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Abstract In this paper, a quantitative measure of partial
observability is defined for PDEs. The quantity is proved to
be consistent if the PDE is approximated using well-posed
approximation schemes. A first order approximation of an
unobservability index using an empirical Gramian is intro-
duced. Several examples are presented to illustrate the con-
cept of partial observability. The theory is developed for
the estimation of initial value. However, the concept can be
extended to the observability of state variables at final time
or any fixed time moment.

Keywords Partial observability · Consistency · Distributed
parameter systems

1 Introduction

Observability is a fundamental property of dynamical sys-
tems [1,2] with an extensive literature. It can be considered
as a measure of well-posedness for the estimation of system
states using sensor information as well as additional user
knowledge about the system. We do not give a review of the
huge literature here on this subject. Some interesting work
can be found in [3–5] for nonlinear systems, [6] for partial
differential equations (PDEs), [7] for stochastic systems, [8]
for normal forms. Other related work includes [9–11].

For some models of high dimensional systems, the tradi-
tional concept of observability is not applicable. For instance,
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models used in numerical weather prediction have millions
of state variables. Some variables are strongly observable
while some others are extremely weakly observable. It is
known that the sparse sensor network cannot make the entire
system uniformly observable. These types of problems call
for a partial observability analysis in which we study the
observability of finite many modes (or state variables) that
are important for weather prediction and ignore the modes
that are less important. In addition, it is desirable to mea-
sure the observability of a system quantitatively. It is not
good enough to just tell that a set of variables is observ-
able or not. It is important to tell how strong or weak the
observability is. In the large amount of data collected for
weather prediction, only 5 % or less are actually useful for
each prediction. Finding a high-value dataset that improves
the level of observability requires a quantitative measure of
observability. When moving sensors are used, a quantitative
measure of observability is fundamental in finding optimal
sensor locations. Another issue about models of high dimen-
sional systems is how to practically verify their observability
when a model is given as a numerical input-output function,
such as a code, rather than a set of differential equations. The
definition of observability should be computational so that
one can numerically verify the concept.

In [12,13], a definition of partial observability is intro-
duced using dynamic optimization. This concept is devel-
oped in a project of finding the best sensor locations for
data assimilations, a computational algorithm widely used in
numerical weather prediction. Different from traditional def-
initions of observability, the one in [12,13] is able to collec-
tively address several issues in a unified framework, includ-
ing a quantitative measure of observability, partial observ-
ability, and improving observability by using user knowl-
edge. Moreover, computational methods of dynamic opti-
mization provide practical tools of numerically approximat-
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ing the observability of complicated systems that cannot be
treated using an analytic approach.

In this paper we extend a simplified version of observabil-
ity defined in [12,13] to systems defined by PDEs. A quan-
titative measure of partial observability makes perfect sense
for infinite dimensional systems such as PDEs. However, its
computation is carried out using finite dimensional approx-
imations. It is known in the literature that an approximation
of a PDE using ordinary differential equations (ODEs) may
not preserve the property of observability, even if the approx-
imation scheme is convergent and stable [6,14]. Therefore,
to develop the concept of partial observability for PDEs, it is
important to understand its consistency in ODE approxima-
tions. In Sect. 2, some examples from the literature are intro-
duced to illustrate the issues being addressed in this paper.
Observability is defined for PDEs in Sect. 3. In Sect. 4, a
theorem on the consistency of observability is proved. The
relationship between the unobservability index and an empir-
ical Gramian is addressed in Sect. 5, which serves as a first
order approximation of the observability. The theory is illus-
trated using examples in Sect. 6.

2 Some issues on observability for PDEs

Partial observability was introduced in [12,13] for finite
dimensional systems. In [15] the concept was applied to opti-
mal sensor placement for numerical weather prediction. The
idea was extended to systems defined by linear PDEs in [16].
In this paper, a simplified version of the partial observabil-
ity defined in [12,13] is adopted and generalized to some
distributed parameter systems.

Before we introduce the concept and theorems, we first
use a few simple examples to illustration some issues to be
addressed. Consider the initial value problem of a heat equa-
tion

ut (x, t) = uxx (x, t), x ∈ [0, L], t ∈ [0, T ]
u(0, t) = u(L , t) = 0

u(x, 0) = f (x)

Suppose the measured output is

y(t) = u(x0, t)

for some x0 ∈ [0, L]. In this example, we assume L = 2π ,
T = 10, and x0 = 0.5. The solution and its output have the
following form

u(x, t) =
∞∑

k=1

ūk(t) sin

(
kπx

L

)

y(t) =
∞∑

k=1

ūk(t) sin

(
kπx0

L

)

where the Fourier coefficients satisfy an ODE

dūk

dt
= −

(
kπ

L

)2

ūk

Define

uN = [
ū1 ū2 · · · ūN

]T

AN = diag

([(π

L

)2
(

2π

L

)2

· · ·
(

Nπ

L

)2 ])

C N =
[

sin
(πx0

L

)
sin

(
2πx0

L

)
· · · sin

(
Nπx0

L

)]

A N th order approximation of the original initial value prob-
lem with output is defined by a system of ODEs

duN /dt = −AN uN

uN (0) = uN
0

y = C N uN (1)

A Gramian matrix [2] can be used to measure the observabil-
ity of uN

0 . More specifically, given N > 0 the observability
Gramian is

W =
T∫

0

e(−AN )′t (C N )′C N e−AN t dt

Its smallest eigenvalue, σ N
min , measures the observability of

uN
0 . A small value of σ N

min implies weak observability. If the
maximum sensor error is ε, then the worst estimation error
of uN

0 is bounded by

ε√
σ N

min

(2)

The system has infinitely many modes in its Fourier expan-
sion. However, it has a single output. The computation shows
that the output can make the first mode observable. How-
ever, when the number of modes is increased, their observ-
ability decreases rapidly. From Fig. 1, for N = 1 we have
σ N

min = 1.216 × 10−1, which implies a reasonably observ-
able ū1(0). However, when N is increased, the observability
decreases rapidly. For N = 8, σ N

min is almost zero, i.e

[
ū1(0) ū2(0) · · · ū8(0)

]T

is extremely weakly observable, or practically unobservable.
According to (2), a small sensor noise results in a big esti-
mation error. For this problem, it is not important to achieve
observability for the entire system. All we need is the partial
observability for the critical modes.

For a simple system like the heat equation, we already
know that the high modes do not affect the solution. Their
observability is not important. One may choose a discretiza-
tion scheme based on the important modes only so that the
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Fig. 1 Observability of heat equation

observability is achieved using a simplified model. However,
for large and highly nonlinear systems with tens of thou-
sands or even millions of state variables, such as in a process
of numerical weather prediction or power network control,
model reduction or changing the scheme of discretization
is almost impossible because the models are already pack-
aged in the form of software and copyright issues are likely
involved. For these types of applications, a quantitative mea-
sure of partial observability is useful for several reasons.
If a finite number of modes is enough to achieve accurate
state approximates, guarantee the observability of these finite
modes is a practical solution. In large-scale networded sys-
tems with a very high dimension, operators may focus on a
local area at a given period of time. In this case, the observ-
ability of the entire system is irrelevant. It is useful to achieve
a partial observability just for the states directly related to the
area of focus. For moving sensors, a quantitative measure of
observability can be used as a cost function in finding optimal
sensor locations in which the observability is maximized.

Another issue to be addressed in this paper is consistency.
In general the observability for PDEs is numerically com-
puted using a system of ODEs as an approximation. How-
ever, it is not automatically guaranteed that the observability
of the ODEs is consistent with the observability of the orig-
inal PDE. In fact, a convergent discretization of a PDE may
not preserve its observability. Take the following wave equa-
tion as an example

utt − uxx = 0, 0 < x < L , 0< t <T
u(0, t) = u(L , t) = 0, 0 < t < T
u(x, 0) = u0(x), ut (x, 0) = u1(x), 0 < x < L

(3)

It is known that the total energy of the system can be estimated
by using the energy concentrated on the boundary. However,
in [6] it is proved that the discretized ODEs do not have the
same observability. The energy of solutions is givenby

E(t) = 1

2

L∫

0

(
|ut (x, t)|2 + |ux (x, t)|2

)
dx

This quantity is conserved along time. It is known that, when
T > 2L , the total energy of solutions can be estimated uni-
formly by means of the energy concentrated on the boundary
x = L . More precisely, there exists C(T ) > 0 such that

E(0) ≤ C(T )

T∫

0

|ux (L , t)|2dt (4)

Now consider the discretized system using a finite difference
method,

u′′
j (t) = u j+1(t) + u j−1(t) − 2u j (t)

h2 , 0 < t < T,

j = 1, 2, . . . , N
u0(t) = uN+1(t) = 0, 0 < t < T
u j (0) = u0

j , u′
j (0) = u1

j , j = 0, 1, . . . , N +1

(5)

The total energy of the ODEs is given by

Eh(t) = h

2

N∑

j=0

(
|u′

j (t)|2 +
∣∣∣∣
u j+1(t) − u j (t)

h

∣∣∣∣
2
)

This quantity is conserved along the trajectories of the ODEs.
The energy on the boundary is defined by

T∫

0

∣∣∣∣
uN (t)

h

∣∣∣∣
2

dt

Because the solutions of (5) converges to the solutions of
(3), we expect that the total energy of (5) can be uniformly
estimated using the energy concentrated along a boundary,
i.e. the following inequality similar to (4) holds for some
C(T ) uniformly in h,

Eh(0) ≤ C(T )

T∫

0

∣∣∣∣
uN (t)

h

∣∣∣∣
2

dt

However, it is proved in [6] that this inequality is not true.
In fact, the ratio between the total energy and the energy
along the boundary is unbounded as h → 0. To summarize,
the observability of a PDE is not necessarily preserved in its
discretizations.

In this paper, we introduce a quantitative measure of par-
tial observability for PDEs. Sufficient conditions are proved
for the consistency of the observability for well-posed dis-
cretization schemes.
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3 Partial observability

Consider a nonlinear initial value problem

ut = F(t, u, ux , . . .), in � × (0, T ]
u = u0 in � × {t = 0}
yu(t) = H(u(·, t))

(6)

where � is an open set in R
n , F is a continuous function of

t , u, and its derivatives with respect to x . Let X be a Banach
space of functions defined on �. The initial condition, u0,
lies in a subspace, V0, of X . In the following, u(t) represents
u(·, t). A solution u(t) of (6), in either strict or weak sense,
is a X -valued function in a subspace V of C0([0, T ], X).
If additional boundary conditions are required, we assume
that all functions in V satisfy the boundary conditions. We
assume that (6) is locally well-posed in the Hadamard sense
([17,18]) around a nominal trajectory. More specifically, let
u(t) be an nominal trajectory. We assume that there is an
open neighborhood D0 ⊂ V0 that contains u(0), such that

• For any u0 ∈ D0, (6) has a solution.
• The solution is unique.
• The solution depends continuously on its initial value.

Proving the well-posedness of nonlinear PDEs is not easy.
Nevertheless, for well-posed problems the consistency of
observability is guaranteed.

In (6), H(u(·, t)) or in short notation yu(t), represents
the output of the system associated with the solution u(x, t),
where H is a mapping, linear or nonlinear, from X to R

p. We
assume that yu(·) stays in a normed space of functions from
[t0, t1] to R

p. Its norm is denoted by || · ||Y . We say that H is
continuous in a subset of C0([0, T ], X) if for any sequence
{uk(t)}∞k=k0

in the subset and function u(t) ∈ V ,

uk(t) → u(t) uniformly on [0, T ] implies lim
k→∞||yuk

−yu ||Y = 0 (7)

Instead of the entire state space, the observability is
defined in a finite dimensional subspace. Let

W = span{e1, e2, . . . , es}
be a subspace of V0 generated by a basis {e1, e2, . . . , es}. In
the following, we analyze the observability of a component
of u(0) using estimates from W . Therefore W is called the
space for estimation.

Let u(t) be a nominal trajectory satisfying (6). Suppose
W
⋂

D0 �= ∅ and u(0) has a best estimate in W
⋂

D0,
denoted by uw(0), in the sense that uw(t) minimizes the fol-
lowing output error,

min ||yuw − yu ||Y
subject to

duw/dt = F(t, uw, · · · ), in � × (0, T ]
uw(0) ∈ W

⋂
D0 (8)

Let ur (t) = u(t) − uw(t) be the remainder, then

u(t) = uw(t) + ur (t) (9)

If the output yu(t) represents the sensor measurement, then
it has noise. The data that we use in a estimation process has
the following form

yu(t) + d(t)

where d(t) is the measurement error. The observability
addressed in this paper is a quantity that defines the sensitiv-
ity of the estimation error relative to d(t). From (9), the best
estimate uw(t) has an error that is the remainder ||ur (0)||X .
This error is not caused by d(t) because the remainder cannot
be reduced no matter how accurate the output is measured.
This error is due to the choice of W , not the observability
of W . Therefore, the observability is defined for uw(0) only,
thus a partial observability. For a strongly observable uw(0),
its estimate may not be close to u(0) if the remainder, ur (0),
is large. If the goal is to estimate u(0), an observable uw(0)

is useful only if the value of ur (0) is either known or small.
In the rest of the paper, we assume ur (0) = 0 and u(0) ∈ W .
In applications, the concept is applicable to u(0) with a small
ur (0), (see, for instance, [15]).

Definition 1 Given a nominal trajectory u of (6). Suppose

u(0) ∈ W
⋂

D0.

For a given ρ > 0, suppose the sphere in W of radius ρ

centered at u(0) is contained in D0. We define

ε = inf ||yû − yu ||Y (10)

where û satisfies

ût = F(t, û, ûx , . . .)

û(0) ∈ W
⋂

D0

||û(0) − u(0)||X = ρ (11)

Then ρ/ε is called the unobservability index of u(0) along
the trajectory u(t) at the level of ρ.

Remark The ratio ρ/ε can be interpreted as follows: if the
maximum error of the measured output, or sensor error, is
ε, then the worst estimation error of u(0) is ρ. Therefore, a
small value of ρ/ε implies strong observability of u(0). Dif-
ferent from most traditional definitions of observability, W
is a subspace of the state space. However, in the special case

123



Distributed parameter systems 591

that W equals the entire state space that has a finite dimen-
sion and if the system is linear, ε2/ρ2 equals the smallest
eigenvalue of the observability Gramiam (See Sect. 5).

Remark The effectiveness of this concept is verified in [15]
using Burgers’ equation. A 4D-Var data assimilation, a
method of state estimation in weather prediction, is applied
to several data sets from different sensor locations. The
result shows that the estimation using sensor locations with
a smaller unobservability index results in more accurate esti-
mates than those using the data from other sensor locations
with higher unobservability indices.

To numerically compute a system’s observability, (6) is
approximated using ODEs. In this paper, we consider a gen-
eral approximation scheme using a sequence of ODEs,

duN /dt = F N (t, uN ), uN ∈ R
N

uN (0) = uN
0 (12)

and two sequences of linear mappings

P N : V0 → R
N

�N : R
N → X (13)

The norm in R
N is represented by || · ||N . We assume that

the approximation scheme is well-posed, more specifically

• For any bounded set B in D0, there exist M > 0 and
α > 0 so that any solution of (6) with u(0) ∈ B satisfies

||u(t) − �N (uN (t))||X ≤ M

Nα
(14)

uniformly in [0, T ], where P N (u(0)) = uN (0).
• For any u ∈ W ,

||u||X = ||P N (u)||N + aN ||P N (u)||N

lim
N→∞ aN = 0 (15)

Given the space for estimation W , we define a sequence
of subspaces, W N ⊆ R

N , by

W N = P N (W )

They are used as the space for estimation in R
N . If

{e1, e2, . . . , es} is a basis of W , then their projections to W N

are denoted by

eN
i = P N (ei ), i = 1, 2, . . . , s

So W N = span{eN
1 , eN

2 , . . . , eN
s }.

Example For a spectral method, approximate solutions can
be expressed in terms of an orthonormal basis

{qk(x) : k = 0, 1, 2, . . .}

For any function,

v(x) =
∞∑

k=0

vkqk(x)

one can define

P N (v) = [ v0 v1 · · · vN
]T

(16)

Obviously, �N is defined by

�N
([

v0 v1 · · · vN
]T ) =

N∑

k=0

vkqk (17)

In the case of l2-norm for all R
N , || · ||N is consistent with

|| · ||X if X = L2(�). Typically, the space for estimation
consists of finite many modes

W = span{q1(x), q2(x), . . . , qs(x)} (18)

��
Example Some approximation methods, such as finite dif-
ference and finite element, are based on a grid defined by a
set of points in space,

{x N
k }N

k=0

and a basis {q N
k } satisfying

q N
k (x N

j ) =
{

1 k = j
0, otherwise

(19)

In this case, the mappings in the approximation scheme is
defined as follows

P N (v) = [ v(x N
0 ) v(x N

1 ) · · · v(x N
N )
]T

�N
([

v0 v1 · · · vN
]T ) =

N∑

k=0

vkq N
k (20)

The inner product in R
N can be induced from L2(�), i.e. for

u, v ∈ R
N ,

< u, v >N =<

N∑

k=0

ukq N
k ,

N∑

k=0

vkq N
k >

If

W = span{q N
0 , q N

1 , . . . , q N
N }

then the norms || · ||N and || · ||X satisfy the consistency
assumption (15). ��

Following [12], we define the observability for ODE sys-
tems.
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Definition 2 Given ρ > 0 and a trajectory uN (t) of (12)
with uN (0) ∈ W N . Denote ŷN (t) = H ◦ �N (ûN (t)) and
yN (t) = H ◦ �N (uN (t)). Let

εN = inf ||ŷN − yN ||Y
where ûN satisfies

dûN /dt = F N (t, ûN )

ûN (0) ∈ W N

||ûN (0) − uN (0)||N = ρ (21)

Then ρ/εN is called the unobservability index of uN (0) in
the space W N .

4 The consistency of observability

In this section, we prove the consistency of observability.

Theorem 1 (Consistency) Suppose the initial value prob-
lem (6) and its approximation scheme (12)–(13) are well-
posed. Suppose H satisfies the continuity assumption (7) in
C0([0, T ],⋃∞

N=N0
�N (RN )) for some integer N0 > 0. Con-

sider a nominal trajectory u(t) of (6) and its correspond-
ing trajectory uN (t) of (12) with an initial value uN (0) =
P N (u(0)). Assume that the sphere in W N centered at uN (0)

with radius ρ is contained in P N (D0). Then,

lim
N→∞εN = ε (22)

To prove this theorem we need two lemmas.

Lemma 1 Given any sequence {vN (t)}∞N=N0
where vN (t) is

a solution of (12) with vN (0) ∈ P N (D0)
⋂

W N and N0 > 0
is an integer. If {||vN (0)||N }∞N0

is bounded and if �N (vN (0))

converges to v(0) ∈ D0, where v(t) is a solution of (6), then
�N (vN (t)) converges to v(t) uniformly for t ∈ [0, T ].
Proof Let ṽN (t) be the solution of the PDE (12) such that
ṽN (0) ∈ D0

⋂
W and P N (ṽN (0)) = vN (0). Note that we

do not assume �N (P N (ṽN (0))) = ṽN (0), although this is
the case in many approximation schemes. The set {ṽN (0)}
must be bounded in X because of (15) and the assumption
that {||vN (0)||N }∞N0

is bounded. Therefore, (14) implies

lim
N→∞||�N (vN (t)) − ṽN (t)||X = 0 (23)

converges uniformly. In particular,

lim
N→∞||�N (vN (0)) − ṽN (0)||X = 0

Because �N (vN (0)) converges to v(0) ∈ D0, we know
that ṽN (0) converges to v(0). Because the solutions of the

PDE are continuously dependent on their initial value (well-
posedness),

||ṽN (t) − v(t)||X → 0 (24)

uniformly in t . Equations (23), (24) and the triangular
inequality

||�N (vN (t)) − v(t)||X

≤ ||�N (vN (t)) − ṽN (t)||X + ||ṽN (t) − v(t)||X

imply

||�N (vN (t)) − v(t)||X → 0 as N → ∞
uniformly in t . ��
Lemma 2 Given a sequence ûN (t), N ≥ N0, satisfy-
ing (21). There exists a subsequence, ûNk (t) such that
{�Nk (ûNk (t))}∞k=1 converges uniformly to a solution of (11)
as Nk → ∞.

Proof For each ûN (t), there exists a trajectory ûN (t) of the
PDE (6) satisfying ûN (0) ∈ D0

⋂
W and P N (ûN (0)) =

ûN (0). From the consistency of norms, (15), and the fact
||ûN (0)||N = ρ, we know that {ûN (t)}∞N0

is a bounded set in
W . The convergence assumption (14) implies

lim
N→∞||ûN (0) − �N (ûN (0))||X = 0 (25)

As a bounded set in a finite dimensional space W , {ûN (t)}∞N0
has a convergent subsequence {ûNk (t)}∞k=1. Let û(0) be its
limit and u(t) be the corresponding trajectory of (6). From
(25), we know

lim
N→∞||�Nk (ûNk (0)) − û(0)||X = 0

From Lemma 1, {�Nk (ûNk )}∞k=1 converges to û(t) uniformly
in [0, T ]. Because of (15),

||û(0) − u(0)||X

= lim
k→∞||ûNk (0) − u(0)||X

= lim
k→∞(||ûNk (0) − uN (0)||N + aN ||ûNk (0) − uN (0)||N )

= ρ

Therefore, û(t) satisfies (11) and {�Nk (ûNk )}∞k=1 converges
uniformly to a solution of (11). ��
Proof of Theorem 1 First, we prove

lim inf εN ≥ ε (26)

Suppose this is not true, then lim inf εN < ε. There exists
α > 0 and a subsequence Nk → ∞ so that

εNk < ε − α
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for all Nk . From the definition of εN , there exist ûNk (t) sat-
isfying (21) such that

||ŷNk − yNk ||Y < ε − α

where

ŷNk (t) = H ◦ �Nk (ûNk (t)), yNk (t) = H ◦ �Nk (uNk (t))

From Lemma 2, we can assume that �Nk (uNk (t)) converges
to û(t) uniformly, where û(t) satisfies (11). From the conti-
nuity of H as defined in (7),

lim
k→∞||ŷNk − yNk ||Y = ||yû − yu ||Y ≤ ε − α

However, from the definition of ε, we know

ε ≤ ||yû − yu ||Y
A contradiction is found. Therefore, (26) must hold.

In the next step, we prove

lim sup εN ≤ ε (27)

It is adequate to prove the following statement: for any α > 0,
there exists N1 > 0 so that

εN < ε + α (28)

for all N ≥ N1. From the definition of ε, there exists û
satisfying (11) so that

||yû − yu ||Y < ε + α (29)

Let ûN be a solution of the ODE

duN /dt = F N (t, uN )

with an initial value

ûN (0) = P N (û(0))

Then the following limit converges uniformly

lim
N→∞||�N (ûN (t)) − û(t)||X = 0 (30)

A problem with ûN (0) is that its distance to uN (0) may not
be ρ, which is required by (21). Let ū(t) be a solution of (12)
with an initial value

ūN (0) = γN (ûN (0) − uN (0)) + uN (0)

γN = ρ

||ûN (0) − uN (0)||N

Obviously

||ūN (0) − uN (0)||N = ρ

and ū(t) satisfies (21). Due to the consistency of the norms
and the fact ||û(0) − u(0)||X = ρ, we know

limN→∞ γN = 1 (31)

From (30) and (31), we have

lim
N→∞�N (ūN (0))

= lim
N→∞

(
γN (�N (ûN (0)) − �N (uN (0))) + �N (uN (0))

)

= û(0)

By Lemma 1, the limit

lim
N→∞�N (ūN (t)) = û(t)

converges uniformly on the interval t ∈ [0, T ]. Let ȳN (t) =
H(�N (ūN (t))) and yN (t) = H(�N (uN (t))). Then output
continuity assumption (7) implies

lim
N→∞||ȳN − yN ||Y = ||yû − yu ||Y < ε + α

There exits N1 > 0 so that

||ȳN − yN ||Y < ε + α

for all N ≥ N1. From the definition of εN , we know

εN ≤ ||ȳN − yN ||Y < ε + α

for all N > N1. Therefore, (27) holds.
To summarize, the inequalities (26) and (27) imply

lim
N→∞εN = ε ��

5 The empirical Gramian

In this section, we assume that W N and the space of y(t) are
both Hilbert spaces with inner products <,>N and < ·, · >Y ,
respectively. The ratio, εN /ρ, is approximately equal to the
smallest eigenvalue of a Gramian matrix. More specifically,
let

{eN
1 , eN

2 , . . . , eN
s }

be a set of orthonormal basis of W N . Let u+
i (t) and u−

i (t) be
solutions of (12) satisfying

u±
i (0) = uN (0) ± ρeN

i

Define


ui = u+
i (t) − u−

i (t)


yi (t) = H ◦ �N (
ui (t))

The empirical Gramian is defined by

G = [Gi j ]
Gi j = 1

4ρ2 < 
yi ,
y j >Y

For a small value of ρ, the unobservability index is approxi-
mated by

ρ/εN ≈ 1√
σmin

(32)
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where σmin is the smallest eigenvalue of G. For linear ODEs,
this approximation is accurate because it can be shown that

(εN )2 = min∑
a2

k =ρ2

[
a1 a2 · · · as

]
G
[

a1 a2 · · · as
]T

= σminρ2

Comparing to the linear control theory, G is the same as the
observability Gramian if W N is the entire space and if y(t)
lies in a L2-space.

If {eN
1 , eN

2 , . . . , eN
s } is not an orthonormal basis, we can

modify the approximation as follows. Define

Si j =< eN
i , eN

j >N (33)

Let σmin be the smallest eigenvalue of G relative to S, i.e.

Gξ = σmin Sξ

for some nonzero ξ ∈ R
s . Then

ρ/εN ≈ 1√
σmin

The approximation is accurate for linear systems.
For the heat equation approximated using (1), the associ-

ated mappings can be defined by

P N (u) =
[
uN

1 , uN
2 , . . . , uN

N

]T
,

uN
k = 2

L

2π∫

0

u(x) sin

(
kπx

L

)
dx

�N (uN ) =
N∑

k=1

uN
k sin

(
kπx

L

)

If we want to find the observability of the first s modes,
Definition 2 is equivalent to the analysis using the traditional
observability Gramian for N = s. In fact, for all N ≥ s, G
is a constant matrix and

G =
T∫

0

e(As )′t (Cs)′CseAs t dt

Therefore, εN = εs for all N ≥ s and εN is a consistent.

6 Examples

In this section, some examples are used to illustrate Defini-
tion 1. In the literature, a measure of controllability for linear
systems is defined based upon the radius of matrices [19–21].
Using duality, we can define the observability radius, γo, as
the distance between the system and the set of unobserv-
able systems. This radius is defined primarily for the mea-
sure of the robustness of observability, although it agrees

with the partial observability defined above in some filter-
ing problems. Using the following example, we illustrate the
sameness and differences between γo and the unobservability
index.

Example 1 Consider a linear system

[
ẋ1

ẋ2

]

y = x1

=
[

1 δ

0 1

] [
x1

x2

]
(34)

where δ is a constant number. In [19], it is proved that using
Euclidean norm we have

γo = δ

For a small δ, the observability of the system can be qualita-
tively changed by a small perturbation, i.e. the observability
is not robust. This makes sense because, when δ = 0, the
system is unobservable. Consider the observability of x(T )

for some fixed time T . The solution of (34) is

x1(t) = (x1(T ) + δx2(T )(t − T ))et−T

x2(t) = x2(T )et−T

y(t) = (x1(T ) + δx2(T )(t − T ))et−T

It it straightforward to derive the norm of y

||y||2 =
T∫

0

y2(t)dt

= [
x1(T ) x2(T )

] [ α11 α12δ

α21δ α22δ
2

] [
x1(T )

x2(T )

]
(35)

where

α11 = 1 − e−2T , α12 = α21 = (T + 1

2
)e−2T

−1

2
, α22 = 1

2
− (T 2 + T + 1

2
)e−2T

Therefore, the unobservability index of x(T ) is

ρ/ε = 1/σmin

where σ 2
min is the smallest eigenvalue of the matrix in (35).

It can be shown that

σ 2
min =

1
4 (e−4T + 1) − (T 2 + 1

2 )e−2T

1 − e−2T
δ2 + O(δ3)

If T is large, then

ε/ρ = σmin ≈ 1

2
δ + O(δ3) (36)

Because γo = δ, (36) implies that the observability of x(T )

defined in this paper coincides with the radius of observabil-
ity γo.
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Although γo reflects the observability of the states at t =
T , ρ/ε and γo have some fundamental differences. The value
of γo represents the radius of observability which is a measure
of observability robustness. It cannot tell the observability of
x(t) when t �= T . In fact, for a small value of δ, the initial state
x(0) can still be strongly observable if T is large, assuming
that δ is a known constant. Another difference lies in the fact
that ρ/ε is defined for the partial observability of a large
system, which is not reflected by γo. ��

In the following example we use Burgers’ equation to
illustrate the partial observability in a subspace based on the
Fourier exansion.

Example 2 Consider the following Burgers’ equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= κ

∂2u(x, t)

∂x2

u(x, 0) = u0(x), x ∈ [0, L]
u(0, t) = u(L , t) = 0, t ∈ [0, T ]

(37)

where L = 2π , T = 5, and κ = 0.14. The output space
consists of functions representing data from three sensors
that measure the value of u(x, t) at fixed locations

⎡

⎣
y1(tk)
y2(tk)
y3(tk)

⎤

⎦=
⎡

⎣
u( L

4 , tk)
u( 2L

4 , tk)
u( 3L

4 , tk)

⎤

⎦ , tk =k
t, k = 0, 1, 2, . . . , Nt

(38)

where 
t = T/Nt , Nt = 20. Figure 2 shows a solution
with discrete sensor measurements marked by the stars. In
the output space

||y||Y =
( Nt∑

k=0

(y2
1 (k) + y2

2 (k) + y2
3 (k))

)1/2

The approximation scheme is based on equally spaced
grid-points

x0 = 0 < x1 < · · · < xN = L ,

where


x = xi+1 − xi = L/N .

System (37) is discretized using a central difference method

u̇N
1 = −uN

1
uN

2 − uN
0

2
x
+ κ

uN
2 − 2uN

1


x2

u̇N
2 = −uN

2
uN

3 − uN
1

2
x
+ κ

uN
3 + uN

1 − 2uN
2


x2

...

u̇N
N−1 = −uN

N−1

uN
N − uN

N−2

2
x
+ κ

uN
N + uN

N−2 − 2uN
N−1


x2

(39)

Fig. 2 A solution of Burgers’ equation with sensor measurements

where uN
0 = uN

N = 0. For any v(x) ∈ C([0, L]), we define

P N (v) = [ v(x1) v(x2) · · · v(xN−1)
] ∈ R

N−1

For any vN ∈ R
N−1, define

�N (vN ) = v(x) ∈ C[0, L]
be the unique function of cubic spline determined by vN and
(x0, x1, . . . , xN ) satisfying v(0) = v(L) = 0. We adopt L2-
norm in C[0, L]. For any vector vN ∈ R

N−1, its norm is
defined as

||vN ||2N = 2π

N

N−1∑

i=1

v2
i

The space for estimation is defined to be

W =

⎧
⎪⎨

⎪⎩
α0/2 +

KF∑

k=1

(
αk cos(

2kπ

L
x)

+βk sin(
2kπ

L
x)

)
∣∣∣∣∣∣∣

αk, βk ∈ R

α0/2 +
KF∑

k=1

αk = 0

⎫
⎪⎬

⎪⎭

In this section, KF = 2. This means that we want to find the
observability for the first five modes in the Fourier expansion
of u(0). Or equivalently, we would like to find the observ-
ability of
[
α0 α1 β1 α2 β2

]

Define

X N = [ x1 x2 · · · xN−1
]T
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number of grid−points

Fig. 3 The observability of Burgers’ equation

then

W N =

⎧
⎪⎨

⎪⎩
α0/2 +

KF∑

k=1

(
αk cos(

2kπ

L
X N )

+βk sin(
2kπ

L
X N )

)
∣∣∣∣∣∣∣

αk, βk ∈ R

α0/2 +
KF∑

k=1

αk = 0

⎫
⎪⎬

⎪⎭

In this example, the nominal trajectory has the following
initial value

u0(x) = −2 + cos(x) + sin(x) + cos(2x) + sin(2x)

Its solution is shown in Figure 2. To approximate its observ-
ability, we apply the empirical Gramian method to (39) in
the space W N . The ratio ρ/εN is approximated for N = 4k,
5 ≤ k ≤ 21. The value of unobservability index approaches
(Figure 3)

ρ/ε = 6.87 ��

7 Conclusions

A definition of partial observability using dynamic optimiza-
tion is introduced for PDEs. The advantage of this definition
is to resolve several issues and concerns about observability
in a unified framework. More specifically, using the concept
one can achieve a quantitative measure of partial observabil-
ity for PDEs. Furthermore, the observability can be numer-
ically approximated. A practical feature of this definition
for infinite dimensional systems is that the observability can
be numerically computed using well-posed approximation
schemes. It is mathematically proved that the approximated
partial observability is consistent with that of the original
PDE. A first order approximation is derived using empirical
Gramian matrices. The concept is illustrated using several
examples.
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