
Tackling the storage problem through genetic algorithms

Lapo Chirici • Ke-Sheng Wang

Received: 20 January 2014 / Accepted: 14 April 2014 / Published online: 13 May 2014

� Shanghai University and Springer-Verlag Berlin Heidelberg 2014

Abstract The capability of a company to implement an

automated warehouse in an optimized way might be

nowadays a crucial leverage in order to gain competitive

advantage to satisfy the demand. The order picking is a

warehouse function that needs to deal with the retrieval of

articles from their storage locations. Merging several single

customer orders into one, a picking order can increase

efficiency of warehouse operations. The aim of this paper is

to define throughout the use of ad-hoc genetic algorithm

(GA) how better a warehouse can be set up. The paper

deals with order batching, which has a major effect on

efficiency of warehouse operations to avoid wastes of

resources in terms of processes and to control possibility of

unexpected costs in advance.

Keywords Genetic algorithms (GA) � Warehouse

management � Order batching � Optimization

1 Introduction

Mastering efficiently warehouse processes is of significant

importance for the supply chains management, since

underperformance results in an unsatisfactory customer

service and/or high costs. Considering the different ware-

house functions (receiving, storage, order picking and

shipping), this paper will focus on order picking which

makes up for the most cost intensive operations. Different

studies estimate that between 50 % and 65 % of the total

warehousing operating costs can be attributed to order

picking [1, 2]. It arises since incoming articles are received

and stored in unit loads while customers usually order small

volumes of different articles. In manual-order-picking sys-

tems where order pickers collect the requested articles while

walking or riding through the warehouse, three planning

problems can be identified on the operative level: assign-

ment of articles to storage locations in the warehouse (article

location assignment), grouping of customer orders into

picking orders (order batching) and the determination of

routes for the order pickers (picker routing). Improved order

batching reduces the total length of the picker tours signif-

icantly, which is necessary for picking all requested articles

provided by a set of customer orders [3]. These results in a

reduction of the total picking time (time needed to collect

the requested articles of all customer orders) represent an

increase in the efficiency of the picking operations and

reduction of processing times and labor costs.

2 Order batching problem

On their tours through the warehouse, order pickers are

guided by so-called pick lists. A pick list consists of a set of

order lines, where each line denotes an article requested by

a customer, the location of the article in the warehouse, and

the respective quantity of the article to be picked. The

articles of a pick list constitute a so-called picking order.

With respect to the relationship between customer orders

and picking orders, three cases can be distinguished: (i) a

customer order has to be split into several picking orders,

since it contains too many articles, which cannot be picked

on a single tour; (ii) a customer order is identical to a

L. Chirici (&)

Department of Computer Science, University of Pisa, Pisa, Italy

e-mail: lapochirici@gmail.com

K.-S. Wang

Department of Production and Quality Engineering, Norwegian

University of Science and Technology, Trondheim, Norway

123

Adv. Manuf. (2014) 2:203–211

DOI 10.1007/s40436-014-0074-1



picking order; and (iii) a picking order consists of several

customer orders. This paper deals with the third case, the

grouping (batching) of customer orders into picking orders,

which allows for a significant reduction of the total length

of the picker tours that is necessary for picking all

requested articles provided by a set of customer orders.

Figure 1 demonstrates exemplarily the obvious advantages

of combining two customer orders into one picking order,

in which the black rectangles symbolize the locations of

articles to be picked and the black lines symbolize the tours

that the order pickers are meant to take.

The warehouse has multiple-level storage spaces, divi-

ded in cells with one elevator to transport items from the

ground to other levels. It is assumed that the elevator has

enough capacity, which means that the vertical transpor-

tation operation is always available. Each level is divided

into cells of the same dimension.

Different item types need to be stored in the multiple-

level warehouse. Each item type has its own monthly

demand and inventory volume, vertical unit transportation

cost (i.e., the cost to move one unit of the item between the

ground and other levels) and horizontal unit transportation

cost (i.e., the cost to move one unit of the item 1 m in

horizontal distance). Each item must be exactly assigned to

one cell. A cell may store more than one item type. The

objective is to minimize the total vertical and horizontal

transportation cost.

Usually, the order lines on a pick list are already sorted

in the sequence in which the articles are to be picked. This

sequence determines the route that the order picker takes

through the warehouse. According to these routes, each

order picker starts at the depot, proceeds to the respective

storage locations of the articles, and returns to the depot.

Despite the fact that an optimal polynomial-time algorithm

exists for the determination of optimal picker routes for

some warehouse layouts (among which is the one depicted

in Fig. 1), in practice the routes are usually determined by

means of so-called routing strategies [5], which can be

interpreted as heuristic solution approaches. The advantage

of such routing strategies is that they produce schemes that

can be memorized fast and can be followed easily, whereas

the routing schemes stemming from the optimal algorithm

are not always straightforward and sometimes even con-

fusing for the order pickers.

2.1 Minimizing the order picking times

Order picking is considered to be the most labor-cost

intensive function in a warehouse, due to the large amount

of time-consuming manual operations [4]. Therefore, the

minimization of the picking times is of superior interest to

a distribution company. In order to minimize the total

picking time, it is essential to indentify the different time

components of the order picking process, which are setup

Fig. 1 Different picker tours resulting from pick-by-order and pick-by-batch a and b the picker routes if each customer orders picked separately

(pick-by-order), c the corresponding route if the two customer orders joint in a single picking order (pick-by-batch)

204 L. Chirici, K.-S. Wang

123



times, travel times, search times and times for taking the

articles from their locations. From these four components,

the travel time is the most important one, since it consumes

the largest proportion of the total picking time and offers a

significant potential for improvement.

Given a fixed assignment of articles to storage locations

and a given routing strategy, the order batching problem

(OBP) can be defined in the following way as: how a set of

customer orders can be grouped (batched) into picking

orders (batches) such that the capacity limitation of the

picking device is not violated and the total length of all

necessary picking tours is minimized [5].

Gademann and van de Velde [6] introduced a straight-

forward 0–1 optimization model for the OBP whose col-

umns consist of all feasible batches [7] (see Fig. 2).

2.2 Notation to implement the model

In order to present the model, we introduce the following

notation:

(i) Index sets

J is the set of customer orders, where J = {1,2,��� , n};

I is the set of all feasible batches.

(ii) Constants

aij is the binary entry. aij = 1, if order j (j [ J) is

included in batch i (i [ I); or aij = 0, otherwise;

C is the capacity of the picking device;

Cj is the capacity utilization required by customer order

j (j [ J);

di is the length of a picking tour in which all orders of

batch i (i [ I) are collected.

(iii) Decision variables

xi is the binary decision variable. xi = 1, if batch i

(i [ I) is chosen, or xi = 0, otherwise.

Each element i [ I satisfies the following condition:

X

i2J

Cjaij�C: ð1Þ

A batch is feasible, if it contains a set of customer orders

that does not violate the available capacity of the picking

device. The optimization model can then be formulated as

follows:

min
X

i2I

dixi; ð2Þ

subject to
X

i2I

aijxi ¼ 1; 8j 2 J; ð3Þ

xi 2 f0; 1g; 8j 2 J: ð4Þ

The sets of constraints (3) and (4) ensure that a set of

batches is chosen in such a way that each customer order is

included in exactly one of these batches. Numerical exper-

iments based on the above-given model formulation [5]

reveal that only small instances can be solved to optimality if

all columns (batches) are generated in advance. This can be

explained by the fact that the number of possible batches

and, consequently, the number of binary variables increases

exponentially with the number of customer orders.

2.3 Considerations about the different approaches

Heuristics approaches to the OBP can be differentiated into

two main categories: constructive heuristics and meta-

heuristics. The constructive heuristics can be further dis-

tinguished in priority rule-based algorithms, seed algo-

rithms and savings algorithms [8].

In priority rule-based algorithms, customer orders are

assigned to batches in the sequence of non-ascending pri-

ority values. The priority values can reflect any kind of

ordering, e.g., one related to the size of the customer orders

or one related to their arrival times. The latter corresponds

to the first-come-first-served (FCFS) rule, probably the best

known representative of this sub-category. The assignment

of customer orders to batches can be done sequentially

(next-fit rule) or simultaneously (first-fit and best-fit rule).

Using the next-fit rule, a customer order is assigned to a

batch, if there is sufficient capacity available in the batch.

In case the capacity utilization of a customer order would

violate the capacity of the picking device, the current batch

will be closed and a new one will be opened for it. Using

the first-fit-rule, all batches are numbered in the sequence

according to which they have been opened and a customer

order will be assigned to the batch with the smallest

number, which provides enough capacity. When the best-

fit-rule is applied, a customer order will be assigned to the

batch with the least remaining capacity which is still suf-

ficient for the inclusion of the customer order.

Fig. 2 Schematic layout of warehouse

Tackling the storage problem through genetic algorithms 205

123



3 Introduction of genetic algorithm (GA)

3.1 Basics of GA

GAs were first introduced by Holland, who was inspired by

the notion of natural and biological evolution. In GAs, the

concept that mimics from population genetics and evolution

theory is used to construct the optimization algorithms. They

attempt to optimize the fitness of a population of elements

through recombining and mutating their genes. To apply the

genetic evolutionary concept to a real-world optimization

problem, two issues must be addressed: encoding the

potential solutions, and defining the fitness function (objec-

tive function) to be optimized.

A solution, namely a chromosome, is encoded as a string

composed of several components (genes). The initial popu-

lation of chromosomes is generated according to some prin-

ciples or randomly selected. The algorithm performs an

evaluation to measure the quality (fitness) of the potential

solutions [9]. Optimization using GAs is achieved by selecting

pairs of chromosomes with probabilities proportionate to their

fitness, and matching them to create new offspring. In addition

to matching (crossover), small mutations are induced in new

offspring. The replacement of bad solutions with new solu-

tions is based on some fixed strategies. The chromosomes

evolve through successive iterations, called generations. The

evaluation, optimization and replacement of solutions are

repeated until the stopping criteria are satisfied.

Figure 3 depicts the general structure of a GA. The

design of such an algorithm requires several structural

decisions, namely concerning the representation of solu-

tions, the initialization of a starting population, and the

components of the evolutionary process.

3.2 Exploring GAs structure

The general procedure to develop a GAs can be described

as follows, and Fig. 4 is the basic scheme of GA.

Step 1 Define a genetic representation of a feasible

solution of the problem.

Step 2 Create an initial population P(0) = x0
1; x

0
2; � � � ; x0

N ;

and t = 0.

Step 3 Compute the average fitness _f ðtÞ ¼ f ðxiÞ=N:
Assign each individual the normalized fitness

value f ðxiÞ�_f ðtÞ:
Step 4 Assign each xi a probability p(xi, t) proportional

to its normalized fitness.

Using this distribution, select N individuals from

P(t). This gives the set of the selected parents.

Step 5 Pair all parents at random forming N/2 pairs.

Apply crossover with a certain probability to

each pair.

Step 6 Apply mutation with a certain probability to each

offspring.

Step 7 Form a new population P(t ? 1) by using the

surviving mechanism.

Step 8 Set t = t ? 1 and return to Step 3.

There are three major advantages when applying GAs to

optimization problems. Firstly, GAs do not have many

mathematical requirements for the optimization problems

and can handle any kind of objective functions and con-

straints defined in discrete, continuous, or mixed search

spaces. Secondly, the ergodicity of evolution operators

makes GAs very effective at performing global searches (in

probability) and finding global optima. Lastly, GAs provide

a great hybridizing flexibility with domain-dependent

heuristics to enable the efficient implementation of a spe-

cific solution. GAs have been successfully applied to a

wide array of difficult real-world problems.

3.3 Modelling the warehouse with GAs

A chromosome (string) is composed of genes which rep-

resent a candidate warehouses in the model (1 if the

Fig. 3 General structure of a GA [10]

Input Data();
Population Init()
while not Finish () do

for i:=1 to Npop do
obj[i] := Objective Function(i);

endfor
Fitness Function();
Selection();
Crossover();
Mutation();

endwhile
Output Data();

Note: Npop denotes the number of individuals in a population and obj[i] is the 
objective value of the i-th individual.

Fig. 4 Basic scheme of GA

206 L. Chirici, K.-S. Wang

123



warehouse candidate is constructed; 0 otherwise). Each

chromosome represents one potential solution. In the initial

stage of the optimization, a number of chromosomes are

arbitrarily created as initial population. It defines the size of

solution pool. More chromosomes may increase the prob-

ability of finding optimal solution, but may induce a longer

computation time [11].

An objective function is a measuring mechanism that is

used to evaluate the status of a chromosome. This is a very

important link to relate the GA and the system concerned

[12]. Fitness function in the model is considered as the

minimization of the total cost including installation cost of

warehouses [9, 13]. The cost of transporting goods from a

warehouse to a customer is shown in Fig. 5.

4 Design of the experiment

4.1 Parameters

The warehouse layout considered in the numerical exper-

iments is a single-block warehouse with two cross aisles

and a depot located in the lower left corner [14]. This

layout type is identical to the one shown in Fig. 1 and is

frequently used in numerical experiments. The warehouse

consists of ten vertically orientated picking aisles. Each

picking aisle has a capacity of 90 locations (45 on each side

of the aisle), resulting in a total capacity of 900 storage

location. Each storage location has a length of one length

unit (LU). The necessary movement from the first and the

last storage location of a picking aisle into the cross aisle

amounts to one LU and the center-to-center distance

between two aisles amounts to 5 LUs. The depot is located

1.5 LUs away from the first storage locations of the left-

most aisle. In the warehouse, each article is located at one

storage location only and the distribution of the articles

within the warehouse follows a class-based storage

assignment policy [15]. For this purpose, the warehouse is

grouped into 3 classes: articles with the highest demand

frequency (A) are located in the leftmost aisle; articles with

a medium frequency (B) are located in the 4 subsequent

aisles and articles with a low demand frequency (C) are

located in the 5 rightmost aisles. Furthermore, it is assumed

that 52 % of the demand arises from articles in class A,

36 % from B-articles and the remaining 12 % from C-

articles. Similar demand frequencies can be observed in

real-world warehouses and have been considered in dif-

ferent values.

4.2 Assignation of classes

For the numerical experiments, the number of customer

orders is varied in five steps from 20 to 60 customer orders,

where each step has a size of ten customer orders.

The number of articles in a customer order is modeled as

a random number which is uniformly distributed in {5, 6,

���, 25}. The capacity of the picking device is defined by the

maximum number of articles which can be placed on it.

The values considered here are 30, 45, 60 and 75. The

underlying routing problem is solved by means of the S-

shape Heuristic. Table 1 summarizes the characteristics of

the problem classes. Combination of the different specifi-

cations results in 20 problem classes. For each problem

class, 40 instances have been generated.

function fitness(population,distances,installationCosts);
for i=1:number of individuals ‘(rows)

fitness(i)= population (i,:)* installationCost; ‘binary chromosomes
for j=1: number of genes ‘warehouses candidates (columns)

if population(i,j)==1
fitness(i)=fitness(i);

else
fitness(i)=fitness(i)+min(nonzeros(population (i,:)'.*distances(:,j)));

end
end
end

end

Fig. 5 Cost of transporting goods from a warehouse to a customer

Table 1 Characteristics of classes

Characteristic Specification

Total number of customer orders (n) 20, 30, 40, 50, 60

Capacity of the picking device (C)

(No. of articles)

30, 45, 60, 75

Routing strategy S-shape

Tackling the storage problem through genetic algorithms 207

123



4.3 Algorithm parameters

GAs can be differentiated according to the realization of

some structural aspects of GAs. Here below we have

considered two types of GAs: item-oriented algorithm

(IGA) and the newly developed group-oriented genetic

algorithm (GGA). The distinguishing related features are

summarized in Table 2.

The size of the population will be arranged propor-

tionally to the size of the problem classes. In our case the

number of individuals in the population will be set to four

times the number of customer orders [14].

All other parameters of the algorithms have been fixed

across all problem classes. The number of generations has

been set to 80 for both algorithms. For the determination of

the necessary parameter settings, a series of pre-tests have

been carried out in order to determine a suitable combi-

nation of the parameters.

For the IGA all combinations of the following parame-

ters have been tested:

Table 2 GA features

Feature IGA GGA

Encoding scheme Real integers Real integers

Orientation Item-oriented Group-oriented

Decoding Direct representation Indirect representation

Crossover Two-point crossover Two-point crossover

Mutation Mutation Migration and mutation

Table 3 Algorithm parameters

Feature IGA GGA

Size of the population 4 9 number of customer orders

Number of generations 80 80

Crossover probability 0.50 –

Mutation probability 0.10 0.30

Size of the TOP-part – 0.10

Table 4 Solution quality

n C C&W(ii) IGA GGA

(No. art) Ø TTL (LU) Ø No. bat Ø TTL (LU) Ø impr./% Ø No. bat Ø TTL (LU) Ø impr./% Ø No. bat

20 30 4,360 11.3 4,206 3.55 10.7 4,197 3.77 10.7

45 2,855 7.1 2,745 3.74 6.9 2,700 5.32 6.8

60 2,283 5.3 2,184 4.31 5.3 2,167 5.02 5.3

75 1,878 4.3 1,769 5.76 4.2 1,756 6.47 4.2

30 30 6,426 16.5 6,225 3.09 15.8 6,195 3.59 15.7

45 4,333 10.7 4,152 4.11 10.3 4,119 4.86 10.3

60 3,288 7.8 3,149 4.17 7.7 3,125 4.90 7.6

75 2,715 6.3 2,604 3.95 6.1 2,582 4.77 6.1

40 30 8,219 21.2 7,945 3.52 20.2 7,926 3.60 20.2

45 5,504 13.8 5,308 3.69 13.3 5,273 4.17 13.1

60 4,282 10.4 4,113 4.11 10.0 4,088 4.44 9.9

75 3,479 8.2 3,377 3.00 8.1 3,347 3.75 8.0

50 30 10,509 27.0 10,186 3.24 25.9 10,124 3.69 25.7

45 6,760 16.9 6,608 3.32 16.6 6,580 2.65 16.6

60 5,254 12.8 5,154 1.92 12.7 5,120 2.50 12.6

75 4,325 10.3 4,254 1.70 10.1 4,219 2.43 10.1

60 30 12,145 31.6 11,721 3.56 30.1 11,674 3.82 30.0

45 7,930 20.1 7,803 1.58 19.8 7,755 2.13 19.7

60 6,147 15.1 6,086 0.98 15.0 6,036 1.75 14.8

75 5,029 12.1 4,997 0.68 12.0 4,964 1.27 11.9

Minimum 4.30 0.68 4.20 1.27 4.20

Average 13.44 3.15 13.04 3.75 12.97

Maximum 31.60 5.76 30.10 6.47 30.00

Note n number of customer orders; C capacity of the picking device in number of articles; Ø (TTL) average total tour length of picking tours in

length units; Ø (impr) improvement obtained by the respective algorithm in comparison to the C&W(ii) solution in percent; Ø (No. Bat.) average

number of batches. For each problem class the best obtained average total tour length is marked in blu

208 L. Chirici, K.-S. Wang

123



(i) crossover probability [ {0.3, 0.4, 0.5};

(ii) mutation probability [ {0.05, 0.1, 0.2}.

With respect to the GGA the following combinations are

considered:

(i) TOP [ {0.10, 0.20, 0.30};

(ii) mutation probability [ {0.10, 0.20, 0.30}.

The parameter configuration which provides the best

objective function values is depicted in Table 3.

5 Results

5.1 Solution quality

The results of the numerical experiments are summarized

in Table 4. In comparison to the total tour length resulting

from other application, the IGA reduced the total length of

the picker tours by 3.15 % on average. The improvements

ranged from 0.68 % (No. of customer orders: n = 60,

capacity of the picking device: C = 75) to 5.76 % (n = 20,

C = 75). By application of the GGA an average

improvement of 3.75 % could be obtained. The improve-

ments varied between 1.27 % (n = 60, C = 75) and

6.47 % (n = 20, C = 75).

The group-oriented approach outperformed the item-ori-

ented approach not only with respect to the average

improvement, but also resulted in a superior average objec-

tive function value for every single problem class. The

superior results of the GGA can be explained by two aspects.

On the one hand, in comparison to the IGA, the GGA gen-

erates solutions that incorporate a slightly smaller number of

batches on average. A smaller number of batches tend to

result in a smaller total tour length. On the other hand, the

difference in the number of batches is not large enough to

account completely for the differences in the solution qual-

ity. Therefore, it can be concluded that the main differences

stem from the composition of the batches. The GGA is able to

match customer orders better than the IGA does.

The development of the solution quality of the two GAs

as a function of the number of generations is given in

Fig. 6 Solution quality over the generations for different problem classes

Tackling the storage problem through genetic algorithms 209

123



Fig. 6. The evolution is shown exemplarily for the four

problem classes. The average deviation of the objective

function value from the best objective function value

obtained at the end of the local search phase is depicted on

the Y-axis. The number of generations (1–80) is presented

on the X-axis. Figure 6 demonstrates two important dif-

ferences between the two algorithms. The GGA needs

fewer generations than the IGA in order to identify good

solutions. Moreover the quality of the solutions resulting

from the application of the ‘‘pure’’ GA (i.e., before the

local search is applied) is much better for the group-oriented

approach than for the item-oriented approach. It is demon-

strated by the different step-sizes after generation 80.

Application of the local search phase to the final generation

of the GGA results in an additional average improvement

between 0.3 % (n = 20, C = 30) and 5 % (n = 60, C = 75)

whereas the application of the local search phase in the IGA

resulted in additional improvements between 1.1 %

(n = 20, C = 30) and 9.8 % (n = 60, C = 75).

5.2 Computing time

Table 5 demonstrates that the computing times are deter-

mined by two parameters, namely by the number of cus-

tomer orders and by the size of the capacity of the picking

device. An increase of each of the two parameters leads to

an increase of the computing times of the algorithms.

Comparison of the computing times of the two algorithms

reveals that the item-oriented approach requires less com-

puting time for small and medium-size problems of up to

40 customer orders. For a larger number of customer orders

and for larger capacity of the picking device, in particular,

the group-oriented approach consumes less time. In general

the computing times of both algorithms are reasonable,

with the maximum of four minutes for the IGA and three

and a half minutes for the GGA, both for the most chal-

lenging problem class (n = 60, C = 75).

6 Conclusions

In this paper we have proposed a GA method approach for

the large size of warehouse location problem. Delving into

the order batching problem, it has been recognized the

pivotal importance for maximizing the efficiency of

warehouse processes, since improved order batching can

result in a significant reduction of the delivery lead times

and in a reduction of the operating cost of a warehouse.

Two population-based metaheuristics, an IGA and a GGA

have been here introduced. The application of both algo-

rithms results in a significant reduction of the total tour

length of the order pickers with reasonable computing

times. However, the application of the GGA resulted in

improvements that are larger than those of the item-ori-

ented one. These results demonstrate that it is very

important to choose a GA that is suitable for the problem in

order to obtain the best results possible.

References

1. Koch S, Wäscher G (2005) A grouping genetic algorithm for the

order batching problem in distribution warehouses. In: Working

Paper No. 26/2011. Otto-von-Guericke-Universität Magdeburg

2. Zhang GQ, Lai KK (2010) Tabu search approach for multi-level

warehouse layout problem with adjacent constraints. Eng Optim

42(6):775–790

3. Ratliff HD, Rosenthal AS (1983) Orderpicking in a rectangular

warehouse: a solvable case of the traveling salesman problem.

Oper Res 31:507–521

4. Yang L, Feng Y (2006) Fuzzy multi-level warehouse layout prob-

lem: new model and algorithm. J Syst Sci Syst Eng 15(4):493–503

5. Henn S, Koch S, Wascher G (2012) Order batching in order

picking warehouses: a survey of solution approaches. In: Manzini

R (ed) Warehousing in the global supply chain. Springer, Lon-

don, p 105

6. Gademann N, Van De Velde S (2005) Order batching to mini-

mize total travel time in a parallel-aisle warehouse. IIE Trans

37(1):63–75

7. Kratica J, Kovacevic-Vujcic V, Cangalovic M (2009) Computing

the metric dimension of graph by genetic algorithms. Comput

Optim Appl 44(2):343–361

Table 5 Comparison of the computing times of the two algorithms

n C (No. art) Ø(IGA)/s Ø(GGA)/s

20 30 3.1 7.0

45 4.2 7.9

60 4.5 9.0

75 4.5 9.8

30 30 9.1 17.3

45 15.0 20.8

60 17.2 24.5

75 16.5 27.1

40 30 22.5 34.6

45 39.5 44.8

60 48.9 53.7

75 49.6 59.9

50 30 46.7 60.5

45 87.4 86.2

60 117.2 109.4

75 109.2 116.5

60 30 94.8 99.6

45 174.8 150.2

60 230.3 187.2

75 242.4 207.6

Note n is the number of customer orders; C (No. art) is the capacity of

the picking device in number of articles; Ø is the average computing

time in seconds per instance

210 L. Chirici, K.-S. Wang

123



8. Ho YC, Su TS, Shi ZB (2008) Order-batching methods for an

order-picking warehouse with two cross aisles. Comput Ind Eng

55(2):321–347

9. Zhang GQ, Xue J, Lai KK (2002) A class of genetic algorithms

for multiple-level warehouse layout problems. Int J Prod Res

40(3):731–744

10. Weicker K, Weicker N (2007) Towards qualitative models of

interactions in evolutionary algorithms. In: De Jong KA, Poli R,

Rowe JE (eds) Foundations of genetic algorithms VII. Morgan

Kaufmann, San Francisco, pp 365, 382

11. Äut ÄS, Tuzkaya UR, Doga B (2008) A particle swarm optimi-

zation algorithm for the multiple-level warehouse layout design

problem. Comput Ind Eng 54(4):783–799

12. Pan CH, Liu SY (1995) A comparative study of order batching

algorithms. Omega Int J Manag Sci 23(6):691–700

13. Matic D, Filipovic V, Savic A et al (2011) A genetic algorithm

for solving multiple warehouse layout problem. Kragujev J Math

35(1):119–138

14. Tsai CY, Liou JJH, Huang TM (2007) Using a multiple-GA

method to solve the batch picking problem: considering travel

distance and order due time. Int J Prod Res 46(22):6533–6555

15. Kratica J, Kovacevic-Vujcic V, Cangalovic M (2008) Computing

strong metric dimension of some special classes of graphs by

genetic algorithms. Yugosl J Oper Res 18(4):143–151

Tackling the storage problem through genetic algorithms 211

123


	Tackling the storage problem through genetic algorithms
	Abstract
	Introduction
	Order batching problem
	Minimizing the order picking times
	Notation to implement the model
	Considerations about the different approaches

	Introduction of genetic algorithm (GA)
	Basics of GA
	Exploring GAs structure
	Modelling the warehouse with GAs

	Design of the experiment
	Parameters
	Assignation of classes
	Algorithm parameters

	Results
	Solution quality
	Computing time

	Conclusions
	References


