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Abstract We review development, validation, and translation
of risk prediction models to clinical and population practices.
We focus on issues in each of these steps and the gaps in the
field across the continuum of risk prediction model develop-
ment (many models published); validation (few validated);
and implementation (even fewer implemented in clinical set-
tings, much implementation on web sites). Design of models
for end users and critical issues in implementing and evaluat-
ing models are addressed with examples from first-hand
experience.
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Introduction

Purposes of Risk Prediction

In cancer prevention, research and practice risk prediction
models have been used to determine study eligibility [1]. Risk
stratification may be used to identify high-risk women, say in

breast cancer families for referral to counseling, or to guide
lifestyle modification or chemoprevention. More recently,
with recommendations for MRI screening of women at high
risk for breast cancer, the risk prediction guides an interven-
tion decision by classifying women as eligible for screening or
not [2]. Similar eligibility for covered services now applies to
low-dose CT scanning for lung cancer as implemented by
CMS coverage. Finally, refining models to better understand
disease etiology through temporal relations of risk factors can
improve approaches to prevention [3].

Regardless of these purposes, the process of multivariable
risk prediction model development, validation, implementa-
tion, and adjustment underlies the continuous process of de-
velopment and refinement. We propose the model in Fig. 1 as
a continuing process for model application.

Approaches to Model Development

In the field of cancer risk prediction, two distinct classes of
mathematical models have been used in cancer epidemiology.
Statistical models may draw on established multivariable re-
gressions (including linear and logistic regression) to relate
risk factors to cancer incidence. Biomathematical models, on
the other hand, aim to translate the presumed biologic process
of carcinogenesis into mathematical models [4]. The best
known models developed by Armitage and Doll underpin a
long history of applying mathematical models to cancer inci-
dence rates. Moving beyond age relations and adding epide-
miologic risk factors, this approach now provides a structure
to view the contribution of these risk factors to the underlying
biologic process of carcinogenesis [5]. With regard to age
relations, Fisher and Hollomon [6] used stomach cancer mor-
tality, and Nordling [7] combined all cancer sites. They noted
that, for ages 25 to 74 years, the logarithm of the death rate
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increased directly in relation to the logarithm of age. Armitage
and Doll then evaluated cancer mortality in the UK inmen and
women in 1950 and 1951. Importantly, they focused on the
slope or gradient in risk with age. A gradient of 6 to 1 (i.e., 6
units increase in the logarithm of the death rate per unit in-
crease in the logarithm of age) was relatively consistent across
17 cancer sites. Based on this, they concluded that cancer is
the end-result of several successive cellular changes. Howev-
er, for breast, ovary, and cervical cancers, there was a deficit or
reduction in the slope in older age groups. They concluded
that this was due to a reduction (after about age 50 in their
regressions) in the rate of one of the later changes in the pro-
cess of carcinogenesis [5]. Thus, they proposed a multistage
model of carcinogenesis.

Mathematical models can also summarize the impact of
multiple variables such as change in risk factors across the life
course, which may modify the incidence rates [8]. These
models can refine and improve understanding of disease rela-
tions or disease development and then add to precision in risk
estimation. More precise models may then lead to better tools
for clinical risk assessment and decision-making [9]. Doll and
Peto [10] applied this multistage cancer incidence model to
lung cancer within the British Doctor’s Study. They observed
that lung cancer incidence is proportional to (dose +6)2×(age
−22.5)4.5, where dose=cigarettes per day. This result was con-
sistent with the multistage model of carcinogenesis. They
interpreted the coefficients for the components of the model
as approximations for the number of stages in the carcinogen-
esis process, that is, incidence is proportional to the fourth to
sixth power of time (age), suggesting four to six independent
steps in the process of carcinogenesis. These model-based
extrapolations have been confirmed by Vogelstein and col-
leagues in the setting of colon cancer [11]. For lung cancer,
theses models implied that more than one of the stage of car-
cinogenesis was strongly affected by smoking [12, 13].

Extensive application of the Armitage and Doll model to ra-
diation exposure also attests to its utility [14, 15].

Pike et al. [16•] took the Armitage and Doll approach and
applied it to breast cancer, including risk factors (menarche,
first birth, and menopause) as modifiers of the effect of time.
Pike assumed that breast tissue Baged^ at a constant rate
starting at menarche and continuing to first birth. After an
adverse effect of first birth, there was a decrease in the rate
of Btissue aging^ after the first birth. The rate of tissue aging
further decreased after menopause. This replicated the obser-
vation for breast cancer mortality reported by Armitage and
Doll [5]. Pike’s model only had a term for parous vs. nullip-
arous, did not include terms for second and subsequent preg-
nancies, nor did it account for the timing of these births nor
any differences in the effect of natural menopause vs. bilateral
oophorectomy. Rosner and Colditz expanded from the Pike
model by adding more details of reproductive history, includ-
ing the timing of births, and type of menopause (natural vs.
surgical) [17–19]. Like the Doll and Peto lung cancer model,
this model generated a set of parameters for the rate of breast
tissue aging before first pregnancy, the rate of tissue aging
after menopause, and the magnitude of the adverse effect of
first pregnancy. The Rosner and Colditz model has been fur-
ther refined with the addition of benign breast disease [20],
circulating hormone levels [21, 22], and so forth, but the un-
derlying approach remains a life course accumulation of can-
cer risk that can be used to estimate annual and cumulative
risk of cancer. Applications in colon [23], melanoma [24], and
ovary [25] all use this approach.

A simpler form of this multivariable risk factor approach is to
take a model from an existing epidemiologic data set and assess
its performance in predicting cancer. One example is the multi-
variable model originally developed for lung cancer [26] that
has been expanded to assess performance based on inclusion
of DNA repair markers [27], gender, and smoking history [28].

Focusing on the age-incidence data for breast cancer inci-
dence from high- and low-risk countries, Moolgavkar et al.
[29, 30] took an alternative approach to modeling. Specifical-
ly, they fitted a two-stage model that allowed for normal cells
to progress through transformed cells to cancer. They noted
that across high- and low-risk countries, the shape of the breast
cancer incidence curves was constant. Pathak andWhittemore
applied a breast cancer incidence rate function to data from
countries with high, medium, and low breast cancer incidence
rates. They confirmed the observation of Moolgavkar that age
at first birth and age at menopause exert similar effects on all
women regardless of the breast cancer incidence rates in their
country [31]. Pike and colleagues subsequently used tradition-
al survival analysis methods to show that reproductive risk
factors apply equally across ethnic groups in the USA [32].
The underlying approach of modeling the two-stage model of
cancer has continued to be applied by Moolgavkar and col-
leagues in settings of lung, colon, and so forth [13, 33, 34].
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Fig. 1 The cycle of development, validation implementation, and
adjustment for application of risk prediction models
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Missing Data

A common gap in model development is description of how
missing data are handled. Limiting model development to a
completed data set is often reported. This has implications for
the final application—will those with one or more missing data
points be excluded from prediction? How will this impact clin-
ical decision-making, testing or referral, or acceptability in clin-
ical and public health settings? Rosner has overcome this in the
application of his macular degeneration prediction model [35]
using NHANES data to impute missing variables (personal
communication). On the other hand, at the Joanne Knight Breast
Health Center where some 50,000 screening mammograms are
performed annually, a sufficiently large data set of similar wom-
en is available to impute missing variables when the Rosner-
Colditz model is implemented in the clinical setting. Too often,
lack of information on how missing data are handled limits the
transfer of models from development to broader application.

Summary

Regardless of the approach to building a model, the prolifer-
ation in number of risk prediction models published since the
NCI workshop in 2005 is impressive and indicates how an
NCI initiative can help move a field forward [9]. Models are
typically developed following one of three general ap-
proaches: (1) explicit selection of known causal factors; (2)
biologic/lifespan or life calendar approaches; and (3) data
driven and regression applications, typically from large data-
bases. Despite the publication of many models, few seem to
progress to validation in independent settings. In breast can-
cer, a systematic review of models by Meads and colleagues
notes that 17 models have been published as of 2012, 3 have
been validated (Gail, Rosner, Cuzick), and none evaluated for
their clinical impact. Similarly, models for predicting colorec-
tal neoplasia have been developed, though many lack valida-
tion, and only a few have been evaluated for implementation
in clinical practice [36–38]. A unique characteristic of colo-
rectal neoplasia is the opportunity to develop risk models for
the precursor lesion. This type ofmodel has direct applications
in clinical practice with respect to counseling for colorectal
cancer screening.

Validation Comments

While Steyerberg in his text [39] discusses in detail the ap-
proaches to adjusting models for over fitting and other strate-
gies in the context of splitting data sets into development and
testing subsets, along with more advanced bootstrapping type
approaches, an underlying limitation of these statistical ap-
proaches is that the extant data set can hide issues of bias.
Accordingly, Moons and others advocate for independent

validation—that is in an independent prospective data set
[40, 41•, 42]. Validation is a key step in moving to application
of the risk prediction model for cancer prevention.

One major challenge in epidemiologic risk prediction mod-
el building is obtaining access to the independent data set with
the necessary variables. In breast modeling, Rosner and
Colditz collaborated with California Teachers Study to
achieve this [43•]—in model building and assessing the value
of SNPs to other risk factors, the validation of the new models
with necessary SNP measures remains a challenge.

Although statistical methods can mitigate the potential over-
estimate of performance associated with an internal validation,
the goal is for a model to predict risk in groups other than the
original population and ultimately to be used in a clinical set-
ting. To evaluate generalizability of the model in other popula-
tions and to quantify any deficiencies in themodel development
require an external validation [40, 44]. When the validation
population varies in an obvious way from the development
population, the interpretation of the validation is straightfor-
ward, e.g., a model developed in one country that is validated
in another country. When the development and validation pop-
ulations vary in subtler or complex ways, the interpretation of
the validation can be more challenging. Recent methods to
better quantify the differences between the development and
validation populations allow for more rigorous evaluation of
external validation studies [45]. As suggested by Park [46•],
comparison studies of different risk models’ performance on
the same population (e.g., group external validation), such as
the one by D’Amelio and colleagues [47], would be possibly of
even greater value than individual external validation studies
that assess the performance of any particular model.

The calibration of a model is a particularly important piece of
determining a model’s performance and utility when applied
beyond the data set from which it was developed, such as at
the population level. Calibration provides information on the
agreement between predicted and observed risks. In practice,
the majority of prediction model articles do not report the
model’s performance assessed by calibration [44]. One example
of how calibration methods were used in an external validation
was the external validation of the Rosner-Colditz model using
the California Teachers Study (CTS) as an independent data set
[43•] and using calibration methods described by Gail [1]. Cal-
culating the observed and expected deciles of cases in the CTS
based onRosner-Colditz beta coefficients, themodel demonstrat-
ed an overall good fit to SEER data [43•]. Other considerations
related to validation and calibration are discussed in more detail
by Park as part of this series [46•].

Reporting of Methods Used

As the number of risk predictionmodels and validation studies
(internal and external) has grown, the need for a systematic
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way of reporting results has become paramount. Without con-
sistent reporting of methods, choosing a model for application
in cancer prevention can be quite subjective. Meta-analyses
and systematic reviews of risk prediction modeling articles
consistently find poor quality reporting across all aspects of
prediction model development and for multiple disease sites
[44, 48, 49]. In response to this, Collins and others developed
the TRIPOD Statement, a checklist of 22 items determined to
be essential for high-quality reporting of multivariable predic-
tion models (diagnostic or prognostic) [50•]. The checklist is
organized according to the sections of a standard research
manuscript and differentiates which sections apply to devel-
opment, validation, or both types of models. The authors pro-
pose to include the checklist with manuscripts submitted for
peer review. As the literature in the field of risk prediction
continues to grow, this type of structured guideline should
improve the quality of reporting methods and will facilitate
model comparisons and improvements.

Implementation

While models are developed and can be applied in a number
of settings as noted earlier, the underlying challenge is for the
model to be useful in the clinical or public health setting im-
proving outcomes such as satisfaction with decisions, quality
of life, or reducing disease endpoints [41•]. To achieve suc-
cessful implementation, which is the true measure of a predic-
tion model’s utility, the end user must be considered, prefera-
bly from the beginning of the model development process. An
example may help understand how important this can be. If a
sophisticated model is built on extensive assessment of life-
style factors and is not sufficiently short to be completed in say
a clinic setting, then noncompletion makes the model, no mat-
ter how good or perfect, of no practical use in that clinic. The
requirement of simple variables for implementation increases
the number of data sets that could be used for the validation of
existing models, a current gap in the field of risk prediction as
discussed above. We extended from this basic premise when
developing the cancer risk assessment tools from the Harvard
Center for Cancer Prevention in the 1990s [51, 52]. We chose
simple dichotomy of risk factors to essay completion, and
after focus group testing, [52] we moved to computer admin-
istration to reduce errors in arithmetic by users. We chose an
engaging presentation with seven categories of risk as recom-
mended by Weinstein and provide a lower limit of achievable
risk reduction to convey the pint that risk of cancer cannot go
to zero [53, 54]. Ongoing research on risk perception and
presentation of risk will help refine the usefulness of output
from models [55–59]. Better integration of insights to output
from the beginning phases of model development may in-
creases uptake of models for cancer prevention.

Adaptation

In cardiovascular disease, we find numerous models of risk
prediction—Framingham, Scottish, New Zealand, etc. For
cancer, where we have standardized population-based inci-
dence reporting through registration systems, adjusting
models to fit national cancer incidence should be less prob-
lematic. However, beyond the approach of Gail and Rosner,
no systematic study of adaptation has been reported. Should
one take a validated model and apply it while assessing per-
formance in a new setting, or should we go back to deriving a
model from scratch? Starting over at the model development
stage when a validation study suggests poor performance im-
plies reselecting predictors, giving up any knowledge gained
from the initial development of the model [41•], and ultimate-
ly will lead to more models developed that are not carried
beyond the initial development or validation stage. Although
several general methods for updating prediction models have
been proposed and evaluated, and can improve the generaliz-
ability and transportability of existing models [41•], no
broader standards or guidelines have been established that
could guide efforts to adapt existing models. A systematic
approach might help reduce redundancy and the proliferation
of models that have not been validated. This would then fa-
cilitate more models reaching the stage of assessment for use
in clinical or prevention settings and ultimately lead the
intended positive impact on public health.

Conclusion

Risk predictionmodels have great potential to improve current
cancer prevention strategies. Building on Armitage and Doll’s
work on stages of carcinogenesis, risk models for cancer, and
breast cancer in particular, have provided insights into etiolo-
gy and moved clinical practice and research forward. Models
that follow the full cycle, e.g., model development, validation,
implementation, and adaptation, will result in the greatest im-
pact on identifying specific groups for screening, targeting
specific populations for cancer prevention counseling, more
finely defining study eligibility criteria, and improving our
understanding of etiologic heterogeneity. The challenges of
each step in the cycle include the following: forethought re-
garding implementation during model development; accurate
methods of handling missing data and careful and complete
validation, including identifying an appropriate external vali-
dation data set; accurate and comprehensive reporting across
the spectrum of development and validation; pragmatic stud-
ies of implementation in real-world clinical settings; and ap-
propriate adaptation as knowledge grows. Perhaps due to
these challenges, the proliferation of risk models has occurred
largely without appropriate attention to the full cycle and
eventual goal, resulting in many models that have little or no
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clinical or population-level impact. The need for wide-scale
improvement in risk/screening stratification has been
highlighted by the recently launched National Precision Med-
icine Initiative, which asserts the need for more precise clini-
cal decision-making. However, much of the immediate atten-
tion given to the National Precision Medicine Initiative has
focused on treatment, e.g., classifying an individuals’ re-
sponse to specific pharmaceutical agents. This unfortunately
overshadows the many applications to prevention—where
risk prediction models can result in targeted and cost-
effective screening [60]. In summary, risk predictionmodeling
has is still a growing field with many methodological chal-
lenges and opportunities. However, what we do not know, or
areas in which we can still improve, should not hinder us from
using our current knowledge in risk modeling to advance
population-level cancer prevention.
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