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Abstract The nonlinear dynamic behavior of liquid slosh-
ing in a carrier is investigated in this research with consider-
ation the effects of viscosity of the liquid and varying gravity
on the carrier. Liquid sloshing in the tank of the carrier is
analogized as a three-dimensional nonlinear conical pendu-
lum model. The solutions of the coupled governing equations
for the sloshing are developed and solved numerically. Both
inviscid and viscous liquids are considered and compared
for their effects on the sloshing. With the research results
obtained, viscosity of the liquid plays a significant role in
the nonlinear dynamic behavior of liquid sloshing. Also, the
influence of gravitational acceleration on the 3D nonlinear
sloshing of the liquid in the carrier is studied in details with
a variety of system parameters.

Keywords Liquid sloshing · Conical pendulum model ·
Viscous liquid · Inviscid liquid · Gravitational acceleration ·
Nonlinear oscillation

1 Introduction

The phenomena of liquid sloshing in a tank extensively exist
in industrial activities, such as those in liquid cargo trans-
portation and spacecraft or rockets with liquid propellants.
The sloshing liquid within tanks triggers forces and torques
imposed on the tanks, which affect the motion of the liq-
uid containers or vehicles and lead to unsafe operation and
negative effects on their structural fatigue life. Analysis of
liquid sloshing is therefore essential and of great importance
in engineering applications.
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Numerous research studies have been conducted in the
past by peer researchers and engineers. A thorough review
of the publications about sloshing problems prior to 1966 was
provided in Absamson and Silverman [1], with focuses on
liquid sloshing problems in aerospace. Recently, a detailed
review of research works in liquid sloshing was reported by
Ibrahim et al. [2]. As per the reviews, liquid sloshing prob-
lems were generally investigated experimentally and numer-
ically.

In Berlot [3], for example, the motion of fluid contained
in a cylindrical tank driven laterally was analyzed in terms
of the combination of surface waves and two dimensional
vortexes. Experimentally, Abramson et al. [4] studied the
nonlinear lateral sloshing in rigid tanks of various geome-
tries. In their study, the experimental data, primarily on force
responses, were presented. The authors found that the pri-
mary nonlinear effects observed in all tanks were decreas-
ing with increasing excitation amplitude. Much more exper-
imental research works have been found in the literature
and nonlinear responses of the sloshing liquids are evi-
dent.

Besides experimental works, liquid sloshing problems
were also studied on the basis of computational simulations
and numerical analyses advanced by new developments in
computers and computational technologies. Volume-of-fluid
approach based simulations were carried out by Veldnam
et al. [5] to predict the combined liquid/solid body motion.
In this work, the stability of numerical coupling between
solid-body dynamics and liquid dynamics was analyzed. A
numerical scheme was developed by Chen and Price [6] to
model the compressible two-fluid flows and simulate liq-
uid sloshing in a partially filled tank. The method proposed
in this work demonstrated that the method was suitable to
capture free surface waves and to evaluate sloshing pres-
sure loads acting on the tank walls and ceiling. In William
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and Steve [7], a traction control algorithm that operates on
the same correlated input signals that a human expert driver
would in order to maximize traction is proposed. In these
research works, the commonly used dynamic liquid models
were developed on the basis of fluid mechanics equations,
such as Navier-Stokes equation or that of potential theory.
For more accurate results, the equations of motion for flex-
ible container structures have to be coupled with that of the
liquid in the container. However, even with super computers,
coupling the equations of both liquid and solid can be very
computationally demanding. For ordinary design analyses,
more practically convenient models are preferred. A com-
bined spherical pendulum and linear pendulum system is
developed to produce the same dynamic in-line and cross-
axis reaction weight as liquid exhibiting rotary liquid slosh
by Kana [8]. Yurchenko and Alevras [9] have designed an
N-pendulum, which represents a special case of a physical
pendulum. The design of the N-pendulum not only allows
uncoupling the natural frequency of the pendulum from its
length, but also provides easy control of the frequency and
torque.

Dai and Wang [10] studied liquid sloshing in a con-
tainer with employment of a simplified planar nonlinear
pendulum model. Although the study revealed the nonlin-
ear sloshing behavior in a periodically excited tank, the
analysis of the study is two dimensional. In fact, though
detailed study on three dimensional liquid sloshing is still
not available in the literature. Based on the archived docu-
ments available to the authors, reliable theoretical or numer-
ical solutions of liquid sloshing in a three-dimensional tank
are still in lack. Also, very few research works are found
in the literature for studying the effects of continuously
varying gravity and effects of liquid viscosity on the liq-
uid motions in the containers subjected to external excita-
tions.

As an alternate approach in studying liquid sloshing in
containers, equivalent mechanical models were widely used
by the researchers in this field [1]. Spring mass damper
models and pendulum models are the two typical mechani-
cal models used for investigating liquid sloshing. The mod-
els can be conveniently applied to simulate liquid slosh-
ing and to study the dynamic behaviour of sloshing in
containers. Although the two types of model are actu-
ally equivalent in terms of mechanical modelling, a three-
dimensional pendulum model is preferred in this research
for the reason that the natural frequency of the pendulum
is automatically altered with the changes in pivot acceler-
ation or gravitational acceleration. With a nonlinear con-
ical pendulum model, the three-dimensional liquid slosh-
ing in a carrier is to be studied in this research with con-
siderations of the liquids with or without viscosity and
the variations of gravitational gravity acting on the liq-
uids.

Fig. 1 Conical pendulum model for rotary sloshing

2 Governing equations and the numerical solutions

As described in the Introduction, pendulum models are good
mechanical analogies for simulating liquid sloshing in con-
tainers. One of such pendulum models named the conical
pendulum model was described by Abramson and Silver-
man [1]. This model can be employed for studying the liquid
motion in a container of a carrier which may vary its position
in space. The advantage of this model is its convenience in
describing liquid sloshing in a three-dimensional fashion and
the application of external excitations on the pendulum sys-
tem. The pendulum such established is also convenient for
developing governing equations with Newtonian mechanics
and reveals the fundamental behavior of the sloshing on a
practically sound basis. A sketch of the model is shown in
Fig. 1.

As shown in Fig. 1, there are three angles α, β and γ in the
model and the three angles completely determine the position
and motion of the pendulum therefore liquid sloshing in the
carrier. Among the three angles in the coordinate system, as
the length of the pendulum is assumed as a constant, two of
them are actually independent and the relationship among
the angles can be expressed by the trigonometric function:
sin2 α + sin2 β = sin2 γ for the angles as defined in Fig. 1.

In developing for the governing equations, the following
assumptions and conditions are applied:

(1) The container is treated as a rigid object;
(2) The liquid in the container is incompressible and is ideal

Newtonian fluid;
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Fig. 2 Dynamic behaviors of α and β (L = 0.5 m, h = 0.0314 s, g = 9.8 m/s2 F = 0.0 N, ω = 1.0 rad/s, α(0) = 0.01 rad, α̇ (0) = 0.0 rad/s,
β(0) = 0.0 rad, β̇(0) = 0.0 rad/s)

(3) The sloshing amplitude is small such that sin α can be
approximated as α − α3

6 and cos α ≈ 1 − α2

2 ;
(4) The pendulum length relates to the amount of liquid in

the container and the amount of liquid does not vary
during liquid sloshing;

(5) The external excitation applied on the carrier is periodic
and applied in the y − z plane along the y axis.

With the pendulum model such established, the governing
equations for the motion of the conical pendulum model can
be expressed as [1]:

d2α

dt2 + g

L
α − g

6L
α3 + 1

2

(
d2

dt2 + g

L

)
αβ2 = F cos ωt

(1a)

d2β

dt2 + g

L
β − g

6L
β3 + 1

2

(
d2

dt2 + g

L

)
βα2 = 0 (1b)

where α and β are the two angular variables, g represents the
gravitational acceleration, L denotes the length of the pendu-
lum, F and ω designate for the amplitude and frequency of
the external excitation respectively. As shown in Eq. (1), the
two variables are highly coupled for this three-dimensional
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Fig. 3 Dynamic behaviors of α and β (L = 0.5 m, h = 0.0314 s, g = 9.8 m/s2, ω = 1.0 rad/s, F = 0.0 N, α(0) = 0.00 rad, α̇(0) = 0.0 rad/s,
β(0) = 0.01 rad, β̇(0) = 0.0 rad/s)

system. Theoretical solutions for this system are difficult to
develop if not impossible, numerical solution is therefore
needed. To approach a numerical solution for the system,
in this research, the governing equations are decoupled first.
To decouple the system, the second order derivative of β is
described in the following form, as per Eq. (1b).

β̈ = 1

1 + 1
2α2

(
− g

L
β + g

6L
β3 − 2αα̇β̇ − α̇2β − αα̈β

− g

2L
α2β

)
(2)

By plugging Eq. (2) into Eq. (1a) and rearranging the terms,
one may have

α̈ = 1

1 + 1
2β2 − α2β2 1

1+ 1
2 α2

×
(

F cos ωt − g

L
α + g

6L
α3

−αβ̇2 − αβ

1 + 1
2α2

(
− g

L
β + g

6L
β3 − βα̇2

))

�= Fα(α, α̇;β, β̇) (3)

Substitute Eq. (3) into Eq. (1b) to obtain
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Fig. 4 Dynamic behaviors of α and β (L = 0.5 m, h = 0.0314 s, g = 9.8m/s2, ω = 1.0 rad/s, F = 0.01 N, α(0) = 0.01 rad, α̇(0) = 0.0 rad/s,
β(0) = 0.0 rad, β̇(0) = 0.0 rad/s)
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Fig. 5 Dynamic behaviors of the pendulum model (L = 0.5 m, h = 0.01 s, g = 9.8 m/s2, ω = 1.0 rad/s, F = 0.01 N, α(0) = 0.01 rad,
α̇(0) = 0.0 rad/s, β(0) = 0.0 rad, β̇(0) = 0.0 rad/s)
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Fig. 6 Dynamic behaviors of the pendulum model (L = 0.5 m, h = 0.0314 s, g = 9.8 m/s2, ω = 1.0 rad/s, F = 0.01 N, C = 0.01 N·s/m,
α(0) = 0.01 rad, α̇(0) = 0.0 rad/s, β(0) = 0.01 rad, β̇(0) = 0.0 rad/s)

β̈ = 1

1 + 1
2α2

×
(
− g

L
β + g

6L
β3 − β

(
α̇2 + F1

(
α, α̇;β, β̇

)))
�= Fβ(α, α̇;β, β̇) (4)

To solve the differential equations, the 4th order Runge–Kutta
method is considered in this research. By applying the Runge-
Kutta method, the above equations are expressed as four first
order differential equations, with the following transforma-
tions.

α = x1

α̇ = x2

β = x3

β̇ = x4 (5)

As such, Eqs. (3) and (4) may take for following forms.

ẋ1 = x2
�= F1(x1, x2, x3, x4) (6a)

ẋ2 = 1

1 + 1
2 x2

3 − x2
1 x2

3
1

1+ 1
2 x2

1

×
{

F cos ωt − cx2 − g

L
x1

+ g

6L
x3

1 − 2x2x3x4 − x1x2
4 − g

2L
x1x2

3

− x1x3

1 + 1
2 x2

1

(
−cx4 − g

L
x3 + g

6L
x3

3 − 2x1x2x4

− x3x2
2 − g

2L
x2

1 x3

)}
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�= F2(x1, x2, x3, x4) (6b)

ẋ3 = x4
�= F3(x1, x2, x3, x4) (6c)

ẋ4 = 1

1 + 1
2 x2

1

×
(
−cx4 − g

L
x3 + g

6L
x3

3 − 2x1x2x4

−x3

(
x2

2 + x1 F2 (x1, x2, x3, x4)
)

− g

2
x2

1 x3

)
�= F4(x1, x2, x3, x4) (6d)

Equation (6) can be expressed with vector form

�̇X = �f (t, �X), (7)

where

�X = (x1, x2, x3, x4)
T

�f (t, �X) = (F1, F2, F3, F4)
T

The solutions of Eq. (7) can be given by

�Xn+1 = �Xn + 1

6
h

( �K1 + �K2 + �K3 + �K4

)
(8)

where h represents the time step, and the vectors �Ki (i =
1−4) can be calculated by:

�K1 = �f (tn, �Xn)

�K2 = �f (tn + 1

2
h, �Xn + 1

2
h �K1)

�K3 = �f (tn + 1

2
h, �Xn + 1

2
h �K2)

�K4 = �f (tn + h, �Xn + h �K3)

3 Numerical results and discussions

3.1 Evaluation of the model and numerical results

By applying the approach described above, the numerical
results of the 3-D liquid sloshing represented by the pendu-
lum model can be obtained. To ensure the correctness and
validation of the approach described in the previous section,
the numerical results of some specific cases are evaluated
with the model, of which the physical phenomena of liquid
sloshing are known in general. A case with initial condi-
tions of α(0) = 0.01 rad, α′′ and β(0) = 0.0 rad, β ′′ are
considered first. When no external excitation is applied, i.e.
F = 0.0, the motion of the pendulum should be a free oscil-
lation. If inviscid liquid is further assumed, or no damping on
the pendulum system, a perfect harmonic oscillatory motion
of the pendulum can be expected. With these considerations
and assumptions, numerical calculations are performed with
the results plotted in Fig. 2.

As can be seen from Fig. 2, as expected, motion of the
pendulum is merely in the α-plane and no motion is seen in

Fig. 7 Region diagrams with respect to α (L = 0.5 m, h = 0.01 s, ω =
1.0 rad/s, C = 1.0 × 10−7 N·s/m, α(0) = 0.01 rad, α̇(0) = 0.0 rad/s,
β(0) = 0.01 rad, β̇(0) = 0.0 rad/s)

Fig. 8 Region diagrams with respect to α (L = 0.5 m, h = 0.01 s, ω =
1.0 rad/s, C = 1.0 × 10−2 N·s/m, α(0) = 0.01 rad, α̇(0) = 0.0 rad/s,
β(0) = 0.01 rad, β̇(0) = 0.0 rad/s)

the β-plane. Also, the oscillation of the pendulum is indeed
a perfect harmonic periodic motion, as can be clearly seen
from the wave diagram and phase trajectory obtained.

When the initial conditions are changed to α(0 =
0.0 rad, α′′ and β(0) = 0.01, β ′′, oscillation of the pendu-
lum may only be seen in the β-plane, and the corresponding
oscillation can only be harmonic, as shown in the figures of
Fig. 3.
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Fig. 9 Dynamic behaviors of the pendulume model (F = 1.1 N, g =
8.4 m/s2, L = 0.5 m, h = 0.01 s, ω = 1.0 rad/s, C = 1.0×10−7 N·s/m,
α(0) = 0.01 rad, α̇(0) = 0.0 rad/s, β(0) = 0.01 rad, β̇(0) =
0.0 rad/s)

When an external excitation of amplitude 0.01 N is
applied to the first case, the numerical results obtained show
the responses as illustrated in Fig. 4. Although there is no
motion in the β-plane as expected, the motion in the α-plane
is quasiperiodic. This result agrees with that reported by Dai
and Wang [10].

From the results obtained by employing the model pre-
sented with the numerical solutions, one may conclude that
the results generated with the model and associated numeri-
cal approach are reasonable and in good agreement with the
fundamental concepts of dynamics.

Fig. 10 The amplitude under different external frequencies with
respect to α (L = 0.5 m, g = 9.8 m/s2, F = 0.01 N, C = 0.01 N ·
m/s, dt = 0.0314 s, α(0) = 0.01 rad, α̇(0) = 0.0 rad/s )

3.2 3-D sloshing of inviscid liquid with external excitation

The sloshing of the liquid in a general three dimension case is
considered first. As described previously, the angles α and β

are independent for determining the oscillations of the pen-
dulum. With the model presented and initial displacements
in the α and β planes, the sloshing of the liquid in three
dimensional space is determined with the model presented.
The typical responses of the pendulum are shown in Fig. 5. In
this case, the response is non-periodic or quasiperiodic with
some regularity.

One may notice, from Fig. 4, non-periodic responses may
also occur even if no initial displacement is presented in
β-plane. As can be seen from Fig. 5, the responses of the
pendulum is more complex with non-periodic oscillations in
both the α and β planes. It is interesting to notice that the
amplitudes of the oscillations are varying with time in the
fashion that α increases while β decreases and α decreases
as β increases. Although the oscillations show regularities in
both the α and β planes, they are not perfectly periodic. With
inviscid liquid, the oscillations in both the planes are found
quasiperiodic for most of the parameters and conditions con-
sidered in this research, when the sloshing is stabilized.

3.3 3-D sloshing of viscous liquid

The viscosity of liquid usually plays an inconspicuous even
ignorable role on the sloshing motion when the sloshing
amplitude is very small. In the cases that the sloshing
becomes larger or complex, the existence of liquid viscos-
ity is considered to have noticeable influence on the overall
liquid sloshing. To demonstrate the effects of liquid viscosity
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Fig. 11 The amplitude under different external frequencies with respect to α (L = 0.5 m, g = 9.8 m/s2, F = 0.01 N, C = 0.00001 N·m/s,
dt = 0.0314 s, α(0) = 0.01 rad, α̇(0) = 0.0 rad/s)

on the liquid motion, the sloshing of viscous liquid with the
other parameters identical to that shown in Fig. 5 is evaluated,
with the results shown in Fig. 6.

It can be observed from Fig. 6, when the viscosity of liq-
uid is considered (even it is very small), the motion of β is
weakened and eventually vanished. Whereas the motion in
the α-plane eventually becomes perfectly periodic with uni-
form amplitude when the motion is stabilized. This implies
that liquid sloshing is finally reduced to a 2-D liquid motion
in the α-plane, for viscous liquid.

To systematically study the responses of the liquid in the
carrier considered, it will be ideal to examine the responses

corresponding to various parameters over a large range. A
single valued index named the periodicity ratio (PR) was
introduced for diagnosing the characteristics of nonlinear
systems [11,12]. The PR index can be conveniently used
as a criterion to diagnose chaotic, periodic or quasiperiodic
motions of a nonlinear system, and more significantly, to
quantify the nonlinear behavior in between chaos and peri-
odicity of a dynamic system without plotting any phase
diagrams or Poincare maps. With employment of the PR
index, the regular-irregular region diagrams can be plotted
to demonstrate the properties of sloshing with varying sys-
tem parameters and conditions. Such a region diagram is
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Fig. 12 The influence of gravitational acceleration on the sloshing
amplitude (F = 0.01N, C = 0.01N · m/s, ω = 1.0rad/s, L = 0.5 m,
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Fig. 13 The influence of gravitational acceleration on the sloshing
amplitude (F = 0.01 N, C = 0.01 N· m/s, ω = 1.0 rad/s, L = 0.5 m,
h = 0.01 s, α(0) = 0.01 rad, α̇(0) = 0.0, β(0) = 0.01 rad, β(0) = 0.0)

shown in Fig. 7, for which the liquid viscosity is small and the
ranges of excitation amplitude F and gravitational accelera-
tion g are 0.0–10.0 and 1.8–9.8 respectively. In the diagram,
the red triangles represent irregular motion while the green
diamonds denote periodic motion of the liquid. The typical
irregular (PR = 0) and regular (PR = 1) liquid motions are as
that shown in Figs. 5 and 6 respectively. The blank areas in
the diagram represent the non-periodic cases neither perfect
regular nor perfect irregular.

As can be seen from Fig. 7, most responses of the liquid
are irregular and non-periodic, only a small area at the bottom
of the diagram covers regular or periodic responses. When F
is increased, the responses of the liquid are irregular. Further
increase of F will lead to divergence representing rotation of
the pendulum that is out of the scope of this research.

Liquid viscosity may have significant effects on the slosh-
ing corresponding to the given system parameters. When vis-
cosity of the liquid becomes larger, the energy of the pen-
dulum is reduced and its motion tends to be periodic in the
α-plane. Indeed, as shown in Fig. 8, most areas in the regular-
irregular region diagram become regular or periodic when

the viscosity is increased from c = 1.0 × 10−7 N·s/m to
c = 1.0 × 10−2 N·s/m. A typical irregular response in this
case is graphically shown in Fig. 9 which shows quasiperi-
odic response of the system.

It is interesting to notice, in the research, resonance may
occur for this nonlinear system. Figure 10 shows a resonance
case for a larger viscous liquid. When the viscosity of the
liquid is smaller, as shown in Fig. 11, the amplitude of the
sloshing becomes greater and response of liquid sloshing is
more complex, in comparison with that of Fig. 10. The liquid
motion in this case is shown in wave form and Poincare map
of Fig. 11. This is a more complex quasiperiodic case with
the two loops formed by small curves.

3.4 Influence of gravitational acceleration

In carriers moving in space, such as missiles or rockets, the
gravitational acceleration varies. The influence of gravita-
tional acceleration on the motion of the carriers is significant.
With the model of the research, the analysis of the gravita-
tional effects on the liquid motion becomes readily available.

Varying gravitational acceleration may cause regular or
irregular sloshing of the liquid in a carrier, as shown in the
region diagrams of Figs. 7 and 8. The relationship between
the sloshing amplitude and the gravitational acceleration is
shown in Fig. 12. Obviously, the relstionship is nonlinear
and the amplitude may become very large when the gravity
is small. As can be seen in the figure, the sloshing amplitude
increases dramatically when the gravitational acceleration in
reduced to a certain value (about 2 in the case shown). This
implies the sloshing may become volatile and cause negative
influence to the motion and safety of the carriers, when the
carriers reach a high level. When the gravity is small enough,
the pendulum may rotate with a constant speed. However, this
is not the research interest of this study.

Although the sloshing amplitude is noticeably affected by
the gravitational acceleration, the effect of varying gravita-
tional acceleration on the frequency of liquid sloshing is rel-
atively small. As shown in Fig. 13, the period of oscillation
remains almost the same for the gravitational acceleration
varying from 0.8 to 9.8.

4 Conclusion

This research investigates the effects of liquid viscosity and
gravity on the three dimensional nonlinear sloshing of the
liquid in a carrier subjected to periodic excitations. Such an
investigation is not seen in the literature. When the ampli-
tude of the external excitation is properly low, the sloshing
in the carrier can be either periodic or quasiperiodic. The
sloshing can be stabilized and reduced to periodic when the
liquid viscosity is large enough. Resonances of liquid slosh-
ing are found under certain conditions. The amplitude of the
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sloshing is nonlinearly increasing with the reduction of the
gravitational acceleration. The liquid sloshing can be unsta-
ble and volatile if the gravitational acceleration reaches cer-
tain low value. However, the effect of varying gravitational
acceleration on the frequency of the sloshing is insignificant
as per the research results. The findings of the research are
significant to research on liquid sloshing in a carrier and the
design of aerospace vehicles carrying liquid cargo or liquid
fuel.
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