal inflammation
activation (MIA) model (e.g. [13, 14, 15••]) and the adminis-
tration of the antiepileptic, valproate (VPA) [16, 17], show
altered microbial populations, behavioural changes and poten-
tial therapeutic targets through the analysis of components of
the gut–brain axis.

CHD8 Mutations Are Associated with GI Dysfunction

Mutations in the chromatin-remodelling gene CHD8 increase
susceptibility to ASD and result in macrocephaly, facial phe-
notypes and GI issues in affected individuals [10]. Bernier and
colleagues re-sequenced the CHD8 gene in 3730 children
with developmental delay or ASD and identified 15 mutations
in CHD8 that were considered potentially disruptive [10].
Previously, these authors identified nine de novo mutations
in 2446ASD patients, all impacting normal protein expression
[58]. Importantly, recontacting families involved in this study
enabled detailed phenotypic data for individuals with CHD8
mutations. Of the 15 children expressing CHD8 mutations, 12
(80%) had GI problems. Of these, 60% reported recurrent and
consistent constipation, which was often reported as periods
of constipation followed by loose stool or diarrhoea. The rate
of constipation in the CHD8 cohort (15 children) was higher
when compared to children diagnosed with ASD but negative
for the CHD8 mutation [10] suggesting involvement of the
CHD8 gene in GI dysfunction.

To determine the effects of mutating CHD8 on GI function,
Bernier and colleagues assessed dose-dependent effects of
CHD8 mutations using a knockdown approach in zebrafish.
They found that 40–60% of embryos injected with antisense
probes (or morpholinos, a molecular tool to inhibit gene expres-
sion and prevent protein synthesis) had fewer enteric neurons
than controls as identified by fluorescent immunocytochemical
labelling with the pan-neuronal marker, Hu. At increasing con-
centrations of morpholinos, the effect on enteric neuronal num-
ber was more severe [10]. On average, the number of enteric
neurons in the hindgut was reduced by an astounding 50% fol-
lowing knockdown and this was exacerbated in a dose-
dependent manner suggesting a major role of CHD8 in neuronal
development within the GI tract. These findings were a catalyst
for further phenotypic analysis in mice lacking CHD8 in order to
advance the understanding of disease mechanisms.
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Recently, Katayama and colleagues examined mice hetero-
zygous for mutations in CHD8 [11]. The CHD8 gene pro-
duces two isoforms of the CHD8 protein: one the full length
and the other containing only the N-terminal domain. Mice
homozygous for mutations in either of these CHD8 isoforms
are embryonic lethal [59, 60]. In contrast, CHD8 heterozygous
(het) mice are viable and show increased anxiety, abnormal
sensorimotor arousal and gating (as tested by prepulse inhibi-
tion paradigms), altered social interaction in some parameters
and increased brain weight [11]. CHD8 het mice had
neurodevelopmental delay as identified using mouse brain
gene set enrichment analysis and suppression of many neuro-
nal genes via the RE-1 silencing transcription (REST) factor.
Somewhat surprisingly, learning and memory tests did not
show major differences in CHD8 het mice compared with
controls. Mutant mice, however, had an increased persevera-
tive phenotype (relevant to ASD behavioural traits) following
assessment using the T-maze left-right discrimination test
[11]. Katayama and colleagues also reported fewer social con-
tacts and reduced total duration of active contacts (sniffing and

following behaviour). In contrast, another group found that
social behaviour in CHD8 het mice was unchanged compared
to wild-type littermates [61]. Although environmental differ-
ences (potentially involving microbial–behavioural interac-
tions) may contribute to disparate behavioural results in this
model, in line with observations of GI dysfunction in those
with ASD, Katayama et al. observed that the intestine length
in mutant mice was reduced and intestinal transit in 9-week-
old mice tended to be slower [11].

Relevant to observations in rodent and zebrafish models,
mutations in the CHD8 equivalent homologous gene in dro-
sophila (kismet) result in displaced expression of the hedgehog
(hh) gene and alter the development of the central drosophila
wing region [62]. Given the strong relevance of CHD8 to ASD
relevant behaviour andmorphology, the analysis of GI function
(and other ASD-relevant phenotypes) in drosophila expressing
mutations in kismet could be informative for the mechanistic
understanding of GI dysfunction in individuals with ASD.

Further information regarding underlying biological causes
of GI impairment in the CHD8 children with ASD could be
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Fig. 1 Assays for investigating gut–brain axis function in rodents. A
range of established assays are available for studying gut–brain axis
function in rodent models. Functional and structural assays for
determining impairments in gastrointestinal function (top) include
in vivo serial X-ray imaging to investigate intestinal transit after oral
barium sulphate gavage and ex vivo video imaging to quantify changes
in GI motility [42, 44]. Using this method, propagating contractions in a
physiological organ bath are video recorded and converted to
spatiotemporal maps for detailed analysis [41]. Immunofluorescent
labelling of the ENS in whole mount and cross-sectional intestinal
preparations and histological labelling for assessing intestinal integrity
and morphology (e.g. [45]) can also be undertaken. Structural,
functional and predictive approaches to characterise changes in

microbiota are also available (middle). ARISA fingerprints are used to
examine the microbial community structure of the intestine, and deep
sequencing allows identification of altered abundance in different
microbial species. Functional analyses can be carried out by studying
Community-Level Physiological Profiles (CLPP) utilising colorimetric
assays. Microbial metabolite analysis is carried out by extracting faecal
material and analysis through Gas Chromatography–Mass Spectrometry
(GC-MS) methods. Cognitive behavioural analyses (bottom) should
employ a battery of assays such as the social approach [20••, 49, 52],
novel object recognition [50, 54] ultrasonic vocalisation assays [51, 55,
56]. and touchscreen tests [25, 26, 57] which provide a robust method to
assess cognitive abilities that are clinically relevant
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extracted from functional and structural analyses of the GI
tract in animal models (e.g. by assessing the number of total
enteric neurons and proportions of neuronal subtypes in the
myenteric or submucosal plexus). Therefore, the application
of neurophysiological GI assays, microbial analyses and clin-
ically relevant cognitive tests to CHD8 mutant models (see
Fig. 1) could yield mechanistic findings to improve our un-
derstanding of biological mechanisms underpinning GI dys-
function in individuals with ASD.

Altered Serotonin Transporter Activity Impairs GI Function

Platelet serotonin levels are increased in one third of individ-
uals diagnosed with ASD [63, 64], and serotonin is primarily
GI-derived [65]. Platelets take up serotonin [66] as they circu-
late through the gut via the serotonin transporter, SERT
(encoded by the Slc6a4 gene). Many hyperactive mutations
in SERT have been reported in individuals with ASD, the
most common being SERTAla56 [67] where a glycine residue
is converted to an alanine at position 56 of the protein. This
transporter is expressed by enterocytes and serotonergic neu-
rons in the ENS. Serotonin is important in development and
adult life and is expressed in a large population of cells located
in the GI tract including mucosal enterochromaffin cells, mast
cells and a subpopulation of enteric neurons. Serotonin plays
an important role in regulating GI motility and secretion, and
therefore, changes in serotonergic pathways are highly likely
to affect GI function. Serotonin is additionally involved in
transmitting signals of noxious stimuli, discomfort and pain
to the CNS as well as being a potent modulator of inflamma-
tory pathways [5, 30••, 68, 69].

Margolis et al. conducted a thorough study investigating GI
function in mice expressing the SERT Ala56 missense muta-
tion (SERT G56A) using well-established neurophysiological
and histological techniques [12••]. In order to understand the
role of the SERT transporter in GI function, Margolis and
colleagues quantified neuronal numbers in myenteric and sub-
mucosal plexuses of the colon and assessedmucosal histology
and in vivo transit time as well as ex vivo motility using a
well-characterised video-imaging technique [41]. This group
studied total neuronal number as well as changes in subpopu-
lations of neurons expressing neurochemical markers such as
tyrosine hydroxylase (TH), calcitonin gene-related peptide
(CGRP) and gamma-amino butyric acid (GABA). In both
the myenteric and submucosal plexuses, neuronal numbers
for each of these populations were reduced in SERT G56A
mutants. Motility patterns analysed in colonic segments fresh-
ly dissected from adult mutant mice showed reduced activity
as a result of the SERT G56A mutation. Specifically, the fre-
quency, velocity and contraction length of colonic migrating
motility complexes (CMMCs; spontaneous, coordinated con-
tractile activity which propagates from the oral to the anal
region of the colon [43]) were reduced in mutant mice.

Following examination of the small intestinal histological
structure in these mice, a reduction in villus height and crypt
depth in SERT G56Amice was identified. Furthermore, in the
colon of SERT G56A mice, crypt depth was reduced and
intestinal permeability was increased [12••]. This study exem-
plifies the expansion of preclinical knowledge regarding GI
dysfunction in ASD mouse models obtained through the use
of functional and histological neurophysiology.

Maternal Immune Activation Model of Neurodevelopmental
Disorders

Mice born to dams treated with the immunostimulant
polyinosinic/polycytidylic acid (poly I:C) during gestation to
mimic viral infection demonstrate impairments in communi-
cation, stereotypic behaviours, anxiety and sensorimotor ab-
normalities relevant to ASD and dysbiosis of faecal microbi-
ota [14]. Similar to the VPA model discussed below,
the imbalance of microbes in offspring of MIA-treated mice
was mainly driven by changes in Clostridia and Bacteroidia
bacterial classes. Changes in Lachnospiraceae and
Ruminococcaceae (of the order Clostridiales) reflect similar
findings in ASD individuals with increased faecalClostridium
species [70–72]. Serum levels of adhesion proteins (including
tight junction proteins TJP1 and 2 and claudin-8 and claudin-
15) were also altered in treated pups suggesting changes in GI
mucosal permeability. Interestingly, treatment with
Bacteroides fragilis both corrected these adhesion protein def-
icits and improved several ASD-like behaviours in this mouse
model.

In addition to the previous studies, other reports have dem-
onstrated that MIA affects foetal brain development and be-
haviour via changes in cytokine pathways involving IL-6 [13]
and interleukin-17a [15••]. These studies, although not fo-
cused on functional assays for GI motility, expand our under-
standing of how microbiota can potentially impact gut–brain
axis function in ASD.

Altered Microbiota in Environmental Rodent Models of ASD

Prenatal exposure to the anticonvulsant valproate (VPA) is
a risk factor for ASD. Exposure to VPA in rodent models
results in behavioural impairments (for a review, see [9]).
Rodents born following gestational exposure to VPA dem-
onstrate a range of behavioural impairments including de-
creased social behaviours and lower exploratory activity
combined with repetitive/stereotypic-like hyperactivity
(e.g. see [73]). VPA exposure also causes decreased ultra-
sonic vocalisation and sociability in mouse pups in addi-
tion to elevated digging and grooming behaviours [74].
More recently, reports of dysbiosis, altered GI morphology
and CNS inflammation following prenatal VPA treatment
in mice have emerged [16–19].
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Specifically, de Theije and others showed that VPA-treated
offspring aged 28 days had decreased abundance of
Bacteroidetes phyla mainly consisting of Bacteroidales and
increased Firmicutes microbial taxa, mainly consisting of
Clostridiales [16]. When caecal concentrations of short-
chain fatty acids were measured, these authors observed in-
creased butyric acid in VPA-treated male mice compared to
controls (pups born to dams not exposed to VPA). Changes in
the abundance of microbes belonging to these bacterial groups
have also been reported in individuals with ASD [5, 6, 70, 75]
(also see [76••]). The short-chain fatty acids (i.e. acetate, bu-
tyrate and propionate) are neuroactive microbial metabolites
that cross the blood–brain barrier; therefore, the observed in-
crease in butyric acid in this study may have effects on brain
function and behaviour. Of particular relevance to GI dysfunc-
tion, male pups (but not females) born to VPA-treated dams
also showed epithelial cell loss and neutrophil infiltration in
the jejunum and ileum as well as reduced serotonin levels in
the GI tract [17]. Although the underlying cause of the sex-
specific effects is unknown, a role for VPA in inhibiting tes-
tosterone to oestradiol conversion [77] has been proposed
which could partly explain this finding.

Recently, the detailed discussion of optimal experimental
design in studying environmental effects influencing host–mi-
crobe interactions in animal models has emerged [78]. This is
important because a low level of reproducibility for behav-
ioural approaches has been identified [79], which slows re-
search progress. Furthermore, issues with reproducibility
could be due to subtle methodological differences that alter
contributions of microbial populations to behavioural out-
comes. The use of these best practice guidelines together with
validated assays should enable greater consistency between
laboratories when endophenotyping animal models of ASD.

Conclusions

Alterations in gut–brain axis signalling affect mood and be-
haviour; however, current understanding of the precise biolog-
ical signalling pathways involved is incomplete. As
summarised in this review, the use of genetic and environmen-
tal animal models has begun to contribute to characterising
biological mechanisms (including a potential role for
dysbiosis) underlying these changes. These studies will be
important for not only aiding our understanding of basic
mechanisms, but also assisting in identifying future therapeu-
tic targets to improve outcomes for those with ASD. However,
in light of the range of techniques outlined here that are rou-
tinely available, further exploration of functional and structur-
al GI changes in animal models with detailed histological
analysis of ENS morphology and mucosal integrity is re-
quired. In addition, emerging data suggest that modulating
gut microbes impact behaviour and cognition; therefore,

future research in animal models using appropriate behaviour-
al experimental assays is required to gain a more comprehen-
sive understanding of the role of the gut–brain axis in the
context of ASD.
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