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Abstract In this paper a simple method of the fractional-
order linear digital filter response calculation is proposed.
The fractional-order linear digital filter description is based
on the fractional-order linear time-invariant difference equa-
tion and related fractional-order discrete transfer function.

Keywords Fractional calculus · Linear discrete system ·
Signal processing · Image processing

1 Introduction

Digital filters (DF) are a very important part of digital signal
processing [1]. It refers to signals varying with time (con-
sidered further as 1D signals) as well as varying in space
(considered further as 2D signals).The mentioned signals
usually include errors due to different reasons from which
one can mention the imperfection of measuring devices or
sensors so the separation of the signal from the errors is nec-
essary. In 1D signals case many different synthesis methods
of DFs are developed [2,3]. Similar methods are used to fil-
ter 2D signals represented mainly by digital images [4–6].
The mentioned techniques base on the classical calculus in
the discrete version, where derivatives are replaced by dif-
ferences and integrals by sums. In 1D, as well as in 2D DF
description, the discrete convolution is used.

Successful applications of the fractional calculus [7–11]
in the era of universal digitalization cause the expansion of
discrete applications in various fields of science and technol-
ogy. A substitution of the left fractional-order derivative by
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a fractional-order backward difference (FOBD) leads to the
fractional-order (FO) difference equation (DE) [12]. In the
linear time-invariant FODE case one can evaluate the FO dis-
crete transfer function (FODTF). Such FODEs and FODTFs
will be used in the 1D and 2D FODFs description.

Themain result of the paper is the simplicity of mentioned
filters outputs evaluation by Matlab. No specialized toolbox
is needed. First, the 1D-FODF is synthetised and applied to
filter themeasured real signal. The signal filtration effects are
shown via their discrete frequency characteristics. Then, it is
shown that the 1D-FODF is helpful in FO image filtering.
2D-FODF characterised by multidirectional mask supported
by 1D-FODF may be useful in the discrete image filtering.
An immense progress in the digital processors calculation
abilities proves that one can cross the usually used 3 × 3
and 5 × 5 masks in the pixel convolution evaluation [13]. A
supplementary advantage of the paper is the indication that
there is an additional possibility to shape theFODF frequency
characteristics by releasing integer orders. Supplementary
order coeffcients lead to better filtration effects.

The paper is organised as follows. In Sect. 2 fundamental
notions related to the FOBD, coefficients function a(μ)(k) of
one discrete-variable k, FODEand FOTF are given. Section 3
contains a proposal of the 1D-FODF synthesis. Considera-
tions are supported by numerical examples in Sect. 4 where
real measured signal filtration effects are presented due to the
very simple calculation method. The next section contains a
definition of multidirectional mask serving to filter a digital
image. The 2D-FODF output for a given image is presented.

2 Mathematical preliminaries

The fundamental notion used in the FOF-1DF description is
the FOBD in the so-called Grünvald–Letnikov form [12]. Its
definition is given below.
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GL
k0 Δ

(μ)
k f (k) =

k∑

i=k0

a(μ)(i − k0) f (k + k0 − i)

=
k−k0∑

i=0

a(μ)(i) f (k − i), (1)

where

a(μ)(k) =
⎧
⎨

⎩

0 for k < 0
1 for k = 0

(−1)k (μ)((μ)−1)···((μ)−k+1)
k! for k = 1, 2, 3, . . .

(2)

The left and right subscripts inGL
k0

Δ
(μ)
k f (k)denote theFOBD

evaluation range, respectively. The left and right superscripts
stand for the FOBD form (Grünwald–Letnikov) and order
(μ), respectively. (μ) indicates that the FOBD is not raised to
theμ power.Without loss of generality from this point on one
assumes k0 = 0. It can be proved [12] that for 0 < (μ) < 2

lim
k→+∞ a(μ)(k) = 0 and

+∞∑

i=0

a(μ)(i) = 0 (3)

Assuming f (k) = 0 for k < 0 and zero initial conditions
one can prove that the one-sidedZ -Transform of the FOBD
is as follows

Z
{
GL
k0 Δ

(μ)
k f (k)

}
=

(
1 − z−1

)μ

F(z) =
+∞∑

i=0

a(μ)(i)z−i

(4)

where Z { f (k)} = F(z).
The description of linear fractional-order digital 1D and

2D filters considered in this paper bases on the FOBD. One
considers the FO commensurate difference equation (FODE)
of the form

p∑

i=0

Ai
GL
0 Δ

(iμ)
k y(k) =

q∑

j=0

Bj
GL
0 Δ

( jμ)
k u(k) (5)

where 0 < μ � 1—FO, p � q, Ai , Bj -constant coeffi-
cients, Ap = 1, y(k), u(k)—filter output and filtered signal,
respectively. The considered form means that the processed
signal sample depends only on present and past samples. No
forward shift of samples is admitted. One assumes

p∑

i=0

Ai = A−1 �= 0. (6)

FODE (5) can be equivalently expressed in a vector form

p∑

i=0

Ai
[
1 a(iμ)(1) · · · a(iμ)(k)

]

⎡

⎢⎢⎢⎣

y(k)
y(k − 1)

...

y(0)

⎤

⎥⎥⎥⎦

=
q∑

j=0

Bj
[
1 a( jμ)(1) · · · a( jμ)(k)

]

⎡

⎢⎢⎢⎣

u(k)
u(k − 1)

...

u(0)

⎤

⎥⎥⎥⎦ (7)

from which one immediately gets the solution

y(k) = A

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
−

p∑

i=0

Ai
[
1 a(iμ)(1) · · · a(iμ)(k)

]

⎡

⎢⎢⎢⎣

y(k − 1)
y(k − 2)

...

y(0)

⎤

⎥⎥⎥⎦

+
q∑

j=0

Bj
[
1 a( jμ)(1) · · · a( jμ)(k)

]

⎡

⎢⎢⎢⎣

u(k)
u(k − 1)

...

u(0)

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(8)

Applying the one-sided Z-Transform with zero initial con-
ditions to both sides of (7) one evaluates the FO discrete
transfer function (FODTF)

G(z) = Y (z)

U (z)
=

∑q
i=0 Bi

(
1 − z−1

)iν
∑p

i=0 Ai
(
1 − z−1

)iν

=
∑q

i=0 Bi
∑+∞

l=0 a(iν)(l)z−l

∑p
i=0 Ai

∑+∞
l=0 a(iν)(l)z−l

=
∑+∞

i=0 B̄i z−i

∑+∞
i=0 Āi z−i

≈
∑L

i=0 B̄i z
−i

∑L
i=0 Āi z−i

(9)

where Ā j = ∑p
i=0 Aia(iν) (p − j) for j = 0, 1, · · · , p

and B̄ j = ∑q
i=0 Bia

(iν) (q − j) for j = 0, 1, · · · , q. The
approximation in (9) represented by the substitution of +∞
by relatively largenumber L . This is justifiednoting that coef-
ficients a(ν)(k) strongly diminish for growing k. Performing
a long division of numerator and denominator polynomials
one gets the form

G(z) = g(0) + g(1)z−1 + g(2)z−2 + · · · (10)

with g(0), g(1), g(2), . . . being the consecutive values of the
filter Dirac pulse response.
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3 Linear time-invariant digital FOF frequency
characteristics

For p = 1, q = 0 from (9) one gets

Fμ1(z) = Y (z)

U (z)
= B0(

1 − z−1
)μ1 + A0

≈ B0

1 + A0 + a(μ1)(1)z−1 + · · · + a(μ1)(L)z−L

(11)

It is worth mentioning that for the above TFs there are related
DEs

GL
0 Δ

(i)
k y(k) + A0y(k) = B0u(k), i = 1, μ (12)

The FOF can be considered as l connected in series simple
filters (11)

Fμi (z) = Yi (z)

Ui (z)
= B0,i(

1 − z−1
)μi + A0,i

≈ B0,i

1 + A0,i + a(μi )(1)z−1 + · · · + a(μi )(L)z−Li

Fig. 1 FODFs connection

where i = 1, 2, . . . , l and 0 < μi � 1 resulting in the
FOFTF

F(z) = Y (z)

U (z)
=

l∏

i=1

Fμi (z) =
l∏

i=1

[
B0,i(

1 − z−1
)μi + A0,i

]

(13)

A serial connection is depicted in Fig. 1.
The FODF properties are characterized by the samemath-

ematical tools as the classical integer-order ones. Here, two
fundamental ones can be mentioned: the FODF unit step
response and the discrete frequency characteristics set [2,3].
In the following numerical example one presents an example
of the FODF characteristics.

Consider the FODFs of the FOs iμ = 1.2 forμ = 1.2 and
i = 1, 2, 3 with A0 = 0.01 and B0 = A0 + ∑L

i=0 a
(μ)(i).

Their fundamental frequency characteristics of the FOFs: the
discrete Bode magnitude (left) and phase (right) plots are
presented in Fig. 2 together with the IOF ones simulated for
μ = m = 1, respectively. In Fig. 3 (left) appropriate Nyquist
plots are presented.

The considered FODFs characteristics relations with the
colors of plots are indicated in the Table 1 given below.

The selected FO Nyquist and related Bode plots reveal
growing maximum of amplitudes due to the order iμ for
i = 1, 2, 3. One can see that very small extrema in the Bode
magnitude plots are no more visible in the Nyquist charac-
teristics. Moreover, this shows a commonly known relation
to the unit step responses of the integer order systems.

4 FOF response calculation

The 1D-FODF solution inMatlab is particularly simple. Con-
sider anymeasured type of a digital signal. It may be voltage,
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Fig. 2 Discrete Bode magnitude (left) and phase plots (right)
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Fig. 3 Discrete Nyquist (left) and step responses (right) plots

Table 1 Relations between indices

l Color μ Color m

1 Black solid-line Black dotted-line

2 Blue solid-line Blue dotted-line

3 Red solid-line Red dotted-line

current, position or speed. For its measured values sequence
u = [u(0)u(1) · · · u(kmax )] and chosen L one evaluates two
polynomials represented by their coefficients

n1 = [b0], d1 = [
1 + a0 a(μ)(1) a(μ)(2) · · · a(μ)(L)

]

(14)

Then, in the Matlab program, the FODF responses for l =
1, 2, 3 have the form

y1 = f ilter(n1, d1, u)

y2 = f ilter(n1, d1, f ilter(n1, d1, u)) (15)

y3 = f ilter(n1, d1, f ilter(n1, d1, f ilter(n1, d1, u)))

The three filters unit step responses are plotted in Fig. 3
(right). Very small (almost invisible), but growing maxima
(due to growing l) in the Bodemagnitude plots in Fig. 2 (left)
induce the overshoots in the unit step responses.

Now one presents the filtration effects of the FOFs consid-
ered in the previous section. For the discrete signal presented
in Fig. 4 one obtains responses presented in Fig. 5. Even bet-
ter information concerning the filtration effects is given in
Figs. 6 and 7 where the Bode magnitude characteristics of
the measured signal (left) and the first filter output (right) are
plotted, respectively. It can be seen clearly that the filtered
signal includes information related to the velocity-position
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Fig. 4 Measured discrete-time signal

effect. The algorithm is valid for any measured signals, for
instance: machanical, electrical, biological [14].

The satisfactory filtration effect is obtained for three FOFs
connected in series. The high frequency noise is eliminated.
The classical integer-order filters show weaker filtration
effects. This is due to the restrictions to the integer orders
only.

5 2D-FOF definition

5.1 2D-FOF directions definition

On a discrete plane (2D discrete space) one defines so-called
Bresenham circles [15]. A circle is characterised by center
c(k1, k2) and radius r . All discrete points (pixels) contain-
ing the continuous circle centered in the middle of x(k1, k2)
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Fig. 5 FOFs and IOFs 1 (a) and 2, 3 (b) responses
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Fig. 6 Bode magnitude plot of the measured signal (left) and first filter output (right)
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Fig. 7 Bode magnitude plot of the second filter output (left) and the third filter output (right)
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Fig. 9 Discrete circle of radius r = 4 (left) and r = 5 (right)
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Fig. 10 The “Small Dog” image (left) and 3D plot (right)

belong to the discrete circle of radius r . Four discrete circles
of consecutive radii r = 1, . . . , 5 are presented in Figs. 8 and
9. Inside the black discrete circles there are white continuous
circles of appropriate radii.

The sum of all discrete circles of consecutive radii r =
1, 2, . . . , rmax with the same center c(k1, k2) forms a discrete
disc. If the same discrete point is related to two different radii
the lower has the priority. Hence, one defines a matrix with
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elements being the radii (defining the discrete distance from
the center). Such an exemplary distance matrix is presented
below for rmax = 5 (on the left). Here, in all distance matrix
corners radii r = 6, 7 > rmax appeared. They are extracted
by putting ∞. A simplified distance matrix is given in (16)
as a right matrix.

M [D (rmax )] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 6 6 5 5 5 5 5 6 6 7
6 5 5 4 4 4 4 4 5 5 6
6 5 4 3 3 3 3 3 4 5 6
5 4 3 3 2 2 2 3 3 4 5
5 4 3 2 1 1 1 2 3 4 5
5 4 3 2 1 0 1 2 3 4 5
5 4 3 2 1 1 1 2 3 4 5
5 4 3 3 2 2 2 3 3 4 5
6 5 4 3 3 3 3 3 4 5 6
6 5 5 4 4 4 4 4 5 5 6
7 6 6 5 5 5 5 5 6 6 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M [D (rmax )] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ ∞ ∞ 5 5 5 5 5 ∞ ∞ ∞
∞ 5 5 4 4 4 4 4 5 5 ∞
∞ 5 4 3 3 3 3 3 4 5 ∞
5 4 3 3 2 2 2 3 3 4 5
5 4 3 2 1 1 1 2 3 4 5
5 4 3 2 1 0 1 2 3 4 5
5 4 3 2 1 1 1 2 3 4 5
5 4 3 3 2 2 2 3 3 4 5
∞ 5 4 3 3 3 3 3 4 5 ∞
∞ 5 5 4 4 4 4 4 5 5 ∞
∞ ∞ ∞ 5 5 5 5 5 ∞ ∞ ∞

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

5.2 2D-FOF definition

For a given radius rmax and 1D-FOF Dirac pulse response
values g(0), g(1), g(2), · · · , g(rmax ) one defines a matrix

containing Dirac pulse response values related to the dis-
tance from the disk center. The matrix in question, denoted
asM [g(rmax )] for rmax = 5 is given below. This matrix is a
mask [4,6]

Now, one assumes that a 2D signal (a discrete image)
is represented by a matrix U of dimensions m × n where
m, n � rmax .

M [g(rmax )] = {m(k1, k2)}k1 = 1, 2, · · · ,m
k2 = 1, 2, · · · , n

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 g(5) g(5) g(5) g(5) g(5) 0 0 0
0 g(5) g(5) g(4) g(4) g(4) g(4) g(4) g(5) g(5) 0
0 g(5) g(4) g(3) g(3) g(3) g(3) g(3) g(4) g(5) 0

g(5) g(4) g(3) g(3) g(2) g(2) g(2) g(3) g(3) g(4) g(5)
g(5) g(4) g(3) g(2) g(1) g(1) g(1) g(2) g(3) g(4) g(5)
g(5) g(4) g(3) g(2) g(1) g(0) g(1) g(2) g(3) g(4) g(5)
g(5) g(4) g(3) g(2) g(1) g(1) g(1) g(2) g(3) g(4) g(5)
g(5) g(4) g(3) g(3) g(2) g(2) g(2) g(3) g(3) g(4) g(5)
0 g(5) g(4) g(3) g(3) g(3) g(3) g(3) g(4) g(5) 0
0 g(5) g(5) g(4) g(4) g(4) g(4) g(4) g(5) g(5) 0
0 0 0 g(5) g(5) g(5) g(5) g(5) 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Then the processed discrete point (pixel) is calculated
according to the fomula

y(i, j) =
∑i+rmax

k1=i−rmax

∑ j+rmax
k2= j−rmax

m(k1, k2)u(k1, k2)

8r2max

(18)

Introducing a notation suitable forMatlab [1], rmax = rmax ,
mm = M [g(rmax )]

mu =
⎡

⎢⎣
u(i − rmax , j − rmax ) · · · u(i − rmax , j + rmax )

...
...

u(i + rmax , j − rmax ) · · · u(i + rmax , j + rmax )

⎤

⎥⎦

(19)

formula (20) is calculated in one command

y(i, j)

= ones(1, 2 ∗ rmax + 1) ∗ mm. ∗ mu

∗ ones(2 ∗ rmax + 1, 1)/(8 ∗ rmax ∗ rmax) (20)

A particularly simple filtration effect calculation is
obtained for (6) with p = 1, q = 0, A0 = 0, B0 = 1 and
μ = −ν where 0 < ν � 2

123



58 P. W. Ostalczyk

k1

k
2

0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

0

50

100

150

0

50

100

150

0

20

40

60

80

k1
k2

y(
k
1
,k

2
)

Fig. 11 The “Small Dog” filtered image (left) and 3D plot (right)
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Fig. 12 The “Small Dog” filtered by Matlab gaussian filter image (left) and related 3D plot (right)
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Fig. 13 The “Small Dog” filtered by Matlab “unsharp” filter image (left) and related 3D plot (right)
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M
[
D

(
a(−ν)(rmax )

)]
= M

[
D

(
a(μ)(rmax )

)]

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 a(μ)(5) a(μ)(5) a(μ)(5) a(μ)(5) a(μ)(5) 0 0 0
0 a(μ)(5) a(μ)(5) a(μ)(4) a(μ)(4) a(μ)(4) a(μ)(4) a(μ)(4) a(μ)(5) a(μ)(5) 0
0 a(μ)(5) a(μ)(4) a(μ)(3) a(μ)(3) a(μ)(3) a(μ)(3) a(μ)(3) a(μ)(4) a(μ)(5) 0

a(μ)(5) a(μ)(4) a(μ)(3) a(μ)(3) a(μ)(2) a(μ)(2) a(μ)(2) a(μ)(3) a(μ)(3) a(μ)(4) a(μ)(5)
a(μ)(5) a(μ)(4) a(μ)(3) a(μ)(2) a(μ)(1) a(μ)(1) a(μ)(1) a(μ)(2) a(μ)(3) a(μ)(4) a(μ)(5)
a(μ)(5) a(μ)(4) a(μ)(3) a(μ)(2) a(μ)(1) a(μ)(0) a(μ)(1) a(μ)(2) a(μ)(3) a(μ)(4) a(μ)(5)
a(μ)(5) a(μ)(4) a(μ)(3) a(μ)(2) a(μ)(1) a(μ)(1) a(μ)(1) a(μ)(2) a(μ)(3) a(μ)(4) a(μ)(5)
a(μ)(5) a(μ)(4) a(μ)(3) a(μ)(3) a(μ)(2) a(μ)(2) a(μ)(2) a(μ)(3) a(μ)(3) a(μ)(4) a(μ)(5)

0 a(μ)(5) a(μ)(4) a(μ)(3) a(μ)(3) a(μ)(3) a(μ)(3) a(μ)(3) a(μ)(4) a(μ)(5) 0
0 a(μ)(5) a(μ)(5) a(μ)(4) a(μ)(4) a(μ)(4) a(μ)(4) a(μ)(4) a(μ)(5) a(μ)(5) 0
0 0 0 a(μ)(5) a(μ)(5) a(μ)(5) a(μ)(5) a(μ)(5) 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The image of “The Small Dog” and its 3D plot are pre-
sented in Fig. 10 left and right, respectively. For 1D-FOF
(13) with μ = 0.5, L = 5, A0 = 0.5, B0 = 0.7 the filtra-
tion effects are given in Fig. 11 left and right, respectively.
The filtered image is clearly blurred. The noise is largely
removed.

To compare the 2D-FODF proposed in this paper the
effects of the following filtering results are presented. In Fig.
12 the “gaussian” filter application (left) and its 3D plot is
given.

In Fig. 13 the “unsharp.m” Matlab function is applied.
The results are presented in Fig. 13.

The filtering results are usually subjected to subjective
human evaluation, rather than to the objective criteria, but
one should emphasise that the FODF parameters are not opti-
mized due to theassumed performance criterion.

6 Conclusions

In classical IOF (15) there are two parameters to select: FO
μ and the coefficient A0. The FODF demands an additional
parameter to select FO 0 < ν < 1. The parameter and
order selectin can be performed due to ISE criterion. The
FODF response calculation is more complicated but such fil-
ters offer much greater opportunities to shape the dynamics
of the 2D-FOF output. The main competitive advantage of
the FOF over the IOF is steeper slope and sharper slump of
the magnitude plots.
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