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Abstract Selecting suitable stiffness for shock isolation
system is conventional design mode; there is a bug in this
design mode: high shock isolation efficiency always results
in large relative displacement. A more feasible design mode
is proposed based on the optimal control force: at the begin-
ning of shock response, the relative displacement is small
and relative velocity is high, control force should be offered
by damping mostly; when the relative velocity become low
and relative displacement become large, control force should
be offered by spring mostly. The critical initial velocity is
decided by limiting performance analysis. In that condition,
the optimal control force can be realized by passive device
if the function of force—relative displacement and force—
relative velocity comply with some rule. The higher shock
isolation efficiency and the smaller relative displacement will
be achieved at the same time. An optimal shock isolation
system is constructed based on quadratic damping and lin-
ear stiffness, and that is proved theoretically. The optimal
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model is calculated by Runge—Kutta method, and the signif-
icant conclusion is obtained: comparing with conventional
shock isolation system, the optimal system that is designed
with the new mode can get more excellent shock isolation
performance.

Keywords Optimal control force - Limiting performance
analysis - Shock isolation

1 Introduction

It’s very important to design shock isolator for important
equipment in harsh shock environment [1]. Conventional
design mode of shock isolator is based on such an idea in Ref.
[2]: the transient and hard loading is stored in the shock isola-
tor, and then the stored energy is gradually dissipated during
free vibration. Usually, the natural frequency of the system
is low, and hence high shock isolation efficiency results in
large relative displacement. Though displacement restrictor
in Refs. [3,4] is introduced in order to limit the relative dis-
placement, which reduces the low shock isolation efficiency.
To solve this problem, the Ruzickaisolator is studied based on
the law of conservation of energy in Ref. [5], and the results
show that the Ruzicka isolator has superior performance than
the conventional design. In order to control the low frequency
shock, the magnetorheological damper is applied to the shock
isolation system, the simulation results indicate that it can
isolate successive shocks in war-ship environment, and the
displacement and acceleration of the equipment can both
be restricted [6]. A semi-active shock isolation technology
based on controllable damping is put forward in Ref. [7] to
solve the problem that the shock isolation system must offer
high isolation efficiency and small relative displacement at
the same time when it is suffered from a shock with short
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duration, to assure the performance of vibration isolation the
semi-active shock isolation system works in minimum damp-
ing when it is apart from the shock action. When the shock
is acting on the system, a two-parts semi-active control strat-
egy is applied to control the system by using as big damping
ratio as possible to reduce the relative displacement under the
condition that the shock isolation efficiency is ensured. The
genetic algorithm and the nonlinear programming methods
are introduced in Refs. [8,9] to make the isolation system’s
performance reach limit. Jiang reviews the development of
shock isolation from two aspects including critical analyti-
cal approach and experimental methods [10]. As the shock
isolation requirement is improved continuously, the conven-
tional shock isolation design is gradually lagged behind the
development of the times.

To improve the performance of shock isolator, a new
design method is considered. Some key factors that are
ignored in conventional design are discussed in what follows,
which is rather most important to ensure the performances
of the shock isolator:

(1) Optimal control force was believed not feasible for
engineering implementation in conventional design. The
optimal control force was proposed a long time ago in
Ref. [11], but many scholars believe that it’s too ideal-
istic to be implemented for passive shock isolator. But
we believe that the optimal control force can be achieved
with the passive shock isolator in some condition, which
is discussed in this work.

The conventional design method failed to consider the
critical initial velocity. The limiting performance of
shock isolation system is studied by literatures [11-17],
where the critical initial velocity is derived. Usually, the
critical initial velocity is ignored by engineers, but it is
really an important factor for optimal control force.
The importance of damping is ignored in the conven-
tional design. When mechanical systems are subject to
transient loading, the duration of the disturbance is very
short. Many scholars believe that damping can absorb
little energy in the process of shock isolation, so non-
damped shock isolation model is studied by many schol-
ars [4]. But in recent years, some literatures showed the
damping effect for shock isolation [18-21]. The impor-
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Fig. 1 The optimal shock
isolation model
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tance of damping for optimal control force is also proved
in this work.

Shock isolation design method is re-examined here, the
relationship between shock isolation criterion and critical ini-
tial velocity is studied, and an optimal shock isolation model
based on the optimal control force is proposed. This work
is concerned with designing an optimal passive shock iso-
lator which has much more excellent performance than the
conventional shock isolator.

The outline of the paper is as follows: in Sect. 2, the opti-
mal control force and the possibility of engineering imple-
mentation are discussed. In Sect. 3, limiting performance
analysis is introduced, and the relationship between opti-
mal control force and critical initial velocity is discussed.
In Sect. 4, limiting performance analysis shows that the per-
formance of optimal shock isolator is much more excellent
than that of conventional shock isolator. In Sect. 5, an opti-
mal shock isolation model is built, and the parameters of sys-
tem are obtained. The relationship between hydraulic damper
and quadratic damping is discussed, which could be a key for
engineering implementation. In Sect. 6, three shock isolation
models are calculated with the Runge—Kutta method, and the
performance is compared. The seventh section contains some
concluding remarks.

2 Optimal control force and the possibility
of engineering implementation

A single-degree-of-freedom shock isolation system is shown
in Fig. 1. The differential equation of motion of the shock iso-
lation system and its initial conditions are shown in Eq. (1):

mX +u(x,x) =0, x(0)=0, x(0) = v, (€))

where x represents the displacement of the object relative
to the base, the dots denote derivatives with respect to time
t, u(x, x) denotes the control force acting on the mass m, and
vo denotes the initial velocity of base.

The maximum absolute acceleration of the isolated object
is dependent on the control force u(x, x) and the rigid mass
m. If the control force is a constant u (as Fig. 1b shows),
we can get the acceleration X (t) = u/m. When X(t) = A +

Yo
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e(e <0,¢& — 0), where A denotes the allowable peak accel-
eration of the object, the relative displacement can be mini-
mized under the condition that the safety of object is ensured.
The constant force u is called the optimal control force.

Usually, engineers believe that the optimal control force
cannot be realized in engineering implementation. But it can
really be realized in consideration of the variables x and x
time history (as shown in Fig. Ic, d):

(1) In the initial stage of shock response, the relative veloc-
ity is high and the relative displacement is small. If the
damping is introduced, the optimal control force can be
gained at the beginning;

(2) In the intermediate stage of shock response, the rela-
tive velocity comes down and the relative displacement
increases, the optimal control force can be shared by the
damping force and the spring’s elastic force;

(3) When the shock response near the end, the relative dis-
placement is close to the maximum value. At this time,
the optimal control force can be provided by the spring.

Obviously, it is possible to keep the control force as a
constant as long as the functions of the force versus velocity
and the force versus displacement comply with some rule.
But it should be noted that the optimal control force is initial
velocity dependent. Hence, it is impossible to realize optimal
control force under all circumstances.

3 Limiting performance analysis and critical initial
velocity

Two criteria are often used in practice to specify the perfor-
mance of the shock isolator:

(1) The maximum absolute acceleration: Ji;
(2) The maximum relative displacement: J>;

The differential equation of motion of the one-degree-of-
freedom system is

mx + u(x,x) = my, 2)

where m, x, x, X and y denote the rigid mass, the relative
displacement, the relative velocity, the relative acceleration
and the absolute acceleration of the base, respectively. The
shock frequency is usually much higher than the natural fre-
quency of the system, so Eq. (2) can be transformed into the
following equation

mi 4+ u(, x) =0 A3)

with initial conditions x(0) = 0, and x(0) = vy.
The relationship between the shock isolation performance
criteria Ji, J» and the initial velocity vg is [11]:

1 2
iz S @)

According to the Cauchy formula, Eq. (3) can be trans-
formed into the following integral equation:

t

x(1) = vot — / l(t — Dulx, ¥)dr. 5)
m

0
Using reduction to absurdity: if J1J; < %v% is valid, Eq.
(6) is given by substituting J; = max (M) to Eq. (5)

m
t

U2 U2
x(1) > vot — / 2—;2@ — 7)dt = vt — &ﬁ. (6)
0

So J, = max(x(t)) > max[vgt — %tz] = J,, but this
inequation is not valid.

So JiJr = %v% is the limiting performance of the shock
isolation system, and no shock isolator can exceed this limit.

Based on the above theorem, another conclusion can be
obtained: V) = +~/2AD is defined as the critical initial veloc-
ity (A and D denote the allowable peak absolute acceleration
and relative displacement of the isolated object). Once the ini-
tial velocity oversteps Vj, it is impossible to achieve J; < A
and J» < D simultaneously.

There may be an optimal shock isolator which can gener-
ate the optimal control force u = m A when the initial veloc-
ity is equal to the critical initial velocity. Then it is gained
that J1 < D and J, = D, which just meet the shock isolation
requirements. If the initial velocity is lower than the critical
initial velocity, then J; < A, J; < D. This kind of isola-
tor is called the optimal shock isolator. The optimal shock
isolation system is based on this idea.

4 Limiting performance comparison of several shock
isolators

The performances of different shock isolators are studied
with the limiting performance analysis in this section. And
the limiting performance of the optimal shock isolator is com-
pared with that of the conventional ones. The greatly superi-
ority of optimal isolator would be shown in following.

4.1 Limiting performance analysis of the optimal shock
isolator

The optimal shock isolation model with given A and D is
shown in Fig. 1a. The critical initial velocity of the system
is Vo = ~/2AD. The optimal control force generated by
the isolator is # = mA when the critical initial velocity is
applied. According to the initial condition, the expressions
of x(t), x(¢), X(t) are
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ﬂﬂ:%héAﬁ (1) = Vo — At, (1) = A, (7

where t € [0,t,],tn = Vo/A, which means that this
process occurs from the beginning until the relative velocity
reduce to zero for the first time (we call it the first stage
of the shock response). The maximum absolute accelera-
tion and maximum relative displacement can be calculated:

A=Ah=§;mWMMAh=§ﬁﬁmwmmmw
optimal shock isolation system can bear the critical loading.
If the isolator is a passive device, based on energy conserva-
tion theorem, the system can bear the loading when the initial
velocity is lower than the critical value.

4.2 Limiting performance analysis of conventional shock
isolators

(1) Linear shock isolator

The shock isolation system with displacement restrictor
is shown in Fig. 2. Let k, = 0, it becomes a linear shock
isolation system.

The maximum absolute acceleration and the relative dis-
placement of the linear shock isolation can be obtained
with the initial velocity method and the energy conser-
vation theorem.

amo = vo//m/k xpo = vo/m/k (8)

Obviously
J1J2 = v} )

Compared to the result of Sect. 4.1, the shock loading
that the optimal shock isolator can bear is 40 % more
than that the linear shock isolator can bear.

(2) Shock isolator with displacement restrictor [3].
The shock isolation model is shown in Fig. 2, where Uy
is the working clearance. The following analysis consid-
ers the displacement restrictor’s effect, but the damping
and energy loss are not considered. Let x,, denotes the
maximum relative displacement, and Eq. (10) can be
obtained with the energy conservation theorem:

1
3% :%x+—k@m—%f (10)

Then the maximum relative displacement x,, and the
maximum acceleration a,,, are obtained.

kaUp + \/kmv} — kkq U3 + kqm}

k + kg,
kxp + kq(xp — Up)

ay = , (11)
m

Xm =

@ Springer
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Fig. 2 Linear shock isolation system with displacement restrictor

6

Fig. 3 Curve of limiting performance of linear shock isolator with
displacement restrictor

The non-dimentionalized form is gained by setting o =
ka/k, B = Uo/Xm0, AA = an/amo, DD = Xy [/Xp0. Sub-
stituting Eq. (12) into Eq. (11), get

af ++/1+a—ap?

1+«
AA=DD+a(DD —B) =+/1+a—aB? (12)

Combine Egs. (8) and (12), and get

DD =

Xmdm XmQm

Vg Xm0am0
af ++1+a—ap?
= 1 —aB2. 13
T+ Vy1+a—aB (13)

Seta € [0, 100], B € [0, 1], and then curves of the limit-
ing performance are gained as shown in Fig. 3.

Figure 3 tells that the displacement restrictor reduces the
relative displacement, however that the limiting performance
of the shock isolation system is affected negatively, which
means lower shock isolation efficiency.



Study on the optimization of the shock isolation system

419

5 The optimal shock isolations system based on optimal
control force

The control force u (X, x) is generated by damper and spring:

uX,x)=G@x) + F(x), (14)

where G (x) and F' (x) denotes the function of force—relative
velocity and force—relative displacement respectively. The
control force should be a constant (1 (x, x) = mA) when the
critical velocity is applied. There are two methods to achieve
the design: (1) given G (x), designing F (x); (2) given F (x),
designing G (x). An optimal model based on the first method
is studied in Sect. 5.1.

5.1 Selecting quadratic damping, designing F (x)

A fact that the maximum acceleration and displacement
always occurs at the first stage of the impulse response can
be obtained by a number of experiments and simulations.
The first stage is the period during which the object motion
is from static to the first zero speed. In order to simplify
the calculation process, assuming that the first phase of the
impulse response objects moving in positive direction, the
formulation X |x| = x2 can be obtained.

cqX |X|is selected as G (x), the shock isolation system can
be described by the following form:

mi +cgq i+ F(x) =0 x(©0)=0, £(0)=Vy, (I5)

where V) is the critical initial velocity, and just the first stage
of shock response is analyzed. Eq. (16) can be given as fol-
lowing form:

mi+cg i+ Fx)=0 x(0)=0, #(0)=V. (I6)

Obviously, ¢4 VO2 =mA, X = A,Eq.(17) canbe obtained
by substituting them to Eq. (16) and combining Eq. (7):
F(x)

m

A=y () = A= ¢ (Vo — AD? = 24¢,x.
(17)

The result shows: the shock isolator with linear stiffness
and quadratic damping would meet the optimal design. It
would generate the optimal control force when the critical
velocity is applied. The optimal shock isolation system and
parameters are shown in Eq. (18).

Lo LA 0 18
x—i-ﬁxlxl—i—ﬁx— . (18)

5.2 Quadratic damping and hydraulic damper

Hydraulic damper model is shown in Fig. 4, usually it is
consisting of cylinder, perforated piston, fluid, and piston
rod [22]:

I fluid
T N cylinder
Perforated H """ ‘ ‘
pison N A —
piston T
rod }

Fig. 4 Model of hydraulic damper

where x denotes the relative velocity, a denotes the area
of the hole, A, denotes the rest area on the piston, p denotes
the density of fluid and & denotes the resistance coefficient
which is fluid and hole property dependent. The relationship
between resistance and the relative velocity is described in
Eq. (19):
&p A?) .2
o2 X
Both of linear stiffness and quadratic damping can be
implemented in engineering, so the optimal shock isolation
model (Eq. 18) is significant for engineering implementation.

G (%) =

(19)

6 Simulation and analysis

For a numerical example, choose the values for the perfor-
mance criteria: the allowable peak acceleration A = 20 g,
the allowable peak relative displacement D = 20 mm. Three
types of shock isolation model are compared with a base
input in the form of an acceleration pulse of half sine shape:

(1) Type 1: linear shock isolation system

mX + cx +kx = —mii. (20)

Non-dimentionalized form is applied, and Eq. (21) can
be obtained:

X 4 2Ewpk 4 02x = —ii, 2D
where ii = Xsin (51) (1 < 15) , X is the peak
0 (t > t5)

acceleration of base, w; is the shock frequency, #; is
the duration of shock.
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Without loss of generality, there is always some damping
in actual system, the damping factoris takenas & = 0.05,
the natural frequency of system is taken as w, = 62.8
rad/s.

(2) Type 2: linear shock isolation system with displacement
restrictor
If the displacement restrictor is introduced to type 1, the
differential equations can be described by Eq. (22):

mx + cx +kx = —mii (|x] < Up)

mx +cx +kx + ks (x —Uy) = —mii (x > Up)

mxX +cx +kx +kys (x+Uy) =—mii (x <—-Up)
(22)

where k, is the stiffness of displacement restrictor, Uy
is the working clearance, set k, = 3k and Uy = %D.
Non-dimentionalized form is applied, and Eq. (23) can
be obtained:

5c'+2$a)nfc+a)%x:—ii (]x] < Uy)

¥ 428wk +@2x+3w?k (x — Ug)=—ii  (x>Up)

¥42Ewu ik +@2x+3w? (x+Up)=—ii  (x <—Up)
(23)

(3) Type 3: the optimal shock isolation system
The optimal shock isolation model can be described in
Eq. (24) according to Sect. 5.1

1 A

Parameters are given by substituting A and D to Eq. (24):

¥ 4 25% %] + 99%x = —ii. (25)

6.1 Shock isolation performance comparison under high
frequency ratio

The duration of shock is considered as #;, = 2 ms, define
ws/w, as the frequency ratio. So the frequency ratio is
16 for optimal shock isolation system (high frequency
ratio). Choose four values for the peak acceleration of base:
X =100, 180, 210 and 300 g. The comparison of three types
shock isolation performance is shown in Figs. 5, 6, 7 and 8.

Figure 5 shows that only typel and typ3 meet the require-
ment when X = 100 g. Though the peak relative displace-
ment of type 2 is smaller than that of type 1 and type 3, the
peak acceleration oversteps limit, which consistent with the
theoretical analysis in Sect. 3.
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Figure 6 shows when X = 180 g, peak acceleration of type
2 and peak relative displacement of type 1 overstep the limit,
but performance of type 3 is excellent.

Figure 7 shows when X = 210 g, the equivalent initial
velocity is close to critical initial velocity, the optimal control
force seems to work. The peak acceleration and peak relative
displacement of type 3 still doesn’t overstep the limit, that is
shown in Fig. 7b.

When X =300 g, the equivalent initial velocity is 3.74 m/s,
which is much higher than the critical initial velocity (the
critical initial velocity is Vo = ~2AD = 2.8 m/s). The
comparison of three types shock isolation performance is
shown in Fig. 8. Under this condition, no shock isolation
system would meet the requirement, which is consistent with
the analysis in Sect. 3.
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The optimal shock isolation model is deduced based on
initial velocity method. When the frequency ratio is high,
the optimal model is valid, and the advantage of the optimal
shock isolation system is obvious.

6.2 Shock isolation performance comparison under low
frequency ratio

When frequency ratio is lower than 10, the initial velocity
method would be invalidated. Whether the performance of
optimal shock isolation system would be still excellent under
this condition? That need more investigation, but something
can be shown in the following simulation.

The duration of shock is considered as #, = 6 ms, so the
frequency ratio is 5.3 for optimal shock isolation system (low
frequency ratio). Choose three values for the peak accelera-
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tion of base: X = 50, 70 and 73 g. The comparison of three
types shock isolation performance is shown in Figs. 9, 10
and 11.

Figure 9 shows when X = 50 g, the peak acceleration of
type 2 and peak relative displacement of type 1 both overstep
the limit, just the performance of type 3 meet the requirement.

Figure 10 shows when X = 70 g, the peak acceleration
and peak relative displacement of type 3 still doesn’t overstep
the limit, the optimal control force seems to work, which is
shown in Fig. 10b. According to the result, some conclusion
can be given: the optimal shock isolator still works when the
frequency becomes low.

When X = 73 g, the equivalent initial velocity is 2.73 m/s,
which is lower than the critical initial velocity. The compar-
ison of three types shock isolation performance is shown in
Fig. 11. Though the equivalent initial velocity doesn’t over-



Study on the optimization of the shock isolation system

423

S EL T - — — Thelimit
L - =g

~ — - Type il
Type 2
***** Type 3

= e - -~ £l

time(s)

L L L L L
01 012 0.14 016 018 0.2

— - Type i
Type2 ||
***** Type 3
— — — The limit [{

& 500F R
N N /N ~
2 / {\ \
S f
=t *‘,z:jfj** -
o - N ~. o=
.(":B' o § \\F\‘n;;\{i B
L
8 \ ‘/ \ }
o / .
® -500p I - I I I
0 0.02 0.04 0.06 0.0
€ 005
< .
o -
£
[0]
o
©
[}
L
5 0 XS
o
> ~ .-
% -0.05 : . - -
2 0 0.02 0.04 0.06 0.08
y g \\\\ — Type1
500 / \\ Type2 ||
/ \\ ---- Type3
/ \ — — The limit
N:; 400 /,“ ‘u\
2 f \
E / \
S 300 / \\
© / \
K} [ \
[ \
8 200 — - fr—mmrmmmma o 4
I ; o _
100 PPt
/(’/,
0 2 1
0 0.005 0.01 0.015 0.02 0.025 0.03
time(s)

(b)

01 012 0.14 016 0.18 0.2

time(s)

(a)

0
/ — -Type 1
-0.005 | \ / —Type2 |
. / ---- Type3
€ 001} \ / | = = Thelimit ||
= 8 /
S N S~
2 -0ot5} N P 1
S BN .
8 N .-
g o0f - - - - - e
] \
© N
o -0.025 \ g
© \ /]
o -003f N e
N ya
-0.035 N 7 B
N P
- P
-0.04 ¢ ‘ ‘ ‘ ‘ et ‘ h
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
time(s)

(0

Fig. 11 Time history of acceleration and relative displacement for X = 73 g. a Time-history curves. b Amplificatory acceleration curve.

¢ Amplificatory relative displacement curve

step the critical value, the peak acceleration and peak relative
displacement of type 3 have overstepped the limit a little. The
optimal control force seems to be generated, that is shown
in Fig. 11b, but it fails to keep the acceleration and rela-
tive displacement to be below the limit. The performance is
adversely affected by low frequency ratio. But comparing
the performance of three types isolator, the optimal shock
isolator still get much more excellent performance than the
conventional isolators.

7 Conclusions

In order to improve the shock isolation performance, an opti-
mal shock isolation model is proposed in this paper. Some
factors which are ignored by conventional design are con-
sidered. The relationship between optimal control force and

critical initial velocity is analyzed, and the optimal shock
isolation model and parameters are obtained based on that
analysis. The optimal shock isolation model that is consist-
ing of linear stiffness and quadratic damping is validated the-
oretically, especially; it is possible to implement the model
in engineering. The simulation shows: under different peak
acceleration and frequency ratio, the performance of optimal
shock isolation model is much more excellent than conven-
tional model, though the low frequency ratio would have
some negative effect to the system. The new design mode
would be significant for improvement of shock isolation per-
formance.
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