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Abstract This paper presents a calibration method for

parallel manipulators using a measurement system specially

installed on an external fixed frame. The external fixed frame

is important as an error reference for calibration in certain

operations, such as in the configuration of a parallel manip-

ulator functioning as a machine tool where the workpiece is

fixed to a worktable. The pose of the end-effector is mea-

sured using three digital indicators installed on the external

fixed frame. To enable measurement, the end-effector is

assumed to be a plane large enough that all digital indicators

could touch. The error is defined as the difference between

the theoretical and actual readings of the digital indicators.

The geometric parameters of the parallel manipulator are

optimized to minimize this error. This calibration method is

low cost and feasible for compensating geometric parameter

errors for a parallel manipulator. Optimal pose selection for

the calibration is achieved using a swarm intelligence search

algorithm. The method is implemented on a prototype of a

six degrees-of-freedom (DOFs) Gough-Stewart platform

constructed to function as a machine tool.

Keywords Calibration � Parallel kinematic manipulator

(PKM) � Digital indicator

List of symbols

{F} Coordinate system attached to the

Stewart platform base

{P} Coordinate system attached to the end-

effector

{W} Coordinate system attached to the

external fixed plate

li The ith leg length

LOi The ith leg offset

ai The ith passive joint location at the end-

effector

bi The ith passive joint location at the base
FRP The rotation matrix of {P} relative to {F}

q The position vector of {P} relative to {F}

X A generalized vector defining a pose of

end-effector

h A vector of Euler angles of the end-

effector orientation

Xg An estimated pose to start forward

kinematic calculation

Y Measured variables (digital indicator

reading)

g A vector containing all kinematic

parameters

Fi The objective function for the ith pose

Q A vector of computed nominal leg length

JP Identification Jacobian matrix

O1, O2, O3, O4 Various observability indices calculated

from JP

(x,y,z) Cartesian position coordinate

x A candidate pose in the search space

Xs A set of candidate poses in the search space

eX , eY, eZ Error in position (Cartesian coordinate

frame)

1 Introduction

Parallel manipulator has been recognized as an alternative

solution for applications where high pay load capacity and
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positional accuracy are of significant importance. Parallel

manipulators have been used for accuracy critical mis-

sion, such as nano-positioner and radiotelescope [1, 2].

These applications often have very strict error tolerances.

Due to their design properties, parallel manipulators are

sensitive to geometric inaccuracies during assembly. This

paper aims to present the kinematic calibration that

compensates the geometric inaccuracies of a parallel

manipulator. Manufacturing tolerances of building a

manipulator often cause an inherent problem where the

kinematic parameters are not exactly equal to the values

in the kinematic model. Kinematic calibration is a process

of identifying the actual values of the kinematic param-

eters in the kinematic model. Thus, by updating these

parameters, the inverse kinematic calculation of the

required joint angles will result in an accurate end-

effector pose. The calibration process generally consists

of four basic steps, namely, (i) development of a kine-

matic model that contains a set of parameters to deter-

mine the relationship between the actuated joint angles

and the end-effector pose, (ii) measurement and recording

of the manipulator poses, (iii) error minimization through

searching for the optimum kinematic model parameters of

the manipulator from the pose measurements and

manipulator actuated joint angles, and (iv) correction for

the geometric parameter errors in the manipulator kine-

matic model.

Masory et al. [3] presented a full formulation of a

Stewart platform model using the Denavit-Hatenberg

convention consisting of 132 parameters and a simplified

model consisting of 42 kinematic parameters. Many

researchers refer to these 42 kinematic parameters for

kinematic modeling of a Stewart platform. Many calibra-

tion methods have been devised with some external mea-

surement devices to detect the pose error of the

manipulator. For example, Meng et al. [4] utilized a laser

tracker to measure the position and orientation of the end-

effector accurately of a Stewart platform. Zhuang et al. [5]

obtained full measurement of the end-effector pose using a

theodolite. In addition, indirect measurement methods for

error measurement have been proposed using coordinate

measurement machines (CMM) and visual aids [6–8].

Other research works involve specially designed mea-

surement devices which are suitable for certain environ-

ments, such as inclinometers and double ball bars [9].

Another class of calibration method is the self-calibration

methods. The main advantage of self-calibration is the

automation of the calibration process. For example, Zhu-

ang [10] presented a self-calibration method based on the

data acquired from several redundant sensors installed on

the passive joints of a Stewart platform, and it demon-

strated how such a manipulator could be calibrated using

its own redundant internal sensors.

More recent studies show the trend of using heuristics in

the calibration. For example, Wang and Bai have proposed

to apply fuzzy rules and neural network approach to cali-

bration data to compensate possible error and outliers in the

sensor data for measurement [11, 12]. This paper uses a

heuristic approach, namely the Cuckoo search, by finding

the optimum pose selection to make calibration robust

against noise.

Lee et al. [13] and Kim et al. [14] proposed to attach

three digital indicators to the end-effector of a parallel

manipulator to measure the error with respect to a fixed

external plane. They calibrated a Stewart platform using a

constraint operator to determine the error assuming that

this fixed external plane is flat. In this paper, a calibration

method is proposed using three digital indicators, which are

fixed on an external fixed frame, such that the axes of the

gauges are perpendicular to this plane. This configuration is

suitable when the calibration with respect to an external

coordinate frame is required. For example, in machining

applications, this single plane can be the worktable where

the workpiece is being set up.

2 Kinematic model

2.1 Definition

This study is implemented on a parallel kinematic manip-

ulator (PKM) that is well known as the Gough-Stewart

platform. It is referred as Stewart platform throughout this

paper. The Stewart platform is a six degrees-of-freedom

(DOFs) platform consisting of a fixed base plate and a

moving plate (a top plate), which are connected by a series

of prismatic actuators and passive joints (see Fig. 1). A

spherical joint connects each prismatic actuator to the

moving plate. Similarly, a universal joint connects each

actuator to the base plate. This arrangement allows the top

plate to move based on the lengths of the prismatic actu-

ators or the leg lengths.

There are two coordinate systems, namely, a fixed or

base coordinate system {F} and a moving platform coor-

dinate system {P}. The position vector bi denotes the

position of the center of the universal joint of leg i in {F}

and the position vector Pai is defined in {P} pointing to the

location of the center of the spherical joint of leg i. The

legs are represented by vectors li defined in {F}. If FRP and

q = [qx qy qz]
T is a rotation matrix and a position vector

expressing the pose (orientation and position) of {P} rel-

ative to {F}, then li can be calculated as

li ¼ FRP
P ai þ q� bi ð1Þ

Equation (1) is well known as the inverse kinematic

formula. The leg length can be computed by taking the
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length of this vector. The values of the leg lengths must

take into consideration the initial length offsets of the legs

LOi
, and they are calculated using Eq. (2).

ki ¼ lik k � LOi
¼ Li � LOi

ð2Þ

On the other hand, the forward kinematic model is used

to calculate the pose given the leg lengths is a difficult

problem which is usually solved using numerical methods

[15]. The pose can be denoted by a generalized vector

X = [qThT]T, where h = [hx hy hz]
T describes a set of Euler

angles of the orientation of {P} relative to {F}. A Newton-

Raphson scheme is developed in this research to compute a

solution of the forward kinematic problem. This is an

iterative method stated as follows:

(i) Given a set of six leg lengths as La = [La1 La2 La3 La4

La5 La6]T;

(ii) Given an initial estimated pose Xg = [qg
T hg

T]T,

calculate the inverse kinematic solution of this

pose, which gives the six leg lengths, Lg = [Lg1 Lg2

Lg4 Lg4 Lg5 Lg6]T;

(iii) Compute the partial derivative 6 9 6 matrix J of the

pose vector, dX, with respect to a small change of

each leg displacement, where Jj;i ¼ dXj

dLgi

, i = 1,2,���,6,

j = 1,2,���,6;

(iv) Update the current pose, Xg = Xg ? J-1(La – Lg);

(v) Repeat steps (i)–(iv) until (La – Lg) is less than a

certain pre-defined numerical threshold, and exit with

the last Xg as the solution.

An initial estimated pose is needed in step (ii) above.

This initial pose can be set as the home position of the end-

effector. The algorithm will give a robust solution of the

correct pose if the pose is within the range of the manip-

ulator movement and not near to any singularity configu-

ration. In this paper, we have used the singularity

configuration detector as described in Ref. [16], by evalu-

ating the absolute value of |J-1| against a certain threshold

to identify whether a pose is good for calibration.

2.2 Error model and parameter set

The kinematics formulas are crucial in the control of a

PKM to move its end-effector to a desired location.

However, this requires the PKM to be built according to the

nominal kinematic parameters, such as joint locations and

leg offsets. The main purpose of the calibration is to find

the actual kinematic parameters that have deviated from

their nominal values due to the imperfect assembly and

manufacturing tolerances.

Error modeling is important for profiling geometric enti-

ties that cause motion error of the end-effector. Error mod-

eling is the process of determining the parameters that affect

the motion of the end-effector. Errors considered in the

calibration are geometric and they are treated as static values

or constants. There are other errors that are associated with

the operation of the PKM, and these errors are non-constant

values, time varying and depend on other factors, such as

errors associated with non-ideal motions of the joints,

vibration, load characteristics and the thermal states [17–19].

It is generally accepted that 42 kinematic parameters can

fully describe a configuration of a nominal Stewart plat-

form [20]. Although more parameters can be defined, the

main error in the end-effector is attributed to errors in these

42 kinematic parameters. Thus, these kinematic parameters

are of main importance and they are namely, the leg length

offset LOi
(one parameter), locations of the universal joint,

bi (three parameters each), and locations of the spherical

joints Pai (three parameters each). Hence, there are seven

kinematic parameters per leg. For a more complete error

modeling, Wang and Masory [19] have derived 22 kine-

matic parameters per leg.

Kinematic calibration can solve kinematic parameters

with respect to an arbitrarily fixed coordinate system

located at the base frame {F} and the moving platform

{P}. The absolute locations of the origins of the frame {F}

and frame {P} have no effect on the motion error, because

the kinematic parameter errors are defined within the

Stewart platform closed kinematics loops relative to these

origins. Therefore, six parameters that are defined with

respect to frame {F} and six parameters with respect to

frame {P} can be eliminated or excluded from the cali-

bration. This approach is in agreement with reported

studies [21, 22]. In the calibration, the parameters b1, b2,
Pa1,Pa2 are set to the nominal/reference values and the

other 30 parameters define the kinematic configuration of

the Stewart platform. The origins of the coordinate frames

are placed at the center of the base and the moving

platform.

Fig. 1 Schematic representation of the Stewart platform
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2.3 Digital indicators measurement model

for calibration

Measurement data are taken from the digital indicators

during calibration. These digital indicators provide addi-

tional redundant sensing which is used to calibrate the

Stewart platform. The digital indicators are installed on an

external fixed plate with reference to the world coordinate

system. There is no specific constraint on the position of the

digital indicators; however, they must be installed with the

axes of the gauges perpendicular to the plane. The purpose

is to measure the distance along the axes of the gauges

between the external fixed plate and the end-effector plane

of the Stewart platform. Figure 2 shows an illustration of

the Stewart platform with the setup. The coordinate fram-

es{T} and {W}, refer to the tool coordinate system and the

world coordinate system, respectively. The digital indicator

measurement is achieved relative to the world coordinate

system. The world coordinate frame {W} is attached on the

external fixed plate on which the digital indicators are

installed, as the reference for the measurement.

3 Proposed calibration method

A numerical nonlinear gradient descent optimization

method is used to solve the real kinematic parameters from

the measurement data. The digital indicators are measure-

ment devices to verify the location of the Stewart platform

end-effector and determine the error between the desired

and the actual locations. The readings of the digital indi-

cators give different values from the expected values

(nominal values) if there is a discrepancy or an error in the

end-effector location. An error at one pose can be formu-

lated as Yi – Fi(Qi, g), i = 1,2,���,N, where g denotes the

real (unknown and to be found) kinematic parameters. Yi is

the measurement vector taken from the readings of the

indicators, and Qi is the leg length computed from the

inverse kinematics corresponding to the ith pose when

measurement is taken. Fi is a function that gives the

nominal values of the readings of the digital indicators

when the end-effector is at the desired location. When there

is no error, Yi is equal to Fi. In other words, if there is no

difference in the nominal kinematic parameters and the real

kinematic parameters, there will be no kinematic errors.

The calibration is solved by optimization that is formulated

as Eq. (3).

min
g

Y1 � F1 Qi; gð Þ
..
.

YN � FN Qi; gð Þ

�
�
�
�
�
�
�

�
�
�
�
�
�
�

; ð3Þ

where N is the number of measurement poses taken.

Equation (3) will minimize the error by finding the real

kinematic parameters, and it is also known as the least

squares formulation (LSF). The LSF procedure determines

the real kinematic parameters, which are initially set

according to the nominal parameters of the Stewart plat-

form. When the errors in Eq. (3) are minimized, the set of

kinematic parameters that best represents the actual kine-

matic parameters of the Stewart platform is found.

The errors can be defined as errors in the leg lengths

(also known as inverse kinematic model (IKM)) or as

errors in the end-effector pose (also known as forward

kinematic model (FKM)) [5, 23]. The IKM requires full

pose measurement (six DOFs, position and orientation),

whereas this is not necessary for the FKM. In the proposed

method, the FKM is used because full pose information is

not available. For each pose, three digital indicator read-

ings give three measured values and the FKM gives the

expected values. The differences between these values and

the expected values are taken as the errors defined above.

The forward kinematics calculation is performed in each

function, Fi is used to obtain the expected values of read-

ings of the digital indicators. The function Fi in Eq. (3)

gives the pose of the end-effector from the leg lengths, Qi

Fig. 2 Digital indicators measurement framework
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and kinematic parameter g. The function Fi computes the

expected digital indicator readings based on the external

plate location, on which the frame {W} is attached, with

respect to the base coordinate frame {F}. Using the end-

effector location that has been calculated, the expected

digital indicator readings are determined by finding the

distances between the external plate and the end-effector.

The forward kinematics calculation gives the position

and orientation of the frame {P} with respect to the frame

{F}.The actual end-effector is a moving plate connected to

the actuators of the Stewart platform through the spherical

joints. Figure 3 illustrates that the origin of {P} which is

above the bottom surface of the moving plate (the end-

effector surface) by a distance of dOff. This is due to the

physical arrangement of the components. Each of the

digital indicators is mounted perpendicular with respect

to the frame {W}, which measures the distance along the

z-axis in frame {W} from the external plate surface plane to

the end-effector surface plane. It is assumed that the end-

effector surface is flat. A coordinate vector x lying on this

plane satisfies Eq. (4).

nz xð Þ þ d ¼ 0; d ¼ �nz x0ð Þ; ð4Þ

x0 ¼ q� dOffnz; q ¼ qxqyqz

� �T
: ð5Þ

In Eqs. (4)–(5), q is a position vector of the calculated

end-effector location, nz = [a,b,c]T is the normal unit

vector of the surface which is parallel to the z-axis of frame

{P}. nz can be obtained from the rotation matrix FRP. Both

q and FRP are obtained from the forward kinematics cal-

culation. The placement of the Stewart platform base and

the external fixed plate can be made such that the coordi-

nate systems {F} and {W} are parallel and their origins are

collinear. Thus, the expected digital indicator readings

(Wz1, Wz2, Wz3) are calculated using Eq. (6), where Wxi and
Wyi are the coordinates of the installed digital indicators

relative to the frame {W} and a, b, c are the components of

the vector nz = [a,b,c]T.

W zi ¼ �d � aW xi � bW yi

� �

=c; i ¼ 1; 2; 3: ð6Þ

S-joints

Stewart platform base

U-joints OF

OP

OW

The end-effector surface plane

doff

The external fixed plate

Each digital indicator  is 
positioned at (Wxi, 

Wyi,0) in 
frame {W} and has a 
distance reading of Wzi

The external plate surface plane

Fig. 3 Determining digital indicator expected values

begin
Objective function f(x), x = (x1, ..., xd)T

Generate initial population of
n host nests xi (i = 1, 2, ..., n)

while (t <MaxGeneration) or (stop criterion)
Get a cuckoo randomly by Lévy flights

evaluate its quality/fitness Fi

Choose a nest among n (say, j) randomly
if (Fi > Fj),

replace j by the new solution;
end
A fraction (pa) of worse nests

are abandoned and new ones are built;
Keep the best solutions

(or nests with quality solutions);
Rank the solutions and find the current best

end while
Postprocess results  

end

Fig. 4 Cuckoo search with Lévy flights
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4 Optimum pose selection for the calibration

When the calibration is being performed, measurement

data are collected from the various poses or configurations

of the PKM. These data, however, can be affected by noise

and physical instability. This set of measurement poses can

be optimized to yield robust calibration. The quality of a

certain set of configurations/poses with respect to the cal-

ibration can be approximated based on an observability

index that can be obtained from the identification Jacobian

matrix, JP. This matrix has components that are calculated

using the linearized version of Eq. (3) [21]:

DY ¼ JPDg ð7Þ

In Eq. (7), DY is the difference in the measurement

variable (digital indicator readings) when an error Dg is

induced in the kinematic parameters. For the IKM cali-

bration, JP can be formulated analytically. However, for

the FKM, JP can be computed numerically by assuming a

small difference in Dg [5]. Four different formulations (O1,

O2, O3, O4) have been proposed in the literatures for the

definition of the observability index from the matrix JP [24,

25]. One of the best indices that relates well to the

Table 1 Various observability indices (random poses)

No. of poses O1(10-3) O2(10-9) O3(10-7) O4(10-16)

14 1.3406 9.4700 9 10-2 9.6938 9 10-3 9.1800 9 10-4

28 2.5333 2.9976 4.3717 9 10-1 1.3105

42 2.8748 3.2963 5.8492 9 10-1 1.9281

56 3.0601 4.1138 8.4191 9 10-1 3.4635

70 3.0448 4.2465 9.7290 9 10-1 4.1314

84 3.1455 3.9187 9.8669 9 10-1 3.8666

98 3.3224 4.6919 1.2734 5.9744

112 3.1732 4.1835 1.2146 5.0813

Table 2 Various observability indices (optimally selected poses)

No. of poses O1(10-2) O2(10-8) O3(10-6) O4(10-14)

14 4.0339 9 10-1 4.0330 9 10-1 4.7545 9 10-2 1.9175 9 10-2

28 1.1640 2.6540 4.5375 9 10-1 1.2042

42 1.2875 3.0920 6.7746 9 10-1 2.0947

56 1.2592 2.9189 7.0810 9 10-1 2.0668

70 1.3544 3.0325 8.5110 9 10-1 2.5810

84 1.3087 2.9874 9.1111 9 10-1 2.7219

98 1.3730 3.2634 1.0731 3.5018

112 1.2899 3.0770 1.0641 3.2741

Fig. 5 Stewart platform prototype
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robustness of calibration to noise is the noise amplification

index, O4 given by Eq. (8), where ri are singular values of

JP ordered from the largest to smallest so that ri [ = rn.

O4 ¼ r2
n=ri ð8Þ

The goal of pose selection can be stated as: to find a

number of measurable and reachable poses for the Stewart

platform that give the largest value of the observability

index. In this goal definition, ‘‘measurable’’ is a constraint

where the end-effector can touch all the digital indicators at

a selected pose. In this goal definition, ‘‘reachable’’ is a

condition where all the physical constraints of the joints are

satisfied. This goal can be achieved by applying a con-

strained search optimization method. The chosen observ-

ability index, O4, is obtained from the identification

Jacobian matrix JP which is a function of JP(Xs), where Xs

is a collection of poses [x1,x2, ���,xN]T. Thus, the selection

of a set of poses for calibration affects JP and the

observability index.

The framework for the search method is adopted from

Ref. [26], but a heuristic swarm-based method is applied as

the optimization procedure, namely the Cuckoo search

(CS). The CS is coined recently by Yang and Deb [27] and

can be applied for various optimization problems. The

steps of the algorithm are as follows:

(i) Initial set, x1,x2, ���,xN, for N candidate poses needed

for selection is formed by random poses in the search

domain;

(ii) Add Find step: using the CS (CS algorithm, Fig. 4),

find additional xN?1, that maximizes O4(JP(X)) with

X includes x1,x2, ���,xN, and xN?1;

(iii) Remove Find step: find an x_ within the set x1,x2,

���,xN?1 that if this x_ is removed from the set, the

remaining poses give a higher objective value of

O4(JP(X)) with X including all poses in x1,x2,���,
xN?1 except x_ .

(iv) Repeat steps (ii) and (iii) until x_ = xN?1 which

implies that the new added configuration can not

improve the current set and exit with the last

configuration set as the result.

The objective function for the optimization is defined as

f ðxÞ ¼ 0; if x is not measurable or not reachable,

f ðxÞ ¼ O4ðXÞ; if x is a measurable and reachable pose:

 

ð9Þ

This CS algorithm has two parameters. n is the number

of population and pa is the fraction of worse nests to be

abandoned in every iteration. In this paper, the parameters

are set as n = 25 and pa = 25%. The optimality is based

on O4, which is the best index to reflect the calibration

quality. The observability indices for randomly and opti-

mally selected poses are presented in Tables 1–2. It can be

seen that the observability indices have a tendency to

increase monotonically with poses which are added to the

calibration. Furthermore, the optimally selected poses

always result in better calibration robustness.

5 Applications

A prototype has been built to verify the calibration method

presented in this paper. The prototype is shown in Fig. 5.

The nominal values of the kinematic parameters of the

Stewart platform are described as follows. The passive

joints are given in Table 3. They are used as references in

the fabrication and assembly to locate the links and connect

the Stewart platform components. In addition, the motion

ranges of the joints define the workspace of the Stewart

platform. The nominal leg offsets are the same for all the

legs, i.e., LOi
= 305.000 mm, i = 1,2,���,6, and the

Table 3 Geometry of the Stewart platform (nominal parameters, all units are in mm)

No. of legs 1 2 3 4 5 6

bi �152:500

0:000

0:000

2

4

3

5

�132:068

�76:250

0:000

2

4

3

5

76:250

�132:068

0:000

2

4

3

5

132:068

�76:250

0:000

2

4

3

5

76:250

132:068

0:000

2

4

3

5

0:000

152:500

0:000

2

4

3

5

Pai �60:622

35:000

0:000

2

4

3

5

�35:000

�60:622

0:000

2

4

3

5

0:000

�70:000

0:000

2

4

3

5

70:000

0:000

0:000

2

4

3

5

60:622

35:000

0:000

2

4

3

5

�35:000

60:622

0:000

2

4

3

5

Table 4 Real model for calibration simulation

Assumedleg

lengths offset

error/mm

Assumed position

error of the base

joints (universal

joints)/mm

Assumed position error

of the platform joints

(spherical joints)/mm

eX eY eZ eX eY eZ

dLO1
1 db1 0 0 0 da1 0 0 0

dLO2
2 db2 3 0 0.3 da2 -0.9 0.67 0.53

dLO3
3 db3 0.1 1.8 0.7 da3 3 -2 0.7

dLO4
1 db4 -0.1 1.8 0.7 da4 3 -2 0.7

dLO5
2 db5 -0.1 1.8 0.7 da5 3 -2 0.7

dLO6
3 db6 -0.1 1.8 0.7 da6 3 -2 0.7
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maximum displacement of the prismatic actuators is

50 mm. The actuated leg geometry is modeled as a cylin-

der with a diameter of 36.1 mm to avoid collision between

them. The tilt angle limits for the universal and spherical

joints are 45 � and 29 � respectively.

Simulation is carried out to verify the calibration

method before applying the method to the actual Stewart

platform calibration with real data. In the simulation, a real

model is assumed and used to test the calibration method.

Table 4 summarizes the deviations of the real model from

the nominal model. The nominal model is used for ini-

tialization of the kinematic parameters at the start of the

error minimization in the LSF. Table 5 presents the various

simulation results with arandom error applied in the mea-

surement data. This error emulates the noise and distur-

bance in the measurement. The error is modeled as the

Gaussian white noise with the corresponding variances

(noise level) listed in Table 5.

The number of poses required to obtain a good cali-

bration result has been investigated. Figure 6 presents the

plot of the error in the kinematic parameters after cali-

bration against the number of pose measurements. In this

test, random poses are used. It can be concluded that a

larger number of poses will lead to better calibration

results. In addition, there is a limit where the errors

cannot be reduced further with additional number of

poses.

The proposed calibration has potential for automated

calibration as long as the selected poses are measurable and

reachable. The calibration process has been performed in

several trials to improve and obtain the best geometric

parameters that can minimize the errors. Some measure-

ment errors due to instability were observed during the

calibration process where the data obtained for the same

pose differed by around 10-50 lm, depending on the pre-

vious state of the Stewart platform. This could be caused

by the backlash in the passive joints. To compensate this

error, two sets of data were taken for each configuration

during measurement and the average is recorded. The CS

method was applied to find the optimal poses for calibra-

tion. The improvement in calibration using the proposed

search method is presented in Table 6. The result showed

the calibration using optimally selected poses gave the least

error. Table 7 summarizes the calibration result with a set

of 110 optimally selected poses.

The resolution of the dial gauges used is 0.01 mm. This

experiment indicates that Stewart platform calibration can

be done using a relatively low cost sensor. The accuracy

obtained cannot exceed the maximum tolerance of the dial

gauges. In this example, we have obtained an accuracy of

0.1 mm for positioning in the z-axis. The concept of the

calibration is proven by the fact that the absolute posi-

tioning errors have been reduced up to 83% from the

previous errors without calibration. In addition, the opti-

mum pose selection helps to improve the accuracy on the

orientation.

Table 5 Error comparison of calibration simulation

NL EE/% DE/% PEb PEa PEr/%

0.0001 99.99 99.81 0.12, 3.11, 1.27 0.0006, 0.001, 0.002 99.41, 99.97, 99.85

0.001 99.95 99.57 0.12, 2.99, 1.26 0.002, 0.004, 0.003 98.28, 99.87, 99.79

0.01 99.48 97.78 0.12, 2.78, 1.24 0.01, 0.006, 0.023 90.90, 99.78, 98.13

0.1 93.80 94.61 0.12, 3.24, 1.23 0.014, 0.05, 0.04 88.15, 98.59, 96.60

Note: NL: noise level (variance), EE: reduction in estimation error (sum of squares of F1,F2,���,FN); DE: reduction in mean difference between

nominal and real digital indicators reading; PE(x): pose error mean in a (degree), b (degree), and Fz0 (mm), respectively (PEb: before, PEa: after,

PEr: error reduction)

Fig. 6 Calibration improvement with a larger number of poses

Table 6 Error reduction comparison between random and optimally

selected poses

DE/% PEr/%

Random poses 81.96 90.38 21.48 83.96

Optimum poses 83.05 87.23 53.18 87.06

Note: DE: reduction in mean difference between nominal and real

digital indicators reading; PEr: pose mean error reduction in a, b, and
Fz0, respectively
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6 Conclusions

The kinematic calibration of a PKM has been proposed,

developed and implemented on a prototype Stewart plat-

form. By using the FKM in the calibration, partial pose

measurement using three digital indicators has been

applied successfully for improving the accuracy of the

Stewart platform. A notable difference in the proposed

method compared to others is that it includes the external

frame in the calibration. While it assumes that the world

coordinate and the PKM base coordinate frames are par-

allel, it is not limited to this assumption. In certain appli-

cations, such as machining, this arrangement is beneficial

as the actual work is conducted with respect to the world

coordinate frame. The approach is readily extendable to

other types of PKM. The paper presents a low-cost and

feasible PKM calibration technique with an external frame.
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Table 7 Kinematic parameters after calibration

Leg lengths offset/mm Position of the base joints (universal joints)/mm Position error of the platform joints (spherical joints)/mm

x y z x y z

dLO1
1 b1 -152.5 0.0 0.0 Pa1 -60.622 35 0

dLO2
2 b2 -129.069 76.25 0.3 Pa2 -0.9 0.67 0.53

dLO3
3 b3 76.15 130.269 0.7 Pa3 3 -72 0.7

dLO4
1 b4 131.9689 -74.45 0.7 Pa4 73 -2 0.7

dLO5
2 b5 76.15 133.869 0.7 Pa5 63.22 33 0.7

dLO6
3 b6 -0.1 154.3 0.7 Pa6 -32 58.622 0.7
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