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Abstract For a given delay value τ̄ , an approach is devel-
oped here to compute the iso-parameter settings of the gen-
eral class of single-delay retarded-type LTI system such that
this system can have a delay margin of precisely τ̄ , and is
thus guaranteed to be asymptotically stable for all positive
delays less than τ̄ .

Keywords Delay margin design · Stability · Linear delay
system

1 Introduction

Time delays exist in many dynamical systems encountered
in engineering, physics, biology, and economics [1–7]. As
was extensively reported in the literature, when delays enter
in a feedback loop in a system, e.g., via a closed-loop con-
trol architecture, the system may perform poorly and even
become unstable. Many studies were hence devoted to the
understanding of how delay affects the stability and closed-
loop control of systems with delays [8–13].

Analyzing the stability of systems with delays can be chal-
lenging even for linear time invariant (LTI) systems. This is
mainly due to the difficulties in managing, solving, handling
some infinite dimensional eigenvalue problems arising from
the analysis. One may choose to follow either one of the two
research mainstreams to investigate stability, namely, those
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based on time-domain analysis [8,10,11,14], and those based
on frequency domain [13–15]. These approaches have their
respective superiorities, yet frequency domain techniques
have been most preferred in cases when one wishes to analyze
stability consistent with the Nyquist stability criterion, see,
e.g., [12]. Along these lines, existing work is mainly focused
on revealing the stability-instability decomposition of a given
system with respect to a single or multiple system parameters.
For instance, some studies [4,12,13,15–20] focus on reveal-
ing for which delay values τ an LTI system with single delay
maintains its stability, whereas those in [4,12,13,21] explore
the stability of the system with respect to system parameters.
Moreover, the authors in [22] study the maximum delay mar-
gin achievable in a class of LTI systems with single delay,
while in [4,13,16,23–29] the main objective is to reveal the
“regions” in multiple-delay parameter space, where the LTI
system is stable. The cited studies utilize various mathemat-
ical techniques to handle the difficulties inherently present
in the stability analysis, all of which ultimately rely on two
important fundamental theoretical results, namely, the con-
tinuity property of the arising eigenvalue problems in the
parameter space [9], and the associated D-decomposition/τ -
decomposition theorem [13,17].

Continuity property of system eigenvalues with respect to
system parameters allows one to handle the stability analysis
by focusing on whether or not these eigenvalues ever cross
the imaginary axis of the complex plane. If they do, then the
system may switch from stability to instability, or vice versa,
depending on in which direction such eigenvalues move
across the imaginary axis, with respect to the parameter of
interest. This property then supports the D-decomposition/τ -
decomposition theorem by which one should expect to find
countably many regions in the parameter space, where in each
region the system can possess only a finite number of unstable
eigenvalues, N . Whenever N = 0 in a region, the system is
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stable for all the points in that region, and the boundaries that
separate these regions are formed by some critical parameter
values that impart imaginary-axis eigenvalues.

Several stability analysis techniques stemming from fre-
quency domain, to a certain degree, can also be adapted for
parametric analysis. For instance, one can relax a system
parameter p ∈ R, and investigate how the system stability
along the delay axis τ(p) ≥ 0 is affected as the parameter
varies in a range. This can be easily implemented within a
stability analysis framework, and, as expected, would require
a parameter sweep for p. While this approach can be satis-
factory in some cases, it may not serve well for a general
parametric design/synthesis problem in which one actually
knows the precise amount of delay τ̃ > 0 in the control loop,
and wishes to utilize this information to design the parame-
ters p(τ ) of the system. This is achieved as early as in 1960s
on special classes of LTI systems with single delay by the
work of Popov [12] pg. 437, as well as in [30] on a second-
order system using the generalized Hermite-Biehler theorem.
In such cases, one would desire to know the parameter set-
tings of the system for which the system would maintain its
stability for τ ∈ [0, τ̄ ), where τ̄ > τ̃ . That is, the control
designer could select a delay value τ̄ such that τ̄ > τ̃ , and
reveal the iso-parameter curves p̄(τ̄ ) along which the system
at hand is in transition from stability to instability. The set-
tings on these curves would hence guarantee the stability of
the system for 0 ≤ τ < τ̄ .

To the best of our knowledge, for a given fixed τ̄ as
described above, and also known as “delay margin” [15], a
parameter design approach for the general LTI systems with
a single delay has not been thoroughly investigated, and this
article is devoted to address this design problem. Here, we
focus on the retarded-type systems, however the presented
approach could be expanded to handling neutral type and
fractional type systems as well, paying attention to the pecu-
liarities in eigenvalue behaviors of these types of systems
[11,31].

In this article, we demonstrate that Rekasius transforma-
tion [32], which was utilized for various purposes [19,28,
29,33–37], can also be used for the objective at hand, yet the
implementation requires several non-trivial steps. Once these
steps are tailored together, it becomes possible to reveal the
iso-parameter curves of the LTI system at hand, where on the
curves, the system is oscillatory at a frequency ω for the given
delay value τ̄ , and is stable ∀ ∈ [0, τ̄ ). This inverse problem
is indeed difficult to solve since one should find an approach
to make sure that all the system eigenvalues except those on
the imaginary axis ∓ jω are on the left-half plane, and at the
same time, the delay value that places the eigenvalues on the
imaginary axis is precisely at τ = τ̄ , while making sure that
stability is maintained ∀ ∈ [0, τ̄ ).

Notations used in the text are standard. We have R for the
set of real numbers, and open left-half of complex plane C is

represented by C−. We use s ∈ C for the Laplace variable;
the delay is denoted by τ , while T stands for the parameter
of the Rekasius transformation [32]. Arguments are omitted
for easier reading when no confusion occurs.

2 Preliminaries

In this section, we first formulate the problem, and present
some of the well-known fundamental concepts regarding the
stability of the LTI system investigated.

2.1 Stability of a single-delay retarded-type LTI system

We start with the following general class of LTI systems with
a single delay,

d

dt
x(t) = Ax(t) + Bx(t − τ), (1)

where x(t) is the state vector, A and B are state and control
matrices, respectively, all with appropriate dimensions, and
τ is the non-negative constant delay. The matrices A and B
have numerical entries as well as parameters/controller gains
kz ∈ R, z = 1, . . . , z̄.

The characteristic equation of the system in (1) is known
to be in the following general form [19],

f (s; e−sτ ) =
K∑

�=0

P�(s, kz)e
−� s τ = 0, (2)

where τ ≥ 0 is the delay, and P� are polynomials in terms
of s. Notice that Eq. (2) is set up such that the polynomial
P0(s) does not multiply any exponential functions and P0(s)
has the largest power of s. This is because delay in (1) affects
only the state x(t −τ). Systems with such property are called
retarded class systems [13], which are encountered in many
real-world problems [5,13,14].

For the stability analysis of the system in (1), the previ-
ous work [4,5,12,16,18,19,38] mainly focused on charac-
terizing the delay parameter space τ ≥ 0 as stabilizing and
destabilizing intervals. These studies are concerned with the
analysis of the delay parameter space, “given” the parametric
values kz = k∗

z . For this, the analysis starts with detecting
the stability transitions of the roots of (2) in delay parame-
ter space. The key knowledge used in all the studies is the
continuity property of these roots on C [9], which states that
stability transitions may occur only when at least one root of
(2) is on the imaginary axis at s = jω for some τ ∗, where
the frequency ω is non-negative without loss of generality,
[12,16]. In other words, at the stability transitions of the sys-
tem, the following equation must hold,

f ( jω; e− jωτ ) =
K∑

�=0

P�( jω, kz)e
− j � ω τ = 0. (3)
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2.2 Rekasius substitution and some properties of stability
transitions

We present the remainder of the section for kz given. Among
many techniques and mathematically elegant manipulations
utilized in the stability analysis of (1), one of them, a trans-
formation proposed by Z. V. Rekasius [32], attracted further
attention (see cited studies above), which we will also utilize
in the Main Results section. The transformation given by

e− jωτ := 1 − jT ω

1 + jT ω
, (4)

where T ∈ R, suggests that all the exponential terms in (2)
are to be replaced by the right-hand side of (4). Note that
this transformation is exact, and should not be confused with
Padé approximation.

With the substitution of (4) into (2), and after removing
the fractions by expansion, which does not bring any artificial
s = jω roots, one obtains a new characteristic equation,

g( jω; T )

= (1 + jT ω)K f

(
jω; e− jωτ = 1 − jT ω

1 + jT ω

)
= 0,

(5)

which is algebraic and parametric in T . While performing
the above conversion from (3) to (5), no approximation is
imposed, and accuracy is not lost since the infinite dimen-
sional nature of the problem is preserved in the algebraic
polynomial (5) with the help of the additional parameter
T ∈ R [19,32], termed the pseudo-delay [39] and core gen-
erators [29]. Moreover, as established earlier [32], the sub-
stitution (4) is valid and exact so long as τ complies with

τq = 2

ω
[arctan(ωT ) ∓ qπ ], q = 0, 1, 2, . . . ,∞, (6)

which can be easily derived from (4). That is, the imagi-
nary roots of (2) and (5) are one to one identical [29]. Yet,
extracting these roots from (5) is more practical owing to its
algebraic form.

Equation (6) indicates that for some T and ω satisfying
(5) at s = jω, there exists infinitely many τ solutions found
from (6) that also satisfy (2) at s = jω, see [19,29]. In other
words, each (T, ω) pair that satisfies (5) for s = jω maps
to points (τ0, τ1, . . . , τq , . . .) found from (6). These points
mark the delay parameter space, bisecting it into intervals,
where in each interval the system is either stable or unsta-
ble. These properties comply with the very fundamentals of
the stability properties of retarded class systems based on
τ -decomposition principle [12,13,17].

Following from the above discussions, one can formalize
stability-transition properties of the system as follows. The
crossing frequency set of (1) is defined as

� = {ω1, . . . , ωm}, (7)

with respective T values,

ϒ = {T1, . . . , Tm}, (8)

and corresponding delay values are found, using (7) and (8),
as

τk,q = 2

ωk
[arctan(ωk Tk) ∓ qπ ], k = 1, . . . , m,

q = 0, 1, 2, . . . ,∞, (9)

where τk,0 is the smallest positive delay value, see [19][29].

Remark 1 Notice that the approaches described in the litera-
ture including those stemming from Rekasius transformation
are implemented to calculate the stable-unstable regions of
the LTI system along the delay axis, see cited studies above.
That is, calculation of the delay values is an “end result” in
these approaches. Nevertheless, solving the reverse problem,
that is, synthesizing the stability/instability decomposition of
the delay axis with kz being the end-result of the design is
not straightforward, as we detail in the following section.

2.3 Delay margin and number of crossings

The delay margin τ̄ of the system (1) is the smallest positive
delay value at which the delay-free stable system transitions
to instability [15]. That is, it is required that the system is
stable when free of delays (τ = 0), and in that case, the
delay margin is defined as τ̄ = mink(τk,0).

One critical point here is the number of crossings m. If
m = 1, it is easy to detect the delay margin τ̄ = τk,0; however
when m > 1, then the delay margin is the smallest of τk,0,
k = 1, . . . , m. In the next section, this will play an important
role in designing the system parameters for a given delay
margin.

The number m can be determined in various ways [38],
one being borrowed here from [18]:

Lemma 1 [18] The number of imaginary axis crossings m
can be at most 2n2, where n is the dimension of (1).

From the work [18], which was also surveyed in [38], one
defines

�0 = I ⊗ I, �1 = I ⊗ A − A ⊗ I,

�2 = B ⊗ B − A ⊗ A, (10)

with which the following matrix made of n2×n2 block matri-
ces is computed

	 =
(

0 �0

−
2 −
1

)
, (11)

where 
1 = �−1
0 �1 and 
2 = �−1

0 �2.

Lemma 2 [18] Let S = {λ1(	), . . . , λ2n2(	)}. Then it
holds that � ⊆ S.
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In other words, to find the number of crossings1 m, one can
first compute the eigenvalues of matrix 	, and next follow
[18] to verify which eigenvalues are in the set �.

Further details regarding the detection of the delay
values τk,q in (9). can be found in [5,13,38] and the
cited studies in the previous section regarding analyzing
the stability-instability composition of the delay axis for
fixed kz .

3 Main results

In this section, the objective is to reveal an approach by which
one can design the parameters kz ∈ R in (2) such that the
system represented by (2) is stable for τ ∈ [0, τ̄ ), given τ̄ .
Note that we restrict this design to synthesizing the delay axis
only for the delay margin τ̄ , and future work will be focused
on designing multiple stability intervals along the delay axis.

As per problem setup, the system for τ = τ̄ must have
eigenvalues at s = jω∗, and hence it is necessary that the
following equation holds,

f ( jω∗; e− jω∗ τ̄ , kz) =
K∑

�=0

P�( jω∗, kz)e
−� jω∗ τ̄ = 0. (12)

To be able to solve the above equation in order to compute
the iso-parameter curves for a given τ = τ̄ > 0, one should
solve (12) for ω∗ ∈ R and kz ∈ R, however this is not an
easy task for various reasons:

(a) Equation (12) is transcendental with infinitely many
solutions (ω∗, k1, . . . , kz, . . . , kz̄), whether or not they
all lie in real domain,

(b) One should find a specific solution of ω∗ ∈ R and kz ∈ R

such the infinitely many roots of (2) for τ = τ̄ have
negative real parts, except those at s = jω∗.

(c) A feasible solution of parameters kz guaranteeing the
desired delay margin τ̄ may not exist.

(d) The system may have multiple crossings, m > 1, making
the design process complicated.

In the following, we propose an approach by which we
can determine whether or not the iso-parameter curves exist,
and if they exist, we can detect these curves.

3.1 Derivation of design rules

The proposed design procedure is constructed based on the
following logic line:

1 Note that Lemma 1 considers both positive and negative values of
ω. Hence, the number of positive ω solutions is at most n2, since the
roots of the characteristic equation must be symmetric, see also [38] for
discussions.

Given the known delay value τ = τ̃ in the control loop in
(1), the control designer selects a finite delay τ̄ , where τ̄ > τ̃ ,
and calculates the set of system parameters lying on some iso-
parameter curves corresponding to system’s stability margin
τ̄ such that the same system is for sure guaranteed to be
asymptotically stable ∀τ ∈ [0, τ̃ ].

Let us first identify the necessary rules that need to be
respected for a feasible solution to exist:

Rule 1: Since it is required that the system is stable for
τ = 0, one needs to guarantee the stability of the delay-free
system. This requires that A + B is a Hurwitz matrix, or
equivalently, the roots of f (s; 1) = 0 all lie in C−. This part
of the analysis can be trivially established using the Routh-
Hurwitz stability criterion [40].

Since we guarantee the stability of the delay-free system,
we know that the system cannot have an eigenvalue at s = 0
for any finite delay in R+ [41]. Moreover, without loss of
generality, we can focus only on the positive real axis of the
ω parameter, thus we have ω > 0 in the rest of the text.

Lemma 3 Given τ̄ , the solution ω∗ of (12) satisfies the con-
dition 0 ≤ ω∗ < 2π/τ̄ .

Proof Notice that the positive delay solutions satisfying (2)
for ω∗ when arranged in increasing order on the delay axis
should have the following properties. First of all, the min-
imum positive delay solution, i.e., the positive delay value
closest to the origin of the delay axis, must be the predeter-
mined value τ̄ . Moreover, for delay τ̄ to really be the mini-
mum positive delay, it is necessary that the delay value pre-
ceding τ̄ is negative, which requires, from the inspection of
(6), that the inequality τ̄ − 2π

ω∗ < 0 holds, which proves the
lemma. ��

Rule 2: In light of Lemma 3, it is necessary that 0 < ω∗ <

2π/τ̄ holds.

Lemma 4 Let φ = ω∗T ∈ R. The minimum positive delay
τ̄ can be formulated as follows:

τ̄ =
{ 2

ω∗ arctan(φ), where φ > 0,

2
ω∗ [arctan(φ) + π ], where φ < 0.

(13)

Proof Use (6) to calculate the minimum positive delay value
as follows. If φ > 0, then π/2 > arctan(φ) > 0, and q = 0
in order to calculate the minimum positive delay value. But
if φ < 0, then −π/2 < arctan(φ) < 0. This requires to set
q = 1 so that the delay value can still be made minimum and
positive. Other values of q render positive delays but violate
the minimum positivity condition, can hence be ignored. ��
Remark 2 Notice that φ = 0 is ignored here as it requires that
the characteristic equation has an imaginary root s = jω∗
for either ω∗ = 0, or T = 0. Notice from [19,32] that T = 0
and τ = 0 give rise to identical characteristic equations as
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Fig. 1 The curve τ̄ω∗ as a function of φ = ω∗T . Here τ̄ is known and
fixed

a special case. As per Rule 1, since the delay-free system is
asymptotically stable, having imaginary roots s = jω∗ for
T = 0 is not possible. Furthermore, it is known from [41]
that ω → 0 as τ → +∞, which does not comply with the
assumption that τ̄ is finite.

Rule 3: As per the above discussions, for a given φ, the
frequency ω∗ is calculated from (13) as

ω∗ = 2

τ̄

(
arctan(φ) − (signum(φ) − 1)π

2

)
, φ �= 0.

(14)

Equation (14) can be used to visualize the function τ̄ω∗, see
Fig. 1, which shows that τ̄ω∗ is upper/lower bounded.2 As
can be seen in the figure, the curve τ̄ω∗ has some features.
First of all, it scales proportionally with ω∗; it monotonically
increases as φ varies from −∞ to +∞, except a drop at
φ = 0, which is ignored as per Remark 2; given the closed-
loop delay τ̃ and depending on the value of ω∗, one can find
a range of φ such that τ̄ can be designed to be larger than τ̃ ;
due to monotonicity properties and that ω∗ is only a scaling
parameter, for a given ω0 the constant line τ̃ω0 intersects the
curve τ̄ω∗ at one and only one point, except when |φ| → ∞.
Nevertheless, it is easy to confirm from (14) that one obtains
the same numerical value for both φ → +∞ and φ → −∞,
which is π .

In light of Rule 3, it makes sense to propose the following
approach to compute the iso-parameter curves. Let φ be the
sweep parameter3 in an interval φ ∈ [φ, φ]. Then, for a given

2 The fact that τω ∈ [0, 2π ] was previously used for “analysis pur-
poses”, within the ‘Building Block’ concept in [41].
3 This is analogous to “frequency sweeping” ideas introduced in [42],
except that the frequency ω here is scaled by the pseudo-delay parameter
T . This may also resemble the Building Block concept [41], yet in the

φ ∈ [φ, φ], one can compute from (4) the following

e− jω∗ τ̄ = 1 − jφ

1 + jφ
, (15)

which suggests that all e− jω∗ τ̄ terms in (12) can be replaced
by the complex number on the right hand side of (15). With
this replacement, the characteristic equation to be studied
becomes less complicated since the exponential terms are
removed,4

f

(
jω∗; 1− jφ

1+ jφ
, kz

)
=

K∑

�=0

P�( jω∗, kz)

(
1− jφ

1+ jφ

)�

= 0,

(16)

which is a polynomial with complex coefficients and in terms
of ω∗ and system parameters kz . Moreover, notice that the
value of ω∗ is dependent on φ and is known as per (14).
Therefore, by dropping the arguments that are numerically
known, and leaving only the design parameters as arguments,
we have

f (kz) = f�(kz) + j f�(kz) = 0, (17)

which can hold if and only if f� = 0 and f� = 0. That
is, in order to find the iso-parameter curves in kz domain,
one should study the common solutions of the following two
polynomials with real coefficients,

f�(kz) = 0, (18)

f�(kz) = 0. (19)

Rule 4: Notice that the procedure described above must
be followed by the consideration of the number of crossings
of the system, m. For this, once the common solutions of
(18)–(19) are found, for each solution point kz , one should
revisit Lemma 2 to perform the following tests in order to
verify whether or not kz is a feasible solution5:

(a) Find the value m.
(a1) If m = 1, then proceed to step (b),
(a2) If m > 1, then compute τk,0 from (9),

(a2.1) If τ̄ ≤ mink=1...m τk,0, then τ̄ is indeed the smallest
possible delay causing a loss of instability, as desired
in the design process, and hence one proceeds to step
(b);

Footnote 3 continued
previous work, τω is the sweep parameter, and the delay margin τ̄ is to
be calculated as an end result but is not fixed in the problem formulation.
4 This is possible since the delay τ̄ , ω∗, and the “scaled” frequency φ

are numerically known. We introduced this idea for a different purpose
in [28] mainly for taking 2D cross-sectional views of stability maps of
LTI systems with more than three independent delays.
5 Note that by design we are enforcing one crossing in the system,
hence m �= 0.
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(a2.2) If τ̄ > mink=1...m τk,0, then this means there exists a
different and smaller positive delay value that initiates
a loss of instability, and hence one should proceed to
step (c);

(b) The value kz is feasible.
(c) The value kz is not feasible.

Corollary 1 For a given φ, a point on the iso-parameter
hypersurfaces in kz parameter space exists if and only if the
polynomials in (18)–(19) have a common root; and this root
satisfies Rules 1–2 as well as either one of the following
conditions:

(a) m = 1; or
(b) m > 1 and τ̄ ≤ mink=1...m τk,0 holds.

Proof First step of the proof follows from the fact that a
common root kz of (18)–(19) is also a root of the original
characteristic Eq. (12), as per the properties of Rekasius sub-
stitution [29]. Moreover, since Rule 1 holds, the system is
stable for τ = 0, and since Rule 2 holds, the crossing ω∗
occurs at τ = τ̄ , which is the smallest positive delay value.
Since ω∗ is enforced by design, we have m ≥ 1. If m = 1,
then this is the enforced crossing, and there are no other
imaginary axis crossings, and thus kz is on the iso-parameter
curve (item (a)). However, if m > 1 for a kz value satisfy-
ing (18)–(19), then it is necessary to check whether or not
any additional crossings violate the intended delay margin
design. As explained above, as long as additional crossings
occur at delay values larger than τ̄ , the intended design will
be successful (item (b)). Conversely, if there are more than
one crossing, m > 1, with at least one delay value less than τ̄ ,
then the intended delay margin design fails, similar to when
Rule 2 does not hold. If Rule 1 does not hold, then the sys-
tem does not have a delay margin by definition, and since the
Rekasius substitution is a two-way condition [29]; the design
fails if (18)–(19) do not have common kz roots, which would
imply that a solution kz does not exist satisfying the original
characteristic Eq. (12). ��

Notice that equations in (18)–(19) are multi-variate poly-
nomials, and in general, for more than three independent
parameters, the complete solution set may not be easily
obtained. Nevertheless, the analytical form of these polyno-
mials can be used to perform various parametric studies, for
instance, for designing the P I gains controlling a plant with
transport delay [30]. Moreover, if one wishes to explore the
parametric variations in kz starting from a known initial point
kz = kz,0, then it would be possible to explore the common
solutions of the hypersurfaces (18)–(19) by implementing a
continuation algorithm. These types of increased-dimension
issues are inevitable, and arise in various multi-parameter

problems, where parametric sweeping is the only choice; see
a discussion on this in [26,43].

In the case when there are less than three independent vari-
ables, z < 3, more tractable results are possible as explained
next:

3.1.1 One independent variable k

A single parameter design is the simplest case, however it
carries some inherent challenges since there is only one free
parameter that should satisfy (18)–(19) simultaneously. Due
to this reason, an explicit solution of k is not possible in gen-
eral, and one should use graphics to determine the common
solutions, as detailed next.

In the case of a single variable k, one needs to find the
common solutions in (18)–(19) for a given φ, but this is not
easy since ω∗ is dependent on φ, see (14). That is, we have
ω∗(φ). One way to tackle this problem is to solve k from
(18)–(19), and form an ‘error’ function as follows. Let k
solved from (18) and (19) be denoted respectively by k� and
k�. Then the error function is formulated only by a function
of φ as follows,

e(φ) = k� − k�, (20)

zeros of which are the candidate solutions φ̃ found graphi-
cally and via nonlinear solvers. Using the candidate solutions
φ̃, one can compute ω∗ using (14), and subsequently the value
of k = k� = k�. If these candidate solutions satisfy Rules
1–2 and Rules 4, then they lie on the iso-parameter curves,
as per Corollary 1.

Notice that the above approach requires to plot the error
function e(φ) with respect to φ, and to use a nonlinear solver
to compute the zero crossings of the error function along the
φ-axis.

3.1.2 Two independent variables k1 and k2

In some problems, it is possible to solve k1 and k2 explicitly
from (18)–(19), which would yield a solution in the following
form

k1 = k1(φ, ω∗), (21)

k2 = k2(φ, ω∗), (22)

in which one sweeps the single parameter φ in connection
with (14) in order to obtain the candidate points, which can
then be refined in Corollary 1, in order to reveal the iso-
parameter curves in an automated way. However, in general,
simultaneous solution of (18)–(19) may not be possible since
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the polynomials are in the following form

f�(k1, k2) =
L1∑

�1

γ�1(k1)k
�1
2 = 0, (23)

f�(k1, k2) =
L2∑

�2

γ�2(k1)k
�2
2 = 0, (24)

where L1 and L2 are integers, and γ�1 and γ�2 are polynomi-
als only in terms of k1. In such cases, the common solutions
of (23)–(24) can be found by the implementation of resultant
theory [44]. For this, one constructs the Sylvester’s matrix
using the coefficients γ�1(k1) and γ�2(k1). That is, the entries
of the Sylvester’s matrix are in terms of only k1. Accord-
ing to the resultant theory, if the polynomials (23)–(24) have
a common solution (k∗

1 , k∗
2), then the Sylvester’s matrix is

singular, however the converse is not always true. To uti-
lize this property, one can compute the determinant of the
Sylvester’s matrix, and study the zeros of this determinant,
which depend on only k1. The zeros k̃1 of the determinant
are candidate solutions. Each candidate k1 = k̃1 is substi-
tuted into (23), in order to solve for candidate k2 = k̃2 roots.
One then tests whether or not any of the pairs (k̃1, k̃2) satisfy
(24). Those satisfying (23)–(24) are the common solutions
(k∗

1 , k∗
2) that we are after. These solutions are then further

processed in Corollary 1 in order to detect the iso-parameter
settings.

3.2 Case study 1

Let us investigate the scalar single-delay LTI dynamics with
the following characteristic equation,

f (s; e−τ̄ s) = s + a + be−τ̄ s = 0, (25)

where τ̄ > 0 is given.

3.2.1 a is fixed, and b is the only free parameter

In this case, the equations corresponding to (18)–(19) are
computed as follows,

f�(b) := −ω∗φ + a + b = 0, (26)

f�(b) := ω∗ + φ(a − b) = 0. (27)

From (26) we solve b1 := b, and with the fact that φ �= 0
as per Remark 2, we can solve b2 := b from (27),

b1 = φω∗ − a, (28)

b2 = ω∗ + aφ

φ
. (29)

Fig. 2 Proof of Lemma 5: Comparison of ω∗
a with ω∗τ̄

Using the two equations above, the error function can be
organized as follows

e(φ) := b1 − b2 = ω∗φ2 − 2aφ − ω∗

φ
, (30)

which must be solved for its zeros.

Lemma 5 For a given a and τ̄ , the system represented by
the characteristic equation in (25) can be made stable for
τ ∈ [0, τ̄ ) at most by two b values.

Proof Since ω∗ is always finite as the system at hand is of
retarded type [13], we have e(φ) �= 0 for φ → ∞, and hence
we can focus on studying the zeros of the numerator of (30),
which can be organized as

ω∗ = 2aφ

φ2 − 1
. (31)

The above equation must hold under the constraint (14)
describing the dependency of ω∗ on φ, see also Fig. 1. More-
over, for any given a, the right hand side of (31) is monoton-
ically decreasing in φ either from zero to negative infinity,
or from positive infinity to negative infinity, or from positive
infinity to zero, and this function is negative for φ < −1 and
φ ∈ (0,+1) where it cannot intersect with the function ω∗,
which is always positive, see Fig. 2. Furthermore, ω∗ func-
tion is also a monotonic function, where it is increasing from
π/τ̄ to 2π/τ̄ as φ changes from −∞ to zero, and increasing
from zero to π/τ̄ as φ changes from zero to +∞. Conse-
quently, since φ = 0 is not considered in the analysis, we
have that the two curves on both sides of the equation sign
in (31) can intersect at most two times. ��

3.2.2 a and b are free parameters

Lemma 6 The system represented by the characteristic
equation in (25) is stable for τ ∈ [0, τ̄ ) if and only if the
following conditions simultaneously hold:

(i) a + b > 0;
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(ii) The parameter pair (a, b) lies on the contours parame-
terized by φ,

a(φ, τ̄ ) = (φ2 − 1)(arctan(φ) − (signum(φ) − 1)π/2)

τ̄φ
,

(32)

b(φ, τ̄ ) = (φ2 + 1)(arctan(φ) − (signum(φ) − 1)π/2)

τ̄φ
.

(33)

Proof Item (i) follows from Rule 1. Furthermore, following
the proposed approach above, one can find the parametric
curves a(φ, τ̄ ) and b(φ, τ̄ ) as

a(φ, τ̄ ) = ω∗(φ)(φ2 − 1)

2φ
, (34)

b(φ, τ̄ ) = ω∗(φ)(φ2 + 1)

2φ
, (35)

into which ω∗(φ) in (14) can be plugged to get (32)–(33).
Since (14) is used to plug in ω∗, Rule 2 is automatically
satisfied. Moreover, following [20] it is easy to show that
the system at hand can have maximum of one crossing m =
1, and hence the computed (a, b) pairs are feasible as per
Corollary 1.

In light of item (i) in Lemma 6, using (34)–(35), we have

a + b = φω∗(φ) > 0, (36)

from which we conclude that φ > 0 must hold, since
ω∗(φ) > 0 as per Rule 2. This result along with the fact
that m = 1 indicates that there is always a feasible (a, b)

pair ∀φ > 0.

Corollary 2 The parameters a and b that make the system
represented by (25) stable for τ ∈ [0, τ̄ ) are unbounded in
positive real domain.

Proof Proof follows from the fact that, since ω∗ is always
upper bounded as per Rule 2, the term φ2 dominates the
numerator of (32)–(33), and that a feasible (a, b) pair always
exists ∀φ > 0. ��
Lemma 7 There exists at least one (a, b) pair for which the
finite delay margin τ̄ of the system represented by (25) can
be made arbitrarily large.

Proof It follows that Eqs. (32)–(33) are inversely propor-
tional to τ̄ , and thus, for arbitrarily large τ̄ values, feasible
but arbitrarily small values of a and b exist, in support of
Corollary 2. ��

3.3 Case study 2

Consider the problem studied in [30], where an open loop
plant with transfer function

G(s) = K
e−τ s

αs + 1
,

is controlled by a P I controller of the form

C(s) = kp + ki

s
,

with a unity negative feedback, and the constant delay in the
plant is known to be fixed at τ = τ̃ . Using the approach
described above, we can calculate the P I gains (kp, ki ) for
which the closed-loop system can be made oscillatory, that
is, τ̄ = τ̃ . Without loss of generality, we take K = 1, and
investigate the case of stable open-loop system, i.e., α > 0.

The characteristic equation of the system for τ = τ̄ = τ̃

is given by

f (s; e−τ̄ s) = αs2 + s + (kps + ki )e
−τ̄ s = 0, (37)

from which, as per Rule 1, stability condition of the delay-
free system can be found as kp + 1 > 0 and ki > 0. Next,
one calculates Eqs. (23)–(24), which are found as

ki = −ω∗(αω∗(φ2 − 1) − 2φ)

1 + φ2 , (38)

kp = 2αω∗φ + φ2 − 1

1 + φ2 . (39)

Following the work of [20], we have m ≤ 2. One should
therefore pay attention when studying the closed form
expressions in (38)–(39); in case m = 2, the computed
(kp, ki ) values should be checked in Corollary 1 to make
sure that these values are feasible.

Lemma 8 The P I gains, if any, that achieve a delay margin
τ̄ in the closed-loop system with (37), are upper bounded.

Proof The proof follows from the fact that ω∗ is upper
bounded, and that φ2 terms appear in both the numerators
and denominators in (38)–(39). ��

The above lemma shows a contrast to the scalar case dis-
cussed in the previous subsection where we show that the
(a, b) parameter settings could be unbounded for a desired
delay margin in the system. This is mainly because there
exists an interesting interplay between the parameter φ and
the way the controller as well as the characteristic equation
is structured, which eventually determines the power of φ in
the closed-form expressions of the system parameters. This
ultimately determines the boundedness of these parameters
for ever achieving a certain delay margin in the system.
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4 Computations

4.1 Example 1

Take the characteristic equation studied in [45]:

f (s; e−sτ̄ ) = s3 + e−sτ̄ ((α + β)(s2 + s) + β) = 0, (40)

where α and β are design parameters. As per Rule 1, we find
out using Routh-Hurwitz stability criterion that the delay-
free system is stable if and only if the following conditions
hold concurrently:

• β > 0,
• α + β > 0,
• (β + α)2 − β > 0.

Following the approach described above, we obtain α and β

as follows

α = (ω∗)2

1 + φ2 (((ω∗)2 − 1)(φ2 − 1) + 2φω∗), (41)

β = − (ω∗)3

1 + φ2 (2φ + ω∗(φ2 − 1)). (42)

Moreover, (42) can be simplified as

β = (ω∗)2 1 − φ2

1 + φ2 − α, (43)

which we present here to also correct the missing (ω∗)2 typo
in the cited study.6

One key observation here is that, since the feasible ω∗
solution is always upper and lower bounded with respect
to φ, and since φ2 term appears both in the numerator and
denominator of (41)–(42), admissible α and β control gains
can be large, if they exist, but will have to be upper bounded
for a given τ̄ .

Using (41)–(42), we then compute (α, β) pairs for differ-
ent values of τ̄ . Next, one should check whether or not these
pairs violate the conditions in Corollary 1. Alternatively, here
we check whether or not the TRACE-DDE software [46]
confirms the validity of these pairs. Using this software, it
is found that no violations occur, and hence the computed
pairs are feasible, see Fig. 3. In the figure, we observe that,
as the delay margin τ̄ of the system is increased, the feasible
(α, β) gain values become smaller, in one sense to accommo-
date system’s stability for larger delays using weaker gains.
We also notice that β values reduce much more dramati-
cally compared to α values. Moreover, for (α, β) in the box
[0, 0.5]×[0, 0.5], we see that iso-contours become too close
to each other, showing significant sensitivity increase in sys-
tem’s delay margin against variations in (α, β) values. We

6 The computational results in the cited study are correct as they were
based on (41)–(42).

Fig. 3 The parametric settings for (α, β) pairs such that the character-
istic equation in (40) has a delay margin of τ̄

Fig. 4 Given τ̄ = 0.4 and the point (α, β) = (−0.7504, 4.001) from
Fig. 3, the real part σ of the rightmost root of the system with the char-
acteristic equation in (40) for a range of delay values τ . Computation
was performed using TRACE-DDE software [46]

also observe that smaller values of (α, β) gains do not neces-
sarily mean that system’s delay margin will increase, which
is contrary to the common sense.

We next pick a point P(x, y) = (−0.7504, 4.001) on the
contour τ̄ = 0.4, and compute the rightmost root behavior
of the system using TRACE-DDE software [46]. For com-
putations, we sweep the delay value τ from zero to 0.7, and
plot the real part σ of the rightmost root of the system, Fig. 4.
As expected, we find out that σ < 0, ∀τ ∈ [0, τ̄ ), and the
system transitions to instability precisely at τ = τ̄ .

4.2 Example 2

Let us study the system with the characteristic Eq. (37). In
order to compare the results with those in [30], we first set
α = 4, τ̄ = 1, and obtain the iso-parametric curve in P I
controller gain space, as depicted in Fig. 5a. It is easy to ver-
ify that the boundary found here is identical to the boundary
found in the cited study. However, note that, besides the math-
ematical approaches being completely different, the study in
[30] is concerned with finding the “regions” in the P I gain
space where the particular closed-loop system remains sta-
ble for a given delay, while the effort here is to compute

123



Delay-margin design for the general class 207

(a)

(b)

(c)

Fig. 5 Example 2: Given the delay margin τ̄ , the iso-P I gains are
studied for the system described by the characteristic equation in (37).

the particular iso-parametric curves that precisely place the
rightmost eigenvalues of system (1) on the imaginary axis
for a given delay, while guaranteeing that the system has a
delay margin τ̄ .

We move forward with additional parametric studies. In
particular, we are interested in how the iso-parameter curves
change with respect to a, which is inversely proportional to

the open-loop-plant bandwidth 1/a. For this, we investigate
combinatorically α = 4, α = 1, and α = 0.1 values with
respect to the delay values τ̄ = 1, τ̄ = 2, and τ̄ = 4. The iso-
parameter curves are shown in Fig. 5. In this figure, firstly,
we observe that, as the bandwidth of the system increases,
that is, when α becomes smaller, then the P I controller gains
must be reduced in order to maintain the same delay margin
in the closed-loop system. Moreover, when the stabilizing
P I gains are set in the vicinity of kp = −1 and ki = 0, i.e.,
the delay-free closed-loop system poles are stable but they
are near the imaginary axis of the complex plane, then we
observe that all the contours merge into each other, showing
that controller parameter space becomes extremely sensitive
to small variations, which, in the case of modeling uncertain-
ties, could destabilize the system.

Sensitivity problems arise also in the case of α = 0.1,
when kp is selected in the vicinity of kp = 1. Based on the
geometric shapes observed in these figures, and/or using the
closed-form expressions of kp and ki gains, we can also study
and judge the parametric space where such sensitivity issues
are less dramatic, and less likely to be an issue. For instance,
for α = 4, in order to achieve a delay margin of τ̄ = 1, it
makes more sense to select kp = 5 and ki ≈ 2.9, instead
of choosing kp = −0.9 and ki ≈ 0.1, showing interestingly
that larger gains can be more feasible for the robust operation
of the closed-loop system.

4.3 Example 3

Consider the following state space representation of a system
with a second-order open-loop plant described by ωn and ζ

as respectively the natural frequency and damping ratio, and
controlled by a P D controller with controller gains kp = 10,
and kd = 5, which is influenced by state measurement delay
τ ,

d

dt
x(t) =

(
0 1

−ω2
n −2ζωn

)
x(t)

+ α

(
0 0

−10 −5

)
x(t − τ), (44)

where τ = τ̄ is fixed, and one wishes to design the gain α

such that the closed-loop system has a delay margin of τ̄ .
Following the discussions in Sect. 3.1.1, we obtain two

solutions for α, one is denoted by α1 and the other is α2,
solved respectively from the equations corresponding to (18)
and (19),

α1 = (ω∗)2 + 2ζωnφω∗ − ω2
n

5(ω∗φ + 2)
, (45)

α2 = (ω∗)2φ − 2ζωnω∗ − φω2
n

5(ω∗ − 2φ)
. (46)

123



208 R. Sipahi

Next we explore the case when ωn = 2, ζ = 0.8, and τ̄ =
0.1. Using these numerical values, we form the error function
as defined in (20), which reads

e(φ) := α1 − α2. (47)

One next studies the zeros of the error function, and as
explained above, this can be done by sweeping the single
parameter φ and graphically studying the curve e(φ). We
find out that φ = φ0 = 1.076841135 is the only candidate
solution of the error function, and although another solu-
tion φ1 < 0 also exists, this solution violates Rule 1, and
is thus ignored. Corresponding α solution is calculated as
α = 3.2793, which is also found to guarantee the stability
of the delay-free system, confirming that Rule 1 is satisfied.
Moreover, we find, using (14) and τ̄ that ω∗ = 16.4476,
which complies with Rule 2. Moreover, to be consistent with
the conditions in Corollary 1, we perform rightmost root com-
putations using the TRACE-DDE software [46], which con-
firms that α = 3.2793 is the feasible solution.

The next question we wish to answer is how α needs to be
adjusted to maintain a certain delay margin in the system, for
different values of ωn and ζ . For this, we pick three different
ωn and ζ values, as reported on Table 1. Moreover, we fix τ̄ =
0.5. In this case, α is calculated for each combination of ωn

and ζ while checking compliance with Rule 1-2. Moreover,
to be consistent with the conditions in Corollary 1, we again
utilize TRACE-DDE software as above, see Table 1 for the
results. On the table, we present two different cases, one in
which feasible α exists, and the other where a feasible α was
not found and thus the corresponding setting is marked with
“not applicable N/A”. Also, although a generalization is not
possible, inspecting Table 1, we see that a larger α value can
be used to scale up the PD controller gains in order to keep
the same delay margin in the closed-loop system, if either ζ

is larger, or ωn is larger.

Table 1 Example 3. The settings that render the closed-loop system
in (44) marginally stable for the delay value τ̄ = 0.5, and stable for
0 ≤ τ < τ̄ = 0.5

ωn ζ α ω∗

1 0.4 0.3556 2.5206

1 0.7 0.4872 2.9350

1 0.9 0.5652 3.1428

10 0.4 2.0263 7.1514

10 0.7 3.0977 6.7518

10 0.9 3.8177 6.5850

100 0.4 N/A N/A

100 0.7 N/A N/A

100 0.9 N/A N/A

5 Conclusion

An approach for the reverse problem of revealing the iso-
delay margin contours in the system parameter and/or con-
troller parameter space of the general single-delay retarded-
type LTI system is presented. With this approach, not only
one obtains the iso-parameter curves that create the same
delay margin in the system, but one can also stabilize such
systems, simply by knowing the delay τ̃ in the closed-loop
system, and then selecting τ̄ such that τ̄ > τ̃ in order to cal-
culate the parameters corresponding to a delay margin of τ̄ ,
which will ultimately guarantee for the same set of parame-
ters that the system is stable at the delay value τ̃ . Extensions
of this work to neutral class and fractional type LTI systems
can be established by considering additional features of such
systems published in the literature.
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