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Abstract In this paper, we study mean-field type stochastic
control problems for systems described by mean-field sto-
chastic differential equations with jump processes, in which
the coefficients contains not only the state process but also
its marginal distribution. Moreover, the cost functional is
also of mean-field type. We derive necessary as well as suf-
ficient conditions of near-optimality for our model, using
Ekeland’s variational principle, spike variation method and
some estimates of the state and adjoint processes. Under cer-
tain concavity conditions with non-negative derivatives, we
prove that the near-maximum condition on the Hamiltonian
function in integral form is a sufficient condition for near-
optimality. Our result differs from the classical one in the
sense that here the adjoint equation has a mean-field type,
while the second-order adjoint equation remains the same
as in the classical case. As an application, our results are
applied to a mean-variance portfolio selection where explicit
expression of the near-optimal portfolio selection strategy
is obtained in the state feedback form involving both state
process and its marginal distribution, via the solutions of
Riccati ordinary differential equations.
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1 Introduction

We consider a stochastic control problem for systems driven
by a nonlinear controlled jump diffusion processes of mean-
field type, which is also called McKean–Vlasov equations,
where the coefficients depend on the state of the solution
process as well as of its expected value. More precisely, the
system under consideration evolves according to the mean-
field jump diffusion process
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxu(t) = f (t, xu(t),E (xu(t)) , u(t))dt

+ σ(t, xu(t),E (xu(t)) , u(t))dW (t)

+ ∫

�
g
(
t, xu(t−), u(t), θ

)
N (dθ, dt),

xu(s) = ζ,

(1)

for some functions f, σ, g. This mean-field jump diffusion
process is obtained as the mean-square limit, when n → +∞
of a system of interacting particles of the form

dx j,u
n (t) = f (t, x j,u

n (t),
1

n

n∑

i=1

xi,u
n (t), u(t))dt

+ σ(t, x j,u
n (t),

1

n

n∑

i=1

xi,u
n (t), u(t))dW j (t)

+
∫

�

g(t, x j,u
n (t−), u(t), θ)N (dθ, dt) ,
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where (W j (·) : j ≥ 1) is a collection of independent Brown-
ian motions. The expected cost to be near-minimized over the
class of admissible controls is also of mean-field type, which
has the form

J
s,ζ
(u(·)) = E

⎡

⎣h
(
xu(T ),E

(
xu(T )

))

+
T∫

s

�(t, xu(t),E
(
xu(t)

)
, u(t))dt

⎤

⎦ . (2)

It worth mentioning that since the cost functional J
s,ζ

is pos-
sibly a nonlinear function of the expected value stands in
contrast to the standard formulation of a control problem.
This leads to a so called time-inconsistent control problem
where the Bellman dynamic programming does not hold.
The reason for this is that one cannot apply the law of iter-
ated expectations on the cost functional. The value function
is defined as

V (s, ζ ) = inf
u(·)∈U

J s,ζ (u(·)) ,

where the initial time s and the initial state ζ of the system
are fixed.

It is well-known that near-optimization is as sensible and
important as optimization for both theory and applications.
Since the recent work by Zhou [1], the concept of near-
optimal controls was introduced for a class of stochastic con-
trol problems. Various kinds of near-optimal stochastic con-
trol problems have been investigated in [2–8]. In Hafayed et
al. [2], the authors extended Zhou’s maximum principle of
near-optimality [1] to singular stochastic control. The near-
optimal stochastic control problem for systems governed by
diffusions with jump processes, with application to finance
has been investigated by Hafayed et al. [3]. The necessary
and sufficient conditions of near-optimal mean-field singular
stochastic control have been studied in Hafayed and Abbas
[4]. Near-optimality necessary and sufficient conditions for
singular control in jump diffusion processes has been inves-
tigated in Hafayed and Abbas [5]. The necessary and suf-
ficient conditions for near-optimality for forward-backward
stochastic differential equations with some applications have
been studied in Huang et al. [6]. The near-optimal control
problem for recursive stochastic problem has been studied in
Hui et al. [7].

The stochastic optimal control problems for jump
processes has been investigated by many authors, see for
instance [9–17]. The general case, where the control domain
is not necessarily convex and the diffusion coefficient
depends explicitly on the control variable, was derived via
spike variation method by Tang and Li [9]. These condi-
tions are described in terms of two adjoint processes, which

are linear classical backward SDEs. A good account and an
extensive list of references on stochastic optimal control for
jump processes can be founded in [13,18].

Mathematical mean-field problems play an important role
in different fields of, economics, finance, physicals, chem-
istry and stochastic game theory. Many authors made con-
tributions on mean-field systems and applications, see for
instance [4,10,17,19–25]. The existence and unique-
ness result of mean-field backward stochastic differential
equations (MF-BSDEs) as limit approach have been inves-
tigated in Buckdanh et al. [19]. The maximum principle for
SDEs of mean-field type was introduced in [20]. Under some
convexity assumptions, the mean-field type sufficient condi-
tions for optimality have been established by Shi [21]. In
Mayer-Brandis et al. [25] a stochastic maximum principle
of optimality for systems governed by controlled Itô-Levy
process of mean-field type was proved by using Malliavin
calculus. Various local maximum principles of optimality
for mean-field stochastic control problem have been derived
in [22,23].

Our main goal in this paper is to establish necessary as
well as sufficient conditions of near-optimality for mean-field
jump diffusion processes, in which the coefficients depend
on the state of the solution process as well as of its expected
value. Moreover, the cost functional is also of mean-field
type. The proof of our main result is based on some stability
results with respect to the control variable of the state process
and adjoint processes, along with Ekeland’s variational prin-
ciple [26] and spike variation method. This near-optimality
necessary and sufficient conditions differs from the classi-
cal one in the sense that here the first-order adjoint equation
turns out to be a linear mean-field backward stochastic dif-
ferential equation, while the second-order adjoint equation
remains the same as in stochastic maximum principle for
jump diffusions developed in Tang and Li [9]. The control
domain under consideration is not necessarily convex. It is
shown that stochastic optimal control may fail to exist even in
simple cases, while near-optimal controls always exist. This
justifies the use of near-optimal stochastic controls, which
exist under minimal conditions and are sufficient in most
practical cases. Moreover, since there are many near-optimal
controls, it is possible to select among them appropriate ones
that are easier for analysis and implementation. Finally, for
the reader’s convenience we give some analysis results used
in this paper in the “Appendix”.

The rest of the paper is organized as follows. Section 2
begins with a general formulation of a Mean-field control
problem with jump processes and give the notations and
assumptions used throughout the paper. In Sects. 3 and 4, we
derive necessary and sufficient conditions for near-optimality
respectively, which are our main results. An example of this
kind of mean-field control problem is also given in the last
section.
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264 M. Hafayed et al.

2 Problem formulation and preliminaries

Throughout this paper, we let (�,F , (Ft )t∈[0,T ] ,P) be
a fixed filtered probability space equipped with a P—
completed right continuous filtration on which a d—
dimensional Brownian motion W = (W (t))t∈[0,T ] is defined.
Let η be a homogeneous (Ft )-Poisson point process inde-
pendent of W . We denote by Ñ (dθ, dt) the random counting
measure induced by η, defined on�×R+, where� is a fixed
nonempty subset of R

k with its Borel σ -field B (�). Further,
letμ (dθ) be the local characteristic measure of η, i.e.μ (dθ)
is a σ -finite measure on (�,B (�)) with μ (�) < +∞. We
then define

N (dθ, dt) = Ñ (dθ, dt)− μ (dθ) dt,

where N is Poisson martingale measure on B (�)× B (R+)
with local characteristics μ (dθ) dt. We assume that
(Ft )t∈[0,T ] is P-augmentation of the natural filtration

(F (W,N )
t )t∈[0,T ] defined as follows

F (W,N )
t = σ {W (s) : 0 ≤ s ≤ t}

∨σ
⎧
⎨

⎩

s∫

0

∫

B

N (dθ, dr) : 0 ≤ s ≤ t, B ∈ B (�)
⎫
⎬

⎭
∨ G,

whereG denotes the totality of P-null sets, andσ1∨σ2 denotes
the σ -field generated by σ1 ∪ σ2.

Basic Notations We list some notations that will be used
throughout this paper.

1. Any element x ∈ R
d will be identified to a column vector

with i th component, and the norm |x | = ∑d
i=1 |xi |.

2. The scalar product of any two vectors x and y on R
d is

denoted by 〈x, y〉.
3. We denote A∗ the transpose of any vector or matrix A.
4. For a set B, we denote by 1B the indicator function of B

and co (B) the closure convex hull of B and Sgn(·) the
sign function.

5. For a function	, we denote by	x (resp.	xx ) the gradi-
ent or Jacobian (resp. the Hessian) of a scalar function	
with respect to the variable x . We denote ∂

◦
x	 the Clarke’s

generalized gradient of 	 with respect to x .
6. We denote by L

2
F ([s, T ] , R

n) the Hilbert space of Ft -

adapted processes x(·) such that E
∫ T

s |x(t)|2 dt < +∞.

7. For convenience, we will use 	x (t) = ∂	

∂x
(t, x(t),

E(x(t)), u(t)),
	xx (t) = ∂2	

∂x2 (t, x(t),E(x(t)), u(t)).

Basic Assumptions Throughout this paper we assume the
following.

Assumption (H1) The functions f : [s, T ] × R
n × R

n×
A → R

n, σ : [s, T ] × R
n × R

n×A →Mn×d (R) and � :
[s, T ] × R

n × R
n×A → R are measurable in (t, x, y, u)

and twice continuously differentiable in (x, y), g : [s, T ] ×
R

n×A×� → R
n×m is twice continuously differentiable in

x , and there exists a constant C > 0 such that, for ϕ =
f, σ, � :
∣
∣ϕ(t, x, y, u)− ϕ(t, x ′, y′, u)

∣
∣

+ ∣
∣ϕx (t, x, y, u)− ϕx (t, x ′, y′, u)

∣
∣

≤ C
[∣
∣x − x ′∣∣+ ∣

∣y − y′∣∣] . (3)

|ϕ(t, x, y, u)| ≤ C (1 + |x | + |y|) . (4)

sup
θ∈�

∣
∣g (t, x, u, θ)− g

(
t, x ′, u, θ

)∣
∣

+ sup
θ∈�

∣
∣gx (t, x, u, θ)− gx

(
t, x ′, u, θ

)∣
∣

≤ C
∣
∣x − x ′∣∣ (5)

sup
θ∈�

|g (t, x, u, θ)| ≤ C (1 + |x |) . (6)

Assumption (H2) The function h : R
n × R

n→ R is twice
continuously differentiable in (x, y), and there exists a con-
stant C > 0 such that
∣
∣h(x, y)− h(x ′, y′))

∣
∣+ ∣

∣hx (x, y)− hx (x
′, y′))

∣
∣

≤ C
[∣
∣x − x ′∣∣+ ∣

∣y − y′∣∣] . (7)

|h(x, y)| ≤ C (1 + |x | + |y|) . (8)

Under the above assumptions, the SDE-(1) has a unique
strong solution xu(t) which is given by

xu(t) = ζ +
t∫

s

f
(
r, xu(r),E(xu(r)), u(r)

)
dr

+
t∫

s

σ
(
r, xu(r),E(xu(r)), u(r)

)
dW (r)

+
t∫

s

∫

�

g
(
t, xu(r−), u(r), θ

)
N (dθ, dr) ,

and by standard arguments it is easy to show that for any
q > 0, it holds that

E

(

sup
t∈[s,T ]

∣
∣xu(t)

∣
∣q

)

< C (q) ,

where C (q) is a constant depending only on q and the func-
tional J s,ζ is well defined.
We introduce the adjoint equations as follows. The first-order
adjoint equation turns out to be a linear mean-field backward
SDE, while the second-order adjoint equation remains the
same as in Tang and Li [9].

Definition 2.1 (Adjoint equation for mean-field jump diffu-
sion processes) For any u(·) ∈ U and the corresponding
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state trajectory x(·), we define the first-order adjoint process
(�(·), K (·), γ (·)) and the second-order adjoint process
(Q(·), R(·), �(·)) as the ones satisfying the following equa-
tions:

(1) First-order adjoint equation: linear Backward SDE of
mean-field type with jump processes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d�(t) = {
f ∗
x (t, x(t),E(x(t), u(t))�(t)

+ E

[
f ∗
y (t, x(t),E(x(t), u(t))�(t)

]

+ σ ∗
x (t, x(t),E(x(t), u(t)) K (t)

+ E

[
σ ∗

y (t, x(t),E(x(t), u(t)) K (t)
]

+ �x (t, x(t),E(x(t), u(t))+ E
[
�y (t, x(t),E(x(t), u(t))

]

+ ∫

�
g∗

x

(
t, x(t−), u(t), θ

)
γt (θ)μ(dθ)

}
dt

− K (t)dW (t)− ∫

�
γt (θ)N (dt, dθ)

�(T ) = hx (x(T ),E(x(T ))+ E
[
hy (x(T ),E(x(T ))

]
.

(9)

(2) Second-order adjoint equation: classical linear Back-
ward SDE with jump processes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d Q(t) = {
f ∗
x (t, x(t),E(x(t)), u(t)) Q(t)

+ Qt f ∗
x (t, x(t),E(x(t), u(t))

+ σ ∗
x (t, x(t),E(x(t)), u(t)) Q(t)σ ∗

x (t, x(t),E(x(t)), u(t))

+ σ ∗
x (t, x(t),E(x(t)), u(t)) R(t)

+ R(t)σx (t, x(t),E(x(t)), u(t))

− ∫

�
g∗

x

(
t, x(t−), u(t), θ

)
(�t (θ)+ Q(t))

gx
(
t, x(t−), u(t), θ

)
μ(dθ)− ∫

�
�t (θ)gx

(
t, x(t−), u(t), θ

)

+ g∗
x

(
t, x(t−), u(t), θ

)
�t (θ)μ(dθ)

− Hxx (t, x(t), E(x(t)), u(t),�(t), K (t), γt (θ))
}

dt

− R(t)dW (t)− ∫

�
�t (θ)N (dt, dθ)

Q(T ) = hxx (x(T ),E(x(T ))) ,

(10)

As it is well known that under conditions (H1) and
(H2) the first-order adjoint equation (7) admits one and
only one Ft -adapted solution pair (�(·), K (·), γ (·)) ∈
L

2
F ([s, T ] ; R

n) × L
2
F
(
[s, T ] ; R

n×d
) × L

2
F
(

[s, T ]
; R

n×m
)
. This equation reduces to the standard one,

when the coefficients do not explicitly depend on the
expected value (or the marginal law) of the underly-
ing diffusion process. Also the second-order adjoint
equation (8) admits one and only one Ft -adapted
solution pair (Q(·), R(·), �(·)) ∈ L

2
F
(
[s, T ] ; R

n×n
)

×L
2
F ([s, T ] ; (Rn×n

)d
)×L

2
F
(
[s, T ] ; (Rn×n

)m)
.More-

over, since fx , fy, σx , σy, �x , �x and hx are bounded, by
C by assumptions (H1) and (H2), we have the following
estimate

E

⎡

⎣ sup
s≤t≤T

|�(t)|2 +
T∫

s

|K (t)|2 dt

+
T∫

s

∫

�

|γt (θ)|2 μ(dθ)dt + sup
s≤t≤T

|Q(t)|2

+
T∫

s

|R(t)|2 dt +
T∫

s

∫

�

|�t (θ)|2 μ(dθ)dt

⎤

⎦ ≤ C.

(11)

Definition 2.2 (Usual Hamiltonian and H-function). We
define the usual Hamiltonian associated with the mean-field
stochastic control problem (3)–(4) as follows

H (t, X,E (X) , u, p, q, ϕ)

= −p f (t, X,E (X) , u)− qσ (t, X,E (X) , u)

−
∫

�

ϕg
(
t, x(t−), u(t), θ

)
μ(dθ)− � (t, X,E (X) , u) ,

where (t, X, u) ∈ [s, T ]×Rn ×A and X is a random variable
such that X ∈ L

1([s, T ] ; R
n). Furthermore, we define the H-

function corresponding to a given admissible pair (z (·) , v(·))
as follows

H(z(·),v(·))(t, x, u)

= H (t, x,E (x) , u, �(t), K (t)

−Q(t)σ (t, z(t),E (z(t)) , v(t)) ,

γt (θ)− (Q(t)+ γt (θ)) g
(
t, z(t−), v(t), θ

))
,

−1

2
σ ∗ (t, x,E(x), u) Q(t)σ (t, x,E(x), u)

−1

2

∫

�

g∗ (t, x, u, θ) (Q(t)+ γt (θ)) g (t, x, u, θ) μ(dθ).

This shows that

H(z(.),v(·))(t, x, u) = H (t, x,E (x) , u, �(t), K (t), γt (θ))

+ σ ∗ (t, x,E (x) , u) Q(t)σ (t, z(t),E (z(t)) , v(t))

− 1

2
σ ∗ (t, x,E(x), u) Q(t)σ (t, x,E(x), u)

+
∫

�

g∗ (t, x, u, θ) (Q(t)+ γt (θ))

×g (t, z(t), v(t), θ) μ(dθ)

− 1

2

∫

�

g∗ (t, x, u, θ) (Q(t)+ γt (θ)) g (t, x, u, θ) μ(dθ),

where�(t), K (t), γt (θ) and Q(t) are determined by adjoint
equations (9) and (10) corresponding to (z (·) , v(·)) .
Before concluding this section, let us recall the definition
of near-optimal controls as given in Zhou ([1], Defini-
tions (2.1)–(2.2)), and Ekeland’s variational principle, which
will be used in the sequel.
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Definition 2.3 (Near-optimal control of order ελ.) For a
given ε > 0 the admissible control uε(·) is near-optimal
with respect (s, ζ ) iff

∣
∣J s,ζ (uε(·))− V (s, ζ )

∣
∣ ≤ O (ε) , (12)

where O (·) is a function of ε satisfying limε→0 O (ε) = 0.
The estimator O (ε) is called an error bound.

1. If O (ε) = Cελ for some λ > 0 independent of the
constant C then uε(·) is called near-optimal control of
order ελ.

2. If O (ε) = Cε,the admissible control uε(·) called ε-
optimal.

Lemma 2.1 (Ekeland’s Variational Principle [26]) Let
(F, dF ) be a complete metric space and f : F → R be
a lower semi-continuous function which is bounded from
below. For a given ε > 0, suppose that uε ∈ F satisfy-
ing f (uε) ≤ infu∈F f (u) + ε. Then for any δ > 0, there
exists uδ ∈ F such that

1. f
(
uδ
) ≤ f (uε).

2. dF
(
uδ, uε

) ≤ δ.

3. f
(
uδ
) ≤ f (u)+ ε

δ
dF

(
u, uδ

)
, for all u ∈ F.

Now, in order to apply Ekeland’s principle to our Mean-field
control problem, we have to endow the set of admissible
controls U with an appropriate metric. We define a distance
function d on the space of admissible controls U such that
(U , d) becomes a complete metric space. For any u(·) and
v(·) ∈ U we set

d (u(·), v(·))
= P ⊗ dt {(w, t) ∈ �× [s, T ] : u (w, t) �= v (w, t)} ,

(13)

where P ⊗ dt is the product measure of P with the Lebesgue
measure dt on [s, T ]. Moreover, it has been shown in the
book by Yong and Zhou ([27], 146–147) that

1. (U , d) is a complete metric space
2. The cost function J s,ζ is continuous from U into R.

3 Necessary conditions of near-optimality for mean-field
jump diffusion processes

In this section, we obtain a Zhou-type necessary conditions of
near-optimality, where the system is described by nonlinear
controlled jump diffusion processes of mean-field type. The
control domain is not need to be convex. (a general action
space). The proof follows the general ideas as in [1,9].

The following theorem constitutes the main contribution of
this paper.
Let (�ε(·), K ε(·), γ ε(·)) and (Qε(·), Rε(·), �ε(·)) be the
solution of adjoint equations (7) and (8) respectively, cor-
responding to uε(·).
Theorem 3.1 (Mean-field stochastic maximum principle for
any near-optimal control). For any δ ∈ [0, 1

3 ), and any near-
optimal control uε(·) there exists a positive constant C =
C (δ, μ(�)) such that for each ε > 0 it holds that

E

T∫

s

{
1

2
[σ (t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
)
)]∗ Qε(t)[σ (t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
)] +�ε(t)[ f

(
t, xε(t),E(xε(t)), u

)

− f
(
t, xε(t),E(xε(t)), uε(t)

)] + K ε(t)[σ (t, xε(t),E(xε(t)), u
)

− σ (t, xε(t),E(xε(t)), uε(t)
)] +

∫

�

γ ε(t)g
(
t, xε(t), u, θ

)

− g
(
t, xε(t), uε(t), θ

)
μ(dθ)+ 1

2

∫

�

(g∗ (t, xε(t), u, θ
)

− g∗ (t, xε(t), uε(t), θ
)
)
(
Qε(t)+ γ εt (θ)

)

×(g (t, xε(t), u, θ
)− g

(
t, xε(t), uε(t), θ

)
)μ(dθ),

+ �
(
t, xε(t),E(xε(t)), u

)− �
(
t, xε(t),E(xε(t)), uε(t)

)
}

dt

≥ −Cεδ. (14)

Corollary 3.1 Under the assumptions of Theorem 3.1 it
holds that

E

T∫

s

H(xε(·),uε(·)(t, xε(t),E(xε(t)), uε(t))dt

≥ sup
u(·)∈U

E

T∫

s

H(xε(·),uε(·))(t, xε(t),E(xε(t)), u(t))dt−Cεδ.

(15)

To prove Theorem 3.1 and Corollary 3.1, we need the follow-
ing auxiliary results on the stability of the state and adjoint
processes with respect to the control variable.

In what follows, C represents a generic constant, which can
be different from line to line.
Our first Lemma below deals with the continuity of the state
processes under distance d.

Lemma 3.1 If xu(t) and xv(t) be the solution of the state
equation (1) associated respectively with u(t) and v(t). For
any α ∈ (0, 1) and β ≥ 0 satisfying αβ < 1, there exists a
positive constants C = C (T, α, β, μ(�)) such that

E

(

sup
s≤t≤T

∣
∣xu(t)− xv(t)

∣
∣2β

)

≤ Cdαβ (u(·), v(·)) . (16)
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Proof Case 1. First, we assume that β ≥ 1. Using
Burkholder–Davis–Gundy inequality for the martingale part
and Proposition 6.2 (see “Appendix”) we can compute, for
any r ≥ s :

E

[

sup
s≤t≤r

∣
∣xu(t)− xv(t)

∣
∣2β

]

≤ CE

r∫

s

⎡

⎣
∣
∣ f (t, xu(t),E(xu(t)), u(t))

− f ((xv(t),E(xv(t)), v(t))
∣
∣2β

+ ∣
∣σ
(
t, xu(t),E

(
xu(t)

)
, u(t)

)− σ(xv(t),E
(
xv(t)

)
, v(t)

∣
∣2β

+
∫

�

∣
∣g
(
t, xu(t), u, θ

)− g
(
t, xv(t), v(t), θ

)∣
∣2β μ(dθ)

⎤

⎦ dt

≤ I1 + I2,

where

I1 ≤ CE

r∫

s

{
∣
∣ f
(
xu(t),E(xu(t)), u(t)

)

− f
(
xu(t),E(xu(t)), v(t)

)∣
∣2β

+ ∣
∣σ
(
xu(t),E(xu(t)), u(t)

)− σ
(
xu(t),E(xu(t)), v(t)

)∣
∣2β

+μ(�) sup
θ∈�

∣
∣g
(
t, xu(t), u(t), θ

)

− g
(
t, xv(t), v(t), θ

)∣
∣2β

}

1{u(t) �=v(t)} (t) dt

and

I2 ≤ CE

⎛

⎝

r∫

s

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

f

⎛

⎝xu(t),E
(
xu(t)

)
, v(t)

⎞

⎠

− f
(
xv(t),E

(
xv(t)

)
, v(t)

)∣
∣2β

+
r∫

s

∣
∣σ
(
xu(t),E

(
xu(t)

)
, v(t)

)

− σ
(
xv(t),E(xv(t)), v (t)

)∣
∣2β

+μ(�)
(

sup
θ∈�

∣
∣g
(
t, xu(t), v(t), θ

)

− g
(
t, xv(t), v(t), θ

)∣
∣

)2β
⎫
⎬

⎭

Now arguing as in ([1], Lemma 3.1) taking b = 1
αβ
> 1 and

a > 1 such that 1
a + 1

b = 1, and applying Cauchy–Schwarz
inequality, we get

E

r∫

s

∣
∣ f
(
t, xu(t),E

(
xu(t)

)
, u(t)

)

− f
(
xu,η(t),E

(
xu(t)

)
, v(t)

)∣
∣2β 1{u(t) �=v(t)} (t) dt

≤
⎧
⎨

⎩
E

r∫

s

∣
∣ f
(
t, xu(t),E

(
xu(t)

)
, u(t)

)

− f
(
t, xu(t),E

(
xu(t)

)
, v(t)

)∣
∣2βa

dt
} 1

a

×
⎧
⎨

⎩
E

r∫

s

1{u(t) �=v(t)} (t) dt

⎫
⎬

⎭

1
b

,

by using definition of d and linear growth condition on f
with respect to x and y, (Assumption 4) we obtain

E

r∫

s

∣
∣
∣ f
(
t, xu(t),E

(
xu(t)

)
, u(t)

)

− f
(
t, xu(t),E

(
xu(t)

)
, v(t)

) ∣∣
∣
2β

1{u(t) �=v(t)} (t) dt

≤ C

⎧
⎨

⎩
E

r∫

s

(1 + ∣
∣xu(t)

∣
∣2βa + ∣

∣E
(
xu(t)

)∣
∣2βa

)dt

⎫
⎬

⎭

1
a

× d (u(·), v(·))αβ ≤ Cd (u(·), v(·))αβ .
Similarly, the same inequality holds if f above is replaced
by σ and g then we get

E

r∫

s

∣
∣
∣σ
(
t, xu(t),E

(
xu(t)

)
, u(t)

)

−σ (t, xu(t),E
(
xu(t)

)
, v(t)

) ∣∣
∣
2β

1{u(t) �=v(t)} (t) dt

≤ Cd (u(·), v(·))αβ .
and

E

r∫

s

(

sup
θ∈�

∣
∣g
(
t, xu(t), u, θ

)− g
(
t, xv(t), v(t), θ

)∣
∣

)2β

× 1{u(t) �=v(t)} (t) dt ≤ Cd (u(·), v(·))αβ .
This implied that I1 ≤ Cd (u(·), v(·))αβ .
Since the coefficients f, σ and g are Lipschitz with respected
to x and y (assumption (H1)) we conclude that

E

(

sup
s≤t≤r

∣
∣xu(t)− xv(t)

∣
∣2β
)

≤ C

⎡

⎣E

r∫

s

sup
s≤r≤τ

∣
∣xu(t)− xv(t)

∣
∣2β dτ + d (u(·), v(·))αβ

⎤

⎦

Hence (16) follows immediately from Gronwall’s inequality.
Case 2. Now we assume 0 ≤ β < 1. Since 2

α
> 1 then the

Cauchy–Schwarz inequality yields

E

(

sup
s≤t≤T

∣
∣xu(t)−xv(t)

∣
∣2β

)

≤
[

E( sup
s≤t≤T

∣
∣xu(t)−xv(t)

∣
∣2)

]β

≤ [
Cd (u(·), v(·))α]β ≤ Cd (u(·), v(·))αβ .

This completes the proof of Lemma 3.1. ��
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The next result gives the β−th moment continuity of the solu-
tions to adjoint equations with respect to the metric d. This
Lemma is an extension of Lemma 3.2 in Zhou [1] to mean-
field SDEs with jump processes.

Lemma 3.2 For any α ∈ (0, 1) and β ∈ (1, 2) sat-
isfying (1 + α) β < 2, there exist a positive constant
C = C (α, β, μ(�)) such that for any u(·), v(·) ∈ U ,
along with the corresponding trajectories xu(·), xv(·) and
the solutions (�u(·), K u(·), γ u(·), Qu(·), Ru(·), �u(·)) and
(�v(·), K v(·), γ v(·), Qv(·), Rv(·), �v(·))of the correspond-
ing adjoint equations (9)–(10), it holds that

E

T∫

s

(∣
∣�u(t)−�v(t)

∣
∣β + ∣

∣K u(t)− K v(t)
∣
∣β
)

dt

+ E

T∫

s

∫

�

∣
∣γ u

t (θ)−γ vt (θ)
∣
∣β μ(dθ)dt ≤Cd (u(·), v(·)) αβ2 ,

(17)

and

E

T∫

s

(
∣
∣Qu(t)− Qv(t)

∣
∣β + ∣

∣Ru(t)− Rv(t)
∣
∣β)dt

+ E

T∫

s

∫

�

∣
∣�u

t (θ)−�vt (θ)
∣
∣β μ(dθ)dt ≤Cd (u(·), v(·)) αβ2 .

(18)

Proof Note that �̃(t) = �u(t) − �v(t), K̃ (t) = K u(t) −
K v(t) and γ̃t (θ) = γ u

t (θ) − γ vt (θ) satisfied the following
Backward SDEs:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d�̃(t) =
[

f ∗
x (t, xu(t),E(xu(t)), u(t)) �̃(t)

+σ ∗
x (t, xu(t),E(xu(t)), u(t)) K̃ (t)

+ ∫

�
g∗

x (t, xu(t), u, θ) γ̃t (θ)μ(dθ)+ L(t)
]

dt

−K̃ (t)dW (t)− ∫

�
γ̃t (θ)N (dθ, dt)

�̃(T ) = hx (xu(T ),E(xu(T )))− hx (xv(T ),E(xv(T )))

+ E[hy (xu(T ),E(xu(T )))− hy (xv(T ),E(xv(T ))],

(19)

where the process L(t) is given by

L(t) = [ f ∗
x

(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
x

(
t, xv(t),E(xv(t)), v(t)

)]�v(t)
+[σ ∗

x

(
t, xu(t),E(xu(t)), u(t)

)

− σ ∗
x

(
t, xv(t),E(xv(t)), v(t)

)]K v(t)

+[�x
(
t, xu(t),E(xu(t)), u(t)

)

− �x
(
t, xv(t),E(xv(t)), v(t)

)]
+ E[ f ∗

y

(
t, xu(t),E(xu(t)), u(t)

)
�u(t)

− f ∗
y

(
t, xv(t),E(xv(t)), v(t)

)
�v(t)]

+ E[σ ∗
y

(
t, xu(t),E(xu(t)), u(t)

)
K u(t)

− σ ∗
y

(
t, xv(t),E(xv(t)), v(t)

)
K v(t)]

+ E[�y
(
t, xu(t),E(xu(t)), u(t)

)

− �y
(
t, xv(t),E(xv(t)), v(t)

)]
+
∫

�

(g∗
x

(
t, xu(t−), u, θ

)

− g∗
x

(
t, xv(t−), v, θ

)
)γ vt (θ)μ(dθ). (20)

Let φ(·) be the solution of the following linear SDE
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφ(t) =
[

fx (t, xu(t),E(xu(t)), u(t)) φ(t)

+ ∣
∣�̃(t)

∣
∣β−1

Sgn(�̃(t))
]
dt

+
[
σx (t, xu(t),E(xu(t)), u(t)) φ(t)

+ ∣
∣K̃ (t)

∣
∣β−1

Sgn(K̃ (t))
]

dW (t)

+
[ ∫

�
g∗

x (t, xu(t−), u, θ) φ(t)

+ |γ̃t (θ)|β−1 Sgn(γ̃t (θ))
]

N (dθ, dt), φ(s) = 0,

(21)

where Sgn (a) ≡ (Sgn(a1), Sgn(a2), . . . , Sgn(an))
∗ for

any vector a = (a1, a2, . . . , an)
∗.

It is worth mentioning that since fx σx and gx are bounded
and the fact that

E

T∫

s

{∣
∣
∣
∣
∣�̃(t)

∣
∣β−1

Sgn(�̃(t))
∣
∣
∣
2 +

∣
∣
∣
∣
∣K̃ (t)

∣
∣β−1

Sgn(K̃ (t))
∣
∣
∣
2
}

dt

+ E

T∫

s

∫

�

∣
∣|γ̃t (θ)|β−1 Sgn(γ̃t (θ))

∣
∣2 μ(dθ)dt < ∞, (22)

then the SDE (21) has a unique strong solution.
Let η ≥ 2 such that 1

η
+ 1

β
= 1, β ∈ (1, 2) then we get

E

(

sup
s≤t≤T

|φ(t)|η
)

≤CE

T∫

s

{∣
∣�̃(t)

∣
∣βη−η + ∣

∣K̃ (t)
∣
∣βη−η

}
dt

+ E

T∫

s

∫

�

|γ̃t (θ)|βη−η μ(dθ)dt

≤ CE

T∫

s

⎧
⎨

⎩

∣
∣�̃(t)

∣
∣β + ∣

∣K̃ (t)
∣
∣β +

∫

�

|γ̃t (θ)|β μ(dθ)
⎫
⎬

⎭
dt.

Note that the right hand side term of the above inequality
is bounded due to (9), then we get
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E

(

sup
s≤t≤T

|φ(t)|η
)

< ∞. (23)

By applying Itô’s formula for jump processes (see Appendix
Lemma 6.1) to �̃(t)φ(t) on [s, T ] and taking expectation,
we get

E

T∫

s

⎧
⎨

⎩
�̃(t)

∣
∣�̃(t)

∣
∣β−1

Sgn(�̃(t))

+K̃ (t)
∣
∣K̃ (t)

∣
∣β−1

Sgn(K̃ (t))

+
∫

�

γ̃t (θ) |γ̃t (θ)|β−1 Sgn(γ̃t (θ))μ(dθ)

⎫
⎬

⎭
dt

= E

⎧
⎨

⎩

T∫

s

L(t)φ(t)dt + �̃(T )φ(T )

⎫
⎬

⎭

= E

T∫

s

L(t)φ(t)dt + E{(hx
(
xu(T ),E(xu(T ))

)

− hx
(
xv(T ),E(xv(T ))

)
)φ(T )}+E[hy

(
xu(T ),E(xu(T ))

)

− hy
(
xv(T ),E(xv(T )

)]E (φ(T )) .
Since

E

T∫

s

⎧
⎨

⎩
�̃(t)

∣
∣�̃(t)

∣
∣β−1

Sgn(�̃(t))+ K̃ (t)
∣
∣K̃ (t)

∣
∣β−1

Sgn(K̃ (t))

+
∫

�

γ̃t (θ) |γ̃t (θ)|β−1 Sgn(γ̃t (θ))μ(dθ)

⎫
⎬

⎭
dt

= E

T∫

s

⎡

⎣
∣
∣�̃(t)

∣
∣β + ∣

∣K̃ (t)
∣
∣β +

∫

�

|γ̃t (θ)|β μ(dθ)
⎤

⎦ dt,

and fact that

E

⎧
⎨

⎩

T∫

s

L(t)φ(t)dt

+ [(
hx
(
xu(T ),E(xu(T ))

)− hx
(
xv(T ),E(xv(T ))

))

+ E
(
hy
(
xu(T ),E(xu(T ))

)− hy
(
xv(T ),E(xv(T )

))]

× (φ(T ))

⎫
⎬

⎭

≤
⎡

⎣E

T∫

s

|L(t)|β dt

⎤

⎦

1
β
⎡

⎣E

T∫

s

|φ(t)|η dt

⎤

⎦

1
η

+ [
E
∣
∣
(
hx
(
xu(T ),E(xu(T ))

)− hx
(
xv(T ),E(xv(T )

))

+ E
(
hy
(
xu(T ),E(xu(T ))

)−hy
(
xv(T ),E(xv(T )

))]∣∣η] 1
β

× [
E |φ(T )|η] 1

η ,

then according to (23) we deduce

E

T∫

s

⎡

⎣
∣
∣�̃(t)

∣
∣β + ∣

∣K̃ (t)
∣
∣β +

∫

�

|γ̃t (θ)|β μ(dθ)
⎤

⎦ dt

≤ CE

T∫

s

|L(t)|β dt

+ CE

{ ∣
∣hx (x

u(T ),E(xu(T )))− hx (x
v(T ),E(xv(T )))

∣
∣β

+ ∣
∣E(hy(x

u(T ),E(xu(T ))))−E(hy(x
v(T ),E(xv(T ))))

∣
∣β
}
.

(24)

We proceed to estimate the right hand side of (24). First
noting that αβ2 < 1 − β

2 < 1 then by using assumption (H2)
and Lemma 3.1, we obtain

E
∣
∣hx (x

u(T ),E(xu(T )))− hx (x
v(T ),E(xv(T )))

∣
∣β

≤ CE
∣
∣xu(T )− xv(T )

∣
∣β ≤ Cd(u(·), v(·)) αβ2 .

E
∣
∣E(hy(x

u(T ),E(xu(T )))) − E(hy(x
v(T ),E(xv(T ))))

∣
∣β

≤ Cd(u(·), v(·)) αβ2 . (25)

Now, to prove inequality (17) it sufficient to estimate
E
∫ T

s |L(t)|β dt. By repeatedly using Cauchy–Schwarz
inequality and assumption (H2) we can estimate

E

T∫

s

∣
∣ f ∗

x

(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
x

(
t, xv(t),E(xv(t)), v(t)

)∣
∣β
∣
∣�v(t)

∣
∣β dt

≤ CE

T∫

s

{
∣
∣ f ∗

x

(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
x

(
t, xu(t),E(xu(t)), v(t)

)∣
∣β
∣
∣�v(t)

∣
∣β

+ ∣
∣ f ∗

x

(
t, xu(t),E(xu(t)), v(t)

)

− f ∗
x

(
t, xv(t),E(xv(t)), v(t)

)∣
∣β
∣
∣�v(t)

∣
∣β
}

dt

≤ CE

T∫

s

{
1{u(t)�=v(t)}(t)

∣
∣�v(t)

∣
∣β

+ [∣
∣xu(t)−xv(t)

∣
∣+∣∣E(xu(t))−E(xv(t))

∣
∣
]β ∣∣�v(t)

∣
∣β
}

dt

≤ C

⎡

⎣E

T∫

s

∣
∣�v(t)

∣
∣2 dt

⎤

⎦

β
2

d(u(.), v(.))
2−β

2

+ C

⎡

⎣E

T∫

s

∣
∣�v(t)

∣
∣2 dt

⎤

⎦

β
2
⎡

⎣E

T∫

s

∣
∣xu(t)xv(t)

∣
∣

2β
2−β dt

⎤

⎦

2−β
2

.

By using the fact that d(u(·), v(·)) ≤ 1 and αβ
2 < 1 − β

2 , the
first term of the right side of the above inequality is domi-

nated by d(u(·), v(·)) αβ2 . Since αβ
2−β < 1 and we have from

Lemma 3.1 that
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E

T∫

s

∣
∣xu(t)− xv(t)

∣
∣

2β
2−β dt ≤ d(u(·), v(·)) αβ

2−β ,

then we have

C

⎡

⎣E

T∫

s

∣
∣�v(t)

∣
∣2 dt

⎤

⎦

β
2

d(u(·), v(·)) 2−β
2

+
⎡

⎣E

T∫

s

∣
∣�v(t)

∣
∣2 dt

⎤

⎦

β
2
⎡

⎣E

T∫

s

∣
∣xu(t)− xv(t)

∣
∣

2β
2−β dt

⎤

⎦

2−β
2

≤ Cd (u(·), v(·)) αβ2 ,
we conclude that

E

T∫

s

∣
∣ f ∗

x

(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
x

(
xv(t),E(xv(t)), v(t)

)∣
∣β
∣
∣�v(t)

∣
∣β dt

≤ Cd (u(·), v(·)) αβ2 . (26)

A similar argument shows that

E

T∫

s

∣
∣σx

(
t, xu(t),E(xu(t)), u(t)

)

− σx
(
t, xv(t),E(xv(t)), v(t)

)∣
∣β
∣
∣K v(t)

∣
∣β dt

≤ Cd (u(·), v(·)) αβ2 , (27)

and

E

T∫

s

∣
∣�x

(
t, xu(t),E(xu(t)), u(t)

)

− �x
(
t, xv(t),E(xv,ξ (t)), v(t)

)∣
∣β dt ≤ Cd (u(·), v(·)) αβ2 .

(28)

Now, by using similar arguments developed above and (9)
we get

E

T∫

s

∣
∣
∣E
{
[ f ∗

y

(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
y

(
xv(t),E(xv(t)), v(t)

)] �v(t)}∣∣β dt

≤ CE

T∫

s

E f ∗
y

∣
∣
(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
y

(
xv(t),E(xv(t)), v(t)

)∣∣
∣
β

E
[∣
∣�v(t)

∣
∣
]β

dt

≤ CE

T∫

s

E

∣
∣
∣ f ∗

y

(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
y

(
xv(t),E(xv(t)), v(t)

)∣∣
∣
β

dt

≤ Cd (u(·), v(·)) αβ2 . (29)

A similar argument shows that

E

T∫

s

∣
∣
∣E{[σ ∗

y

(
t, xu(t),E(xu(t)), u(t)

)

− σ ∗
y

(
xv(t),E(xv(t)), v(t)

)]�v(t)}
∣
∣
∣
β

dt

≤ Cd (u(·), v(·)) αβ2 , (30)

E

T∫

s

∣
∣
∣E{[ f ∗

y

(
t, xu(t),E(xu(t)), u(t)

)

− f ∗
y

(
xv(t),E(xv(t)), v(t)

)]�v(t)}
∣
∣
∣
β

dt

≤ Cd (u(·), v(·)) αβ2 , (31)

and

E

T∫

s

∣
∣E[�y

(
t, xu(t),E(xu(t)), u(t)

)

− �y
(
xv(t),E(xv(t)), v(t)

)]∣∣β dt ≤ Cd (u(·), v(·)) αβ2 .
(32)

Next, by applying Cauchy–Schwarz inequality, we get

E

T∫

s

∣
∣
∣
∣
∣
∣

∫

�

(g∗
x

(
t, xu(t), u(t), θ

)

− g∗
x

(
t, xv(t), v(t), θ

)
)γ vt (θ)μ(dθ)

∣
∣β dt

= E

T∫

s

∣
∣
∣
∣
∣
∣

∫

�

(g∗
x

(
t, xu(t), u(t), θ

)

− g∗
x

(
t, xu(t−), v(t), θ

)
)γ vt (θ)μ(dθ)

∣
∣β dt

+ E

T∫

s

∣
∣
∣
∣
∣
∣

∫

�

(g∗
x

(
t, xu(t), v(t), θ

)

− g∗
x

(
t, xv(t−), v(t), θ

)
)γ vt (θ)μ(dθ)

∣
∣β dt

≤ I1 + I2,

where

I1 = E

T∫

s

∣
∣
∣
∣
∣
∣

∫

�

(g∗
x

(
t, xu(t−), u(t), θ

)

− g∗
x

(
t, xu(t−), v(t), θ

)
)γ vt (θ)μ(dθ)

∣
∣β 1{u(t)�=v(t)}(t)dt,

and

I2 = E

T∫

s

(sup
θ∈�

∣
∣(g∗

x

(
t, xu(t), u(t), θ

)

−g∗
x

(
t, xu(t), v(t), θ

)
)
∣
∣)β

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣

∫

�

γ vt (θ)μ(dθ)

∣
∣
∣
∣
∣
∣

β
⎞

⎟
⎠ dt.
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By using the fact that gx is bounded, d(u(·), v(·)) ≤ 1 and
αβ
2 < 1 − β

2 , then due to (11) we get

I1 ≤ CE

⎧
⎨

⎩

T∫

s

∫

�

∣
∣γ vt (θ)

∣
∣2 μ(dθ)

⎫
⎬

⎭

β
2

×
⎧
⎨

⎩

T∫

s

1{u(t) �=v(t)}(t)dt

⎫
⎬

⎭

1− β
2

≤ CE

⎧
⎨

⎩

T∫

s

∫

�

∣
∣γ vt (θ)

∣
∣2 μ(dθ)

⎫
⎬

⎭

β
2

d (u(·), v(·))1− β
2

≤ Cd (u(·), v(·)) αβ2 . (33)

Further, since αβ
2−β < 1 we conclude from Lemma 3.1 and

(11) that

I2 ≤ CE

⎛

⎝

T∫

s

∣
∣xu(t)− xv(t)

∣
∣

2β
2−β dt

⎞

⎠

1− β
2

E

⎛

⎜
⎝

T∫

s

∣
∣
∣
∣
∣
∣

∫

�

γ vt (θ)μ(dθ)

∣
∣
∣
∣
∣
∣

2

dt

⎞

⎟
⎠

β
2

≤ Cd (u(·), v(·)) αβ2 ,

(34)

It follows from (33) and (34) that

E

T∫

s

∣
∣
∣
∣
∣
∣

∫

�

(g∗
x

(
t, xu(t), u(t), θ

)− g∗
x

(
t, xv(t), v(t), θ

)
)

× γ vt (θ)μ(dθ)
∣
∣β dt ≤ Cd (u(·), v(·)) αβ2 . (35)

We conclude from (26)–(35) that

E

T∫

s

|L(t)|β dt ≤ Cd (u(·), v(·)) αβ2 . (36)

Finally, combining (24)–(25) and (36), the proof of (17) is
complete. Similarly one can prove (19). This completes the
proof of Lemma 3.2. ��

Now, let (�
ε
(·), K

ε
(·), γ ε(·)) and (Q

ε
(·), R

ε
(·), �ε(·)) be

the solution of adjoint equations (9)–(10) corresponding to
(xε(·),E (xε(·)) , uε(·)) .

Lemma 3.3 For any ε > 0, there exists near-optimal control
uε(·) such that for any u ∈ A:

E

T∫

s

{
1

2

(
σ
(
t, xε(t),E(xε(t)), u

)− σ
(
t, xε(t),E(xε(t)), uε(t)

))∗

×Q
ε
(t)

(
σ
(
t, xε(t),E(xε(t)), u

)− σ
(
t, xε(t),E(xε(t)), uε(t)

))

+�ε(t) ( f
(
t, xε(t),E(xε(t)), u

)− f
(
t, xε(t),E(xε(t)), uε(t)

))

+ K
ε
(t)

(
σ
(
t, xε(t),E(xε(t)), u

)− σ
(
t, xε(t),E(xε(t)), uε(t)

))

+
∫

�

γ ε(t)g
(
t, xε(t−), u, θ

)− g
(
t, xε(t−), uε(t), θ

)
μ(dθ)

+ 1

2

∫

�

(g∗ (t, xε(t−), u, θ
)− g∗ (t, xε(t−), uε(t), θ

)
)

(Q
ε
(t)+γ εt (θ))(g

(
t, xε(t−), u, θ

)−g
(
t, xε(t−), uε(t), θ

)
)μ(dθ),

+ (
�
(
t, xε(t),E(xε(t)), u

)− �
(
t, xε(t),E(xε(t)), uε(t)

))
}

dt

≥ −ε 1
3 , (37)

Proof By using Ekeland’s variational principle with λ = ε
2
3 ,

there is an admissible control uε(·) such that for any u(·) ∈
U :

d
(
uε(·), uε(·)) ≤ ε

2
3 , (38)

and

J s,ζ (uε(·)) ≤ J s,ζ (uε(·))+ ε
1
3 d
(
u(·), uε(·)) .

Notice that uε(·) which is near-optimal for the initial cost
J s,ζ defined in (2) is an optimal control for the new cost
J s,ζ,ε given by

J s,ζ,ε (u(·)) = J s,ζ (u(·))+ ε
1
3 d
(
u(·), uε(·)) .

Therefore we have

J s,ζ,ε (uε(·)) ≤ J s,ζ,ε (u(·)) for any u(·) ∈ U .

Next, we use the spike variation techniques for uε(·) to derive
the variational inequality as follows. For h̄ > 0, we choose a
Borel subset Eh̄ ⊂ [s, T ] such that |Eh̄ | = h̄, and we consider
the control process which is the spike variation of uε(·) :

uε,h̄(t) =
{

u : t ∈ Eh̄,

uε(t) : t ∈ [s, T ] | Eh̄,

where u is an arbitrary element of A be fixed. By using the fact
that J s,ζ,ε (uε(·)) ≤ J s,ζ,ε(uε,h̄(·)), and d(uε,h̄(·), uε(·)) =
d(uε,h̄(·), uε(·)) ≤ h̄, we get

J s,ζ (uε,h̄(·))− J s,ζ (uε(·)) ≥ −ε1/3d(uε(·), uε,h̄(·))
≥ −ε1/3h̄. (39)

Arguing as in Hafayed and Abbas ([17], Theorem 3.1), the
left-hand side of (39) is equal to
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E

∫

Eh̄

{
1

2
[σ (t, xε(t),E(xε(t)), u

)
)

−σ(t, xε(t),E(xε(t)), uε(t))]∗ × Q
ε
(t)

[
σ
(
t, xε(t),E(xε(t)), u

)− σ
(
t, xε(t),E(xε(t)), uε(t)

)]

+�ε(t)[ f
(
t, xε(t),E(xε(t)), u

)

− f
(
t, xε(t),E(xε(t)), uε(t)

)]
+ K

ε
(t)[σ (t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
)]

+
∫

�

γ ε(t)g
(
t, xε(t−), u, θ

)

− g
(
t, xε(t−), uε(t), θ

)
μ(dθ)

+ 1

2

∫

�

[g∗ (t, xε(t−), u, θ
)− g∗ (t, xε(t−), uε(t), θ

)]

× (Qε
(t)+ γ εt (θ))[g

(
t, xε(t−), u, θ

)

− g
(
t, xε(t−), uε(t), θ

)]μ(dθ)+[� (t, xε(t),E(xε(t)), u
)

− � (t, xε(t),E(xε(t)), uε(t)
)]
}

dt + τ(h̄), (40)

where τ(h̄) −→ 0 as h̄ −→ 0.Finally, replacing (40) in (39),
then dividing inequality (39) by h̄ and sending h̄ to zero, the
near-maximum condition (37) follows. ��
Proof of Theorem 3.1 First, we are about to derive an esti-
mate for the term similar to the left side of inequality (34)
and (35) with all the (xε(·),E(xε(·)), uε(·)) etc. replaced by
(xε(·),E(xε(·)), uε(·)) etc,.
Now, to prove (14) it remains to estimate the following dif-
ferences

S1(ε) = E

T∫

s

[
K
ε
(t)(σ

(
t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
)
)

− K ε(t)(σ
(
t, xε(t),E(xε(t)), u

)

− σ
(
t, xε(t),E(xε(t)), uε(t)

)
)

⎤

⎦ dt, (41)

S2(ε) = E

T∫

s

{
1

2
(σ
(
t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
)
)∗Q

ε
(t)

× (
σ
(
t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
))

− 1

2

(
σ
(
t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
))∗

× Qε(t)[σ (t, xε(t),E(xε(t)), u
)

− σ (t, xε(t),E(xε(t)), uε(t)
)]

+�ε(t)[ f
(
t, xε(t),E(xε(t)), u

)

− f
(
t, xε(t),E(xε(t)), uε(t)

)]
−�ε(t)[ f

(
t, xε(t),E(xε(t)), u

)

− f
(
t, xε(t),E(xε(t)), uε(t)

)]
+ [� (t, xε(t),E(xε(t)), u

)

− � (t, xε(t),E(xε(t)), uε(t)
)]

− [� (t, xε(t),E(xε(t)), u
)

− � (t, xε(t),E(xε(t)), uε(t)
)]
}

dt. (42)

and

S3(ε)=E

T∫

s

∫

�

[
γ εt (θ)

(
g
(
t, xε(t−), u, θ

)

− g
(
t, xε(t−), uε(t)

))−γ εt (θ)
(
g
(
t, xε(t−), u, θ

)

− g
(
t, xε(t−), uε(t), θ

))]
μ(dθ)dt, (43)

Then we have

S1(ε) = E

T∫

s

[
K
ε
(t)− K ε(t)

] [
σ
(
t, xε(t),E(xε(t)), u

)

− σ (t, xε(t),E(xε(t)), uε(t)
)]

+ E

T∫

s

K ε(t)[σ (t, xε(t),E(xε(t)), u
)

− σ (t, xε(t),E(xε(t)), u
)]dt

− E

T∫

s

K ε(t)[σ (t, xε(t),E(xε(t)), uε(t)
)

− σ (t, xε(t),E(xε(t)), uε(t)
)]dt

= I1 (ε)+ I2 (ε)+ I3 (ε) .

We estimate the first term on the right-hand side I1 (ε) =
E

T∫

s

[
K
ε
(t)−K ε(t)

]
[σ (t, xε(t),E(xε(t)), u)−σ (t, xε(t),

E(xε(t)), uε(t))].For any δ ∈ [0, 1
3 ) so thatα = 3δ ∈ [0, 1).

Now, let β be a fixed real number such that 1 < β < 2 so
that (1 + α)β < 2. Taking q > 2 such that 1

β
+ 1

q = 1 then
by using Hô lder’s inequality, Lemma 3.2 and note (4) we
obtain

I1 (ε) ≤
⎡

⎣E

T∫

s

∣
∣
∣K

ε
(t)− K ε(t)

∣
∣
∣
β

dt

⎤

⎦

1
β

×
⎡

⎣E

T∫

s

∣
∣σ
(
t, xε(t),E(xε(t)), u

)

− σ
(
t, xε(t),E(xε(t)), uε(t)

)∣
∣q dt

] 1
q
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≤ C
[
d(uε(·), uε(·)) αβ2

] 1
β

×
⎡

⎣E

T∫

s

(1 + ∣
∣xε(t)

∣
∣q + ∣

∣E(xε(t))
∣
∣q)dt

⎤

⎦

1
q

≤ C
[
ε

2
3

] αβ
2 .

1
β = Cεδ.

We estimate now the second term I2 (ε) . Then by applying
Cauchy–Schwarz inequality, note (9), assumption (H1), and
Lemma 3.1, we get

I2 (ε) ≤
⎡

⎣E

T∫

s

∣
∣K ε(t)

∣
∣2 dt

⎤

⎦

1
2
⎡

⎣E

T∫

s

∣
∣σ
(
t, xε(t),E(xε(t)), u

)

− σ
(
t, xε(t),E(xε(t)), u

)∣
∣2 dt

⎤

⎦

1
2

≤ C

⎡

⎣E

T∫

s

(
∣
∣xε(t)− xε(t)

∣
∣2 + ∣

∣E[xε(t)− xε(t)]∣∣2)dt

⎤

⎦

1
2

≤ C
[
d(uε(·), uε(·))α] 1

2 ≤ C(ε
2
3 )α

1
2 = Cε

α
3 = Cεδ.

Now, let us turn to estimate the third term I3 (ε) . By adding
and subtracting σ(t, xε(t),E(xε(t)), uε(t)) then we have

I3 (ε) = −E

T∫

s

K ε(t)[σ (t, xε(t),E(xε(t)), uε(t)
)

− σ(t, xε(t),E(xε(t)), uε(t))]dt

− E

T∫

s

K ε(t)σ
(
t, xε(t),E(xε(t)), uε(t)

)

− σ (t, xε(t),E(xε(t)), uε(t)
)
)dt,

then by using Cauchy–Schwarz inequality, we have

I3 (ε) ≤
⎡

⎣E

T∫

s

∣
∣K ε(t)

∣
∣2 dt

⎤

⎦

1
2

×
⎡

⎣E

T∫

s

∣
∣σ
(
t, xε(t),E(xε(t)), uε(t)

)

− σ(t, xε(t),E(xε(t)), uε(t))
∣
∣2 1{uε(·)�=uε(·)} (t) dt

] 1
2

+ E

T∫

s

∣
∣K ε(t)

∣
∣
∣
∣[σ (t, xε(t),E(xε(t)), uε(t)

)

− σ
(
t, xε(t),E(xε(t)), uε(t)

)]∣∣ dt.

We proceed as in I2 (ε) to estimate the second term in the
right of above inequality, then by applying Cauchy–Schwartz
inequality, Assumption (H1) and (9) we obtain

I3 (ε)≤
⎡

⎣E

T∫

s

∣
∣K ε(t)

∣
∣2 dt

⎤

⎦

1
2

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣E

T∫

s

∣
∣σ
(
t, xε(t),E(xε(t)),

× uε(t)
)− σ(t, xε(t),E(xε(t)), uε(t))

∣
∣4 dt

⎤

⎦

1
2

×
⎡

⎣E

T∫

s

1{uε(·) �=uε(·)} (t) dt

⎤

⎦

1
2

⎫
⎪⎪⎬

⎪⎪⎭

1
2

+ Cεδ

≤ C
[
d(uε(·), uε(·)) 1

2

] 1
2 + Cεδ ≤ Cεδ,

thus, we have proved that

S1(ε) = I1 (ε)+ I2 (ε)+ I3 (ε) ≤ Cεδ. (44)

By using similar arguments developed above, we can prove
that

S2(ε) ≤ Cεδ. (45)

Now, let us turn to estimate the third term S3(ε). By applying
the Cauchy–Schwarz inequality, we get

S3(ε) ≤ E

T∫

s

∫

�

(
γ εt (θ)− γ εt (θ)

)

×(g (t, xε(t−), u, θ
)−g

(
t, xε(t−), uε(t), θ

))
μ(dθ)dt

+ E

T∫

s

∫

�

[
γ εt (θ)[g

(
t, xε(t−), u, θ

)

− g
(
t, xε(t−), u

)]μ(dθ)dt

+ E

T∫

s

∫

�

γ εt (θ)(g
(
t, xε(t−), uε(t), θ

)

− g
(
t, xε(t−), uε(t), θ

)
)μ(dθ)dt,

= J1(ε)+ J2(ε)+ J3(ε).

For any δ ∈ [0, 1
3 ) so that α = 3δ ∈ [0, 1). Now, let β be a

fixed real number such that β ∈ (1, 2) so that (1 + α)β < 2.
Taking q > 2 such that 1

β
+ 1

q = 1. By Hôlder’s inequality,
Lemma 3.2 and (5) we obtain

J1(ε) = E

T∫

s

∫

�

(
γ εt (θ)− γ εt (θ)

)

× (
g
(
t, xε(t−), u, θ

)−g
(
t, xε(t−), uε(t), θ

))
μ(dθ)dt

≤
⎡

⎣E

T∫

s

∫

�

∣
∣γ εt (θ)− γ εt (θ

∣
∣β μ(dθ)dt

⎤

⎦

1
β

×E

⎧
⎨

⎩

T∫

s

((sup
θ∈�

∣
∣g
(
t, xε(t), u, θ

)
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− g
(
t, xε(t), uε(t), θ

)∣
∣)q dt

⎫
⎬

⎭

1
q

μ(�)
1
q

≤ C
[
d(uε(·), uε(·)) αβ2

] 1
β

×
⎡

⎣E

T∫

s

(1 + ∣
∣xε(t)

∣
∣q + ∣

∣E(xε(t))
∣
∣q)dt

⎤

⎦

1
q

≤ C(ε
2
3 )

αβ
2 .

1
β = Cε

α
3 .

Applying assumption (H3), Cauchy–Schwarz inequality,
Lemma 3.2, note (10) and the fact that μ(�) < ∞ we get

J2(ε) ≤
⎡

⎣E

T∫

s

∫

�

∣
∣γ εt (θ

∣
∣2 μ(dθ)dt

⎤

⎦

1
2

[μ(�)]
1
2

×
⎧
⎨

⎩
E

T∫

s

(sup
θ∈�

∣
∣g
(
t, xε(t), u, θ

)

− g
(
t, xε(t), uε(t), θ

)∣
∣)2dt

} 1
2

≤ CE

⎧
⎨

⎩

T∫

s

∣
∣xε(t)− xε(t)

∣
∣2 dt

⎫
⎬

⎭

1
2

≤ C
[
d(uε(·), uε(·))α] 1

2 .

by using (38) we get d(uε(·), uε(·))α ≤
(
ε

2
3

)α
, it holds that

J2(ε) ≤ C(ε
2α
3 )

1
2 = Cε

α
3 = Cεδ.

We proceed to estimate J3(ε). By adding and subtract-
ing g (t, xε(t), uε(t), θ) and Cauchy–Schwarz inequality we
obtain

J3(ε) = E

T∫

s

∫

�

γ εt (θ)(g
(
t, xε(t), uε(t), θ

)− g
(
t, xε(t), uε(t), θ

)

× 1{uε(·) �=uε(·)} (t) μ(dθ)dt

+ E

T∫

s

∫

�

γ εt (θ)(g
(
t, xε(t−), uε(t), θ

)

− g
(
t, xε(t−), uε(t), θ

)
)μ(dθ)dt

≤ E

⎧
⎨

⎩

T∫

s

∫

�

∣
∣γ εt (θ)

∣
∣2 μ(dθ)dt

⎫
⎬

⎭

1
2

[μ(�)]
1
2

× E[
T∫

s

sup
θ∈�

∣
∣g
(
t, xε(t), uε(t), θ

)− g
(
t, xε(t), uε(t), θ

)∣
∣2

× 1{uε(·) �=uε(·)} (t) dt
}
] 1

2

+ E

⎧
⎨

⎩

T∫

s

∫

�

∣
∣γ εt (θ)

∣
∣2 μ(dθ)dt

⎫
⎬

⎭

1
2

E

⎧
⎨

⎩

T∫

s

∣
∣xε(t)−xε(t)

∣
∣2 dt

⎫
⎬

⎭

1
2

,

by applying Cauchy–Schwarz inequality, Lemma 3.2 and
(11) it follows that

J3(ε) ≤ E

⎧
⎨

⎩

T∫

s

(1 + ∣
∣xε(t)

∣
∣4)dt

⎫
⎬

⎭

1
2

d(uε(·), uε(·)) 1
2

+ CE

⎧
⎨

⎩

T∫

s

∣
∣xε(t)− xε(t)

∣
∣2 dt

⎫
⎬

⎭

1
2

≤ Cεδ.

Thus, we have proved that

S3(ε) = J1(ε)+ J2(ε)+ J3(ε) ≤ Cεδ. (46)

The desired result (14) follows immediately by combin-
ing (44), (45), (46) and (34). This completes the proof of
Theorem 3.1. ��
Proof of Corollary 3.1 In the spike variations technique for
the perturbed control uε,θ (·) in (37) the point u ∈ A may
be replaced by any admissible control u(·) ∈ U , and the
subsequent argument still goes through. So the inequality in
the estimate (15) holds for any u(·) ∈ U and the subsequent
argument still goes through. So the inequalities in the esti-
mate (15) holds for any u(·) ∈ U . ��

4 Sufficient conditions of near-optimality for mean-field
jump diffusion processes

We will shows in this section, that under certain concavity
conditions on the Hamiltonian H and some convexity con-
ditions on the function h(·, ·), the ε-maximum condition on
the Hamiltonian function H in the integral form is sufficient
for near-optimality. We assume:

Assumption (H3)ψ is differentiable in u forψ =: f, σ, �, g
and there is a constant C > 0 such that
∣
∣ψ(t, x, y, u)− ψ(t, x, y, u′)

∣
∣

+ ∣
∣ψu(t, x, y, u)− ψu(t, x, y, u′)

∣
∣ ≤ C

∣
∣u − u′∣∣ ,

sup
θ∈�

∣
∣g(t, x, u, θ)− g(t, x, u′, θ)

∣
∣

+ sup
θ∈�

∣
∣gu(t, x, u, θ)− gu(t, x, u′, θ)

∣
∣ ≤ C

∣
∣u − u′∣∣ .

(47)

h (·, ·) convex with respect to (x, y) . (48)

H
(
t, ·, ·, ·, �ε(·), K ε(·), γ ε (·)) is concave with respect to

(x, y, u) , for a.e.t ∈ [0, T ] ,P − a.s. (49)

The derivatives fy, σy, hy �y are non-negative. (50)

Now we are able to state and prove the sufficient conditions
for near-optimality for systems governed by mean-field SDEs
with jump processes, which is the second main result of this
paper.
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Let uε(·)be an admissible control and (�ε(·), K ε(·), γ ε (·)) ,
(Qε(·), Rε(·), �ε (·)) be the solution of the adjoint equations
(9)–(10) corresponding to uε(·).
Theorem 4.1 Sufficient conditions for near-optimality of

order ε
1
2 ). Let conditions (47)–(49) holds. If for some ε > 0

and for any u (·) ∈ U :

E

T∫

s

H(xε(·),uε(·))(t, xε(t),E(xε(t)), uε(t))dt + ε

≥ sup
u(·)∈U

E

T∫

s

H(xε(·),uε(·))(t, xε(t),E(xε(t)), u(t))dt,

(51)

then uε(·) is a near-optimal control of order ε
1
2 , i.e.,

J s,ζ (uε(·)) ≤ inf
u(·)∈U

J s,ζ (u(·))+ Cε
1
2 ,

where C > 0 is a positive constant independent of ε.

Corollary 4.1 (Sufficient Conditions for ε-optimality) Und-
er the assumptions of Theorem 4.1 a sufficient condition for
an admissible control uε(·) to be ε-optimal for our mean-field
control problem (1)–(2) is

E

T∫

s

H(xε(·),uε(·))(t, xε(t),E(xε(t)), uε(t))dt +
( ε

C

)2

≥ sup
u(·)∈U

E

T∫

s

H(xε(·),uε(·))(t, xε(t),E(xε(t)), u(t))dt.

Proof of Theorem 4.1 The key step in the proof is to show
that
Hu(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ)) is very
small and estimate it in terms of ε. We first fix an ε > 0
and define a new metric d̂ on U , by setting: for any u(·) and
v(·) ∈ U :

d̂(u(·), v(·)) = E

T∫

s

|u(t)− v(t)| £ε(t)dt,

where

£ε(t) = 1 + ∣
∣�ε(t)

∣
∣+ ∣

∣K ε(t)
∣
∣

+ 2
∣
∣Qε(t)

∣
∣
[
1 + ∣

∣xε(t)
∣
∣+ ∣

∣E(xε(t))
∣
∣
]

+ 2

⎡

⎣
∣
∣Qε(t)

∣
∣+

∣
∣
∣
∣
∣
∣

∫

�

γ εt (θ)μ(dθ)

∣
∣
∣
∣
∣
∣

⎤

⎦
[
1 + ∣

∣xε(t)
∣
∣
]
.

Obviously d̂ is a metric on U satisfied £ε(t) > 1, and it is a
complete metric as a weighted L

1-norm.

Define a functional g on U as follows

g (u(·)) = E

T∫

s

H(xε(·),uε(·)) (t, xε(t),E(xε(t)), u(t)
)

dt.

By using assumption (47) then a simple computation shows
that

|g (u(·))− g (v(·))|

= E

T∫

s

{
H(xε(·),uε(·)) (t, xε(t),E(xε(t)), u(t)

)

−H(xε(·),uε(·)) (t, xε(t),E(xε(t)), v(t)
)}

dt.

≤ E

T∫

s

∣
∣H

(
t, xε(t),E

(
xε(t)

)
, u(t),�ε(t), K ε(t), γ εt (θ)

)

− H
(
t, xε(t),E

(
xε(t)

)
, v(t),�ε(t), K ε(t), γ εt (θ)

)∣
∣ dt

+ E

T∫

s

∣
∣σ ∗ (t, xε(t),E

(
xε(t)

)
, u(t)

)

− σ ∗ (t, xε(t),E
(
xε(t)

)
, v(t)

)∣
∣
∣
∣Qε(t)

∣
∣

× ∣
∣σ
(
t, xε(t),E

(
xε(t)

)
, uε(t)

)∣
∣ dt

+ 1

2
E

T∫

s

∣
∣σ ∗ (t, xε(t),E

(
xε(t)

)
, u(t)

)
Q(t)

× σ (t, xε(t),E
(
xε(t)

)
, u(t)

)

− σ ∗ (t, xε(t),E
(
xε(t)

)
, v(t)

)
Qε(t)

× σ
(
t, xε(t),E

(
xε(t)

)
, v(t)

)∣
∣ dt

+ E

T∫

s

∫

�

∣
∣g∗ (t, xε(t), u(t), θ

)− g∗ (t, xε(t), v(t), θ
)∣
∣

× ∣
∣
(
Qε(t)+ γ εt (θ)

)
g
(
t, xε(t−), uε(t), θ

)∣
∣μ(dθ)dt

+ 1

2
E

T∫

s

∫

�

∣
∣g∗ (t, xε(t), u(t), θ

) (
Qε(t)+ γ εt (θ)

)

× g
(
t, xε(t), u(t), θ

)

−g∗ (t, xε(t), v(t), θ
) (

Qε(t)+ γ εt (θ)
)

g
(
t, xε(t), v(t), θ

)∣
∣μ(dθ)dt,

= Iε1 + Iε2 + Iε3 + Iε4 + Iε5
Now, by using Definition 2.2 and assumption (H3)

Iε1 = E

T∫

s

∣
∣H

(
t, xε(t),E

(
xε(t)

)
, u, �ε(t), K ε(t), γ εt (θ)

)

− H
(
t, xε(t),E

(
xε(t)

)
, v,�ε(t), K ε(t), γ εt (θ)

)∣
∣ dt

≤ CE

T∫

s

|u(t)− v(t)|
⎡

⎣
∣
∣�ε(t)

∣
∣+ ∣

∣K ε(t)
∣
∣
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+
∣
∣
∣
∣
∣
∣

∫

�

γ εt (θ)μ(dθ)

∣
∣
∣
∣
∣
∣

⎤

⎦ dt

≤ CE

T∫

s

|u(t)− v(t)| £ε(t)dt. (52)

Since σ is linear growth with respect to x and y then by using
assumption (47) we get

Iε2 = E

T∫

s

∣
∣σ ∗ (t, xε(t),E

(
xε(t)

)
, u
)

− σ ∗ (t, xε(t),E
(
xε(t)

)
, v
)∣
∣

× ∣
∣Qε(t)σ

(
t, xε(t),E

(
xε(t)

)
, uε(t)

)∣
∣ dt

≤ CE

T∫

s

|u(t)− v(t)| ∣∣Qε(t)
∣
∣
[
1 + ∣

∣xε(t)
∣
∣+ ∣

∣E
(
xε(t)

)∣
∣
]

dt

≤ CE

T∫

s

|u(t)− v(t)| £ε(t)dt. (53)

Similarly, since g is linear growth with respect to x then by
assumptions (47) we can prove that

Iε4 = E

T∫

s

∫

�

∣
∣g∗ (t, xε(t), u, θ

)− g∗ (t, xε(t), v, θ
)∣
∣

× ∣
∣
(
Qε(t)+ γ εt (θ)

)
g
(
t, xε(t−), uε(t), θ

)∣
∣μ(dθ)dt

≤ CE

T∫

s

|u(t)− v(t)|
⎡

⎣
∣
∣Qε(t)

∣
∣+

∣
∣
∣
∣
∣
∣

∫

�

γ εt (θ)μ(dθ)

∣
∣
∣
∣
∣
∣

⎤

⎦

× [
1 + ∣

∣xε(t)
∣
∣
]

dt ≤ CE

T∫

s

|u(t)− v(t)| £ε(t)dt.

(54)

Next, since σ is linear growth with respect to x and y then
we deduce that

Iε3 = 1

2
E

T∫

s

∣
∣σ ∗ (t, xε(t),E

(
xε(t)

)
, u
)

Qε(t)

σ
(
t, xε(t),E

(
xε(t)

)
, u
)− σ ∗ (t, xε(t),E

(
xε(t)

)
, v
)

× Qε(t)σ
(
t, xε(t),E

(
xε(t)

)
, v
)∣
∣ dt

≤ CE

T∫

s

|u(t)− v(t)| 1

2

∣
∣Qε(t)

∣
∣
[
1 + ∣

∣xε(t)
∣
∣+ ∣

∣E
(
xε(t)

)∣
∣
]

dt

≤ CE

T∫

s

|u(t)− v(t)| £ε(t)dt, (55)

and

Iε5 = 1

2
E

T∫

s

∫

�

∣
∣g∗ (t, xε(t), u, θ

) (
Qε(t)+ γ εt (θ)

)

× g
(
t, xε(t), u, θ

)− g∗ (t, xε(t), v, θ
) (

Qε(t)+ γ εt (θ)
)

× g
(
t, xε(t), v, θ

)∣
∣μ(dθ)dt,

≤ CE

T∫

s

|u(t)− v(t)| 1

2

∣
∣Qε(t)+ γ εt (θ)

∣
∣
[
1 + ∣

∣xε(t)
∣
∣
]

dt

≤ CE

T∫

s

|u(t)− v(t)| £ε(t)dt, (56)

By combining (52)–(56) we conclude that

|g (u(·))− g (v(·))| ≤ Cd̂ (u(·), v(·)) ,
which implies that g is continuous on U with respect to
d̂. Now by using (51) and Ekeland’s Variational Principle
(Lemma 2.1), there exists uε(·) ∈ U such that

d̂(uε(·), uε(·)) ≤ √
ε, (57)

and

E

T∫

s

H̃(t, xε(t),E(xε(t)), uε(t))dt

= max
u(·)∈U

E

T∫

s

H̃(t, xε(t),E(xε(t)), u(t))dt, (58)

where

H̃(t, x, y, u)

= H(xε(·),uε(·))(t, x, y, u)− √
ε
∣
∣u − uε(t)

∣
∣ £ε(t). (59)

The maximum condition (58) implies a pointwise maximum
condition namely, for P—a.s, and a.e., t ∈ [s, T ]

H̃(t, xε(t),E(xε(t)), uε(t)) = max
u∈A

H̃(t, xε(t),E(xε(t)), u).

Using [Item 3, Proposition 6.1], then we have

0 ∈ ∂◦
uH̃(t, xε(t),E(xε(t)), uε(t)). (60)

Since the function u : �−→ |u − uε(t)| is locally Lipschitz but
not differentiable in uε(t), then Clarke’s generalized gradient
(see Proposition 6.1, Example, “Appendix”) shows that

∂◦
u

(√
ε
∣
∣u − uε(t)

∣
∣ £ε(t)

) = co
{−£ε(t)

√
ε, £ε(t)

√
ε
}

= [−£ε(t)
√
ε, £ε(t)

√
ε
]
. (61)

By using (61) and fact that the Clarke’s generalized gradient
of the sum of two functions is contained in the sum of the
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Clarke’s generalized gradient of the two functions, ([Item 5,
Proposition 6.1] we get

∂
◦
uH̃(t, xε(t),E(xε(t)), uε(t))

⊂ ∂
◦
uH(xε(.),uε(.))(t, xε(t),E(xε(t)), uε(t))

+ [−√
ε£ε(t),

√
ε£ε(t)

]
.

By applying assumption (47), the Hamiltonian H is differ-
entiable in u, then [Item 4, Proposition 6.1] shows that

∂
◦
uH̃(t, xε(t),E(xε(t)), uε(t))

⊂
⎧
⎨

⎩
Hu(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

+ {
σ ∗

u (t, xε(t),E(xε(t)), uε(t))Qε(t)

× (σ (t, xε(t),E(xε(t)), uε(t)))

− σ(t, xε(t),E(xε(t)), uε(t)))
}

+
∫

�

g∗
u

(
t, xε(t−), uε(t), θ

) (
Qε(t)+ γ εt (θ)

)

×(g (t, xε(t), uε(t), θ
)− g

(
t, xε(t), uε(t), θ

)
)μ(dθ)

⎫
⎬

⎭

+ [−√
ε£ε(t),

√
ε£ε(t)

]
.

Next, the differential inclusion (60) implies that there is

τ ε(t) ∈ [−√
ε£ε(t),

√
ε£ε(t)

]
,

such that

Hu(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

+ σ ∗
u (t, xε(t),E(xε(t)), uε(t))Qε(t)

× (σ (t, xε(t),E(xε(t)), uε(t)))

− σ(t, xε(t),E(xε(t)), uε(t)))

+
∫

�

g∗
u

(
t, xε(t), uε(t), θ

) (
Qε(t)+ γ εt (θ)

)

× (g (t, xε(t), uε(t), θ
)− g

(
t, xε(t), uε(t), θ

)
)μ(dθ)

}

+ τ ε(t) = 0. (62)

By using assumption (47) we can prove that
∣
∣Hu(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

−Hu(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))
∣
∣

≤ C
∣
∣uε(t)− uε(t)

∣
∣ £ε(t), (63)

hence from (62) and (63), assumption (47) and the fact that
|τ ε(t)| ≤ √

ε£ε(t) we get
∣
∣Hu(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

∣
∣

≤ C
∣
∣uε(t)− uε(t)

∣
∣ £ε(t)

+ ∣
∣σ ∗

u (t, xε(t),E(xε(t)), uε(t))Qε(t)

×(σ (t, xε(t),E(xε(t)), uε(t)))

−σ(t, xε(t),E(xε(t)), uε(t)))
∣
∣

+
∣
∣
∣
∣
∣
∣

∫

�

g∗
u

(
t, xε(t−), uε(t), θ

) (
Qε(t)+ γ εt (θ)

)

×(g (t, xε(t−), uε(t), θ
)− g

(
t, xε(t−), uε(t), θ

)
)μ(dθ)

∣
∣

+ ∣
∣τ ε(t)

∣
∣

≤ C
∣
∣uε(t)− uε(t)

∣
∣ £ε(t)+ ∣

∣τ ε(t)
∣
∣

≤ C
∣
∣uε(t)− uε(t)

∣
∣ £ε(t)+ √

ε£ε(t), (64)

Now, using (49), we obtain for any u(·) ∈ U
H(t, x(t),E(x(t)), u(t),�ε(t), K ε(t), γ εt (θ))

− H(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

≤ Hx (t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

×(x(t)− xε(t))

+Hy(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

×(x(t)− xε(t))

+Hu(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

×(u(t)− uε(t)). (65)

Integrating this inequality with respect to t and taking expec-
tations we obtain from (52) and (64)

E

T∫

s

[
H(t, x(t),E(x(t)), u(t),�ε(t), K ε(t), γ εt (θ))

−H(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))
]

dt

≤ E

T∫

s

Hx (t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

×(x(t)− xε(t))dt

+ E

T∫

s

Hy(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

×(x(t)− xε(t))dt

+ C(d̂(uε(·), uε(·))+ ε
1
2 )

≤ E

T∫

s

Hx (t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

× (x(t)− xε(t))dt

+ E

T∫

s

Hy(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

×(x(t)− xε(t))dt + Cε
1
2 . (66)

On the other hand, by using (48) we get

h (x(T ),E (x(T )))− h(xε(T ),E
(
xε(T )

)
) ≥

[
hx (x

ε(T ),E(xε(T )))+ hy(x
ε(T ),E(xε(T )))

]

×[x(T )− xε(T )].
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Noting that since �ε(T ) = hx (xε(T ),E(xε(T ))) +
E
(
hy(xε(T ),E(xε(T )))

)
then we have

E
{
h (x(T ),E (x(T )))− h(xε(T ),E

(
xε(T )

)
)
}

≥ E
{
�ε(T )(x(T )− xε(T ))

}
(67)

By integration by parts formula for jumps process
�ε(t)(x(t)− xε(t)) (see Lemma 6.1) we get

E
[
�ε(T )(x(T )− xε(T ))

] = E

T∫

s

�ε(t)d(x(t)− xε(t))

+ E

T∫

s

(x(t)− xε(t))d�ε(t)

+ E

T∫

s

K ε(t)(σ (t, x(t),E(x(t)), u(t))

− σ(t, xε(t),E(xε(t)), uε(t)))dt

+ E

T∫

s

∫

�

γ εt (θ)(g (t, x(t), u(t), θ)

− g
(
t, xε(t), uε(t), θ

)
)μ(dθ)dt,

with the help of (1), and (9) we obtain

E
{
�ε(T )(x(T )− xε(T ))

} = E

T∫

s

⎧
⎨

⎩
[Hx (t, xε(t),

E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

+ E(Hy(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ)))]
× (x(t)− xε(t))+�ε(t)[ f (t, x(t),E(x(t)), u(t))

− f (t, xε(t),E(xε(t)), uε(t))]
+ K ε(t)[σ(t, x(t),E(x(t)), u(t))

− σ(t, xε(t),E(xε(t)), uε(t))]
+
∫

�

γ εt (θ)[g (t, x(t), u(t), θ)

− g
(
t, xε(t), uε(t), θ

)]μ(dθ)
⎫
⎬

⎭
dt,

then from (49) and (66) we get

E
{
�ε(T )(x(T )− xε(T ))

}

≥ E

T∫

s

⎧
⎨

⎩
H(t, x(t),E(x(t)), u(t),�ε(t), K ε(t), γ εt (θ))

−H(t, xε(t),E(xε(t)), uε(t),�ε(t), K ε(t), γ εt (θ))

+�ε(t)[ f (t, x(t),E(x(t)), u(t))

− f (t, xε(t),E(xε(t)), uε(t))]
+ K ε(t)[σ(t, x(t),E(x(t)), u(t))

− σ(t, xε(t),E(xε(t)), uε(t))]
+
∫

�

γ εt (θ)[g (t, x(t), u(t), θ)

− g
(
t, xε(t), uε(t), θ

)]μ(dθ)
⎫
⎬

⎭
dt − Cε

1
2

= E

T∫

s

[� (t, xε(t),E(xε(t)), uε(t)
)

− � (t, x(t),E(x(t)), u(t))]dt − Cε
1
2 . (68)

Combining (67) and (68) we get

E
{
h (x(T ),E (x(T )))− h(xε(T ),E

(
xε(T )

)
)
}

≥ E

T∫

s

[� (t, xε(t),E(xε(t)), uε(t)
)

−� (t, x(t),E(x(t)), u(t))]dt − Cε
1
2 ,

then by using definition of J s,ζ we conclude

J s,ζ (u(·)) ≥ J s,ζ (uε(·))− Cε
1
2 .

Finally, since u(·) is arbitrary element of U , the desired result
follows. ��

5 Application to finance: penalized mean-variance
portfolio selection

In this section, we will apply our necessary and sufficient con-
ditions of near-optimality to study a penalized mean-variance
portfolio selection and we derive the explicit expression of
the optimal portfolio selection strategy. Our method inspired
from Zhou ([1], Example 6.1).
Suppose that we have a mathematical market consisting of
two investment possibilities:
The first asset is a bond whose price P0 (t) evolves according
to the ordinary differential equation
Risk-free security: (e.g., a bond), where the price P0(t) at
time t is given by the following equation:
{

d P0 (t) = P0 (t) ρ(t)dt, t ∈ [0, T ]
P0 (0) > 0,

(69)

where ρ(·) is a bounded deterministic function.
Risky security (e.g. a stock), where the price P1 (t) at time t
is given by
⎧
⎨

⎩

P1 (t) = P1 (t) ς(t)dt + σt dW (t)P1 (t)
+P1 (t)

∫

�
ξt (θ) N (dθ, dt) ,

P1 (0) > 0,
(70)

where ς(t), σt and ξt (θ) are bounded deterministic functions
such that ς(t) �= 0, σt �= 0 and ς(t) > ρ(t). and as above
N (dθ, dt) is a compensated random measure.
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Assumptions. In order to ensure that P1 (t) > 0 for all t ∈
[0, T ] we assume that:

1. ξt (θ) > −1 for any θ ∈ �.
2. The function t → ∫

�
ξ2

t (θ) μ(dθ) is a locally bounded

Portfolio and wealth dynamics: A portfolio is a predictable
process π(t) = (π0(t), π1(t)) giving the number of units
held at time t of the bond and the stock. The corresponding
wealth process xπ (t), t ≥ 0 is then given by

xπ (t) = π0(t)P0 (t)+ π1(t)P1 (t) . (71)

The portfolio π(·) is called Self-financing if

xπ (t) = xπ (0)+
t∫

0

π0(r)d P0 (r)+
t∫

0

π1(r)d P1 (r) .

(72)

We denote by

v(t) = π1(t)P (t) , (73)

the amount invested in the risky security. Now, by combining
(71) and (72) together with (73) we introduce the wealth
dynamics as follows
⎧
⎨

⎩

dxv(t) = [ρ(t)xv(t)+ (ς(t)− ρ(t))v(t)] dt
+ σtv(t)dW (t)+ ∫

�
ξt− (θ) v(t)N (dθ, dt) ,

xv(0) = ζ,

(74)

where ζ ∈ R. If the corresponding wealth process xv(·) given
by SDE-(74) is square integrable, the control variable v(·)
is called tame. We denote U the set of admissible portfolio
valued in A = R.

Mean-variance portfolio selection.We assume that we have a
family of optimization problem parameterized by ε,where ε
is a small parameter ε > 0 may be represent the complexity
of the cost functional

J ζ,ε(v(·)) = E

(
xv(T )− E(xv(T ))− ε

2
)
)2

+
T∫

0

ε2

4
L(v(t))dt, (75)

subject to xv(T ) solution of SDE-(74) at time T given by

xv(T ) = ζ +
T∫

0

[
ρ(t)xv(t)+ (ς(t)− ρ(t))v(t)

]
dt

+
T∫

0

σtv(t)dW (t)+
T∫

0

∫

�

ξt− (θ) v(t)N (dθ, dt) ,

where L(·) is a nonlinear, convex and bounded function, sat-
isfying assumption (47) and independent of ε.

Inspired from (Zhou [1], example 6.1), our objective
is to find an admissible portfolio v∗(·) which minimizes
the cost function (75) of mean-field type (i.e., with � ≡
ε2

4 L(v(t)), s = 0, h (x(t),E(x(t)))= (
x(t)−E(x(t))− ε

2

)2).
Explicit solution of problem (74)–(75), called Pε, may be
a difficult problem. The idea is to show that we can easily
get a near-optimal control (in feedback form) analytically
based on the optimal control of the simpler problem, called
P0 which is obtained by setting ε = 0 in (75), then we get

J ζ0 (v(·)) = E

{(
xv(T )− E(xv(T ))

)2
}
, (76)

We study the optimal control problem where the state is gov-
erned by SDE-(74) with a new cost function (76). In a second
step, we solve the control problem (74)–(76), and obtain an
optimal solution explicitly. Finally, inspired by Zhou ([1],
Example 6.1), we solve the control problem Pε of near-
optimally.
Problem P0: (Optimal solution of mean-field stochastic con-
trol problem (74)–(76)). By a standard argument, problem
P0 can be solved as follows.
Since f (t, x(t),E(x(t), v(t)) = ρ(t)x(t) + (ς(t) − ρ(t))
v(t), σ (t, x(t),E(x(t), v(t)) = σtv(t), g (t, x(t), v(t), θ)
= v(t)ξt (θ) , then the Hamiltonian H gets the form

H (t, x,E (x) , v(t),�(t), K (t), γt (θ))

= −�(t) [ρ(t)x(t)+ (ς(t)− ρ(t))v(t)]

−K (t)σtv(t)− v(t)
∫

�

γt (θ) ξt (θ) μ(dθ)

= −�(t)ρ(t)x(t)− v(t)

⎡

⎣�(t)(ς(t)− ρ(t))

+K (t)σt +
∫

�

γt (θ) ξt (θ) μ(dθ)

⎤

⎦ .

Consequently, since this is a linear expression of v(·) then it
is clear that the supremum is attained at v∗(t) satisfying

�∗(t)(ς(t)+ ρ(t))+ K ∗(t)σt

+
∫

�

γ ∗
t (θ) ξt (θ) μ(dθ) = 0. (77)

Since hx (x(T ),E(x(T )) = 2 (x(T )− E(x(T )) , hy(x(T ),
E(x(T )) = −2(x(T )− E(x(T )) then a simple computation
shows that the first-order adjoint equation (9) associated with
v∗(t) gets the form
⎧
⎨

⎩

d�∗(t) = −ρ(t)�∗(t)dt + K ∗(t)dW (t)
+ ∫

�
γ ∗

t (θ)N (dt, dθ)
�∗(T ) = 2 (x∗(T )− E(x∗(T )) .

(78)

In order to solve the above Eq. (78) and to find the expression
of v∗(t) we conjecture a process �∗(t) of the form

�∗(t) = 	1(t)x
∗(t)+	2(t)E

(
x∗(t)

)+	3(t), (79)
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where	1(·),	2(·) and	3(·) are deterministic differentiable
functions. (see [4,12,15,22] for other models of conjecture).
Applying Itô’s formula to (79), in virtue of SDE-(74), we get

d�∗(t) = 	1(t)

⎧
⎨

⎩

[
ρ(t)x∗(t)+ (ς(t)− ρ(t))v∗(t)

]
dt

+ σtv
∗(t)dW (t)+

∫

�

v∗(t)ξt− (θ) N (dθ, dt)

⎫
⎬

⎭

+ x∗(t)	̇1(t)dt +	2(t)[ρ(t)E(x∗(t))
+ (ς(t)− ρ(t))v∗(t)]dt + E

(
x∗(t)

)
	̇2(t)dt + 	̇3(t)dt

= {
	1(t)

[
ρ(t)x∗(t)+ (ς(t)− ρ(t))v∗(t)

]+ x∗(t)	̇1(t)

+	2(t)
[
ρ(t)E(x∗(t))+ (ς(t)− ρ(t))v∗(t)

]

+ 	̇2(t)E
(
x∗(t)

)+ 	̇3(t)
}

dt

+	1(t)σtv
∗(t)dW (t)+

∫

�

	1(t)v
∗(t)ξt− (θ) N (dθ, dt) ,

�∗(T )=	1(T )x
∗(T )+	2(T )E

(
x∗(T )

)+	3(T ). (80)

Next, comparing (80) with (78), we get

− ρ(t)�∗(t) = 	1(t)
[
ρ(t)x∗(t)+ (ς(t)− ρ(t))v∗(t)

]

+ x∗(t)	̇1(t)

+	2(t)
[
ρ(t)E(x∗(t))+ (ς(t)

−ρ(t))v∗(t)
]

+ 	̇2(t)E
(
x∗(t)

)+ 	̇3(t), (81)

K ∗(t) = 	1(t)σtv
∗(t), (82)

γ ∗
t (θ) = 	1(t)v

∗(t)ξt (θ) , (83)

and

	1(T ) = 2,	2(T ) = −2,	3(T ) = 0. (84)

Combining (82) and (84) together with (77) we get

v∗(t) = −(ς(t)− ρ(t))�∗(t)
	1(t)

[
σ 2

t + ∫

�
ξ2

t (θ) μ(dθ)
] . (85)

We denote

A(t) = σ 2
t +

∫

�

ξ2
t (θ) μ(dθ), (86)

by using (77) together with (85) and (86) then we can get

	3(t) = 0 fort ∈ [0, T ] , v∗(t) = (ρ(t)− ς(t)) (A(t))−1

(	1(t)x∗(t)+	2(t)E (x∗(t)))
	1(t)

.

=
{
(ρ(t)− ς(t)) (A(t))−1

}
x∗(t)

+
{

(ρ(t)−ς(t)) (A(t))−1 	2(t)

	1(t)

}

E
(
x∗(t)

)
. (87)

Now combining (81) with (79) we deduce

v∗(t) (	1(t)+	2(t)) (ρ(t)− ς(t))

= [
2ρ(t)	1(t)+ 	̇1(t)

]
x∗(t)

+ [
2ρ(t)	2(t)+ 	̇2(t)

]
E(x∗(t)). (88)

By comparing the terms containing x∗(t) and E (x∗(t)), we
obtain from (87) with (88) the two ordinary differential equa-
tions (ODEs in short):
[
(ρ(t)− ς(t))2 (A(t))−1 − 2ρ(t)

]
	1(t)

+ (ρ(t)− ς(t))2 (A(t))−1	2(t) = 	̇1(t).
[
(ρ(t)− ς(t))2 (A(t))−1 − 2ρ(t)

]
	2(t)

+ (ρ(t)− ς(t))2 (A(t))−1 	
2
2(t)

	1(t)
= 	̇2(t), (89)

a simple computation from (89) we obtain

	̇1(t)	2(t) = 	̇2(t)	1(t), (90)

Since 	1(T ) = 2,	2(T ) = −2, (see (84)) we deduce

	1(t) = −	2(t), (91)

Let us turn to calculate explicitly	1(t) and	2(t). By divid-
ing the first ODE in (89) by 	1(t) and the second ODE by
	2(t) we get

	̇1(t) = −2ρ(t)	1(t),	1(T ) = 2,

	̇2(t) = −2ρ(t)	2(t),	2(T ) = −2.

We now try to solve the above ODEs (See the book by
Boyce and DiPrima [28], Chapter §2). By simple compu-
tations shows that for any t ∈ [0, T ]

⎧
⎪⎪⎨

⎪⎪⎩

	1(t) = 2 exp
[∫ T

t ρ(s)ds
]

	2(t) = −2 exp
[∫ T

t ρ(s)ds
]
.

(92)

With this choice of	1(t) and	2(t), we conclude that v∗(t)
is given by

v∗(t) =
[
(ρ(t)− ς(t)) (A(t))−1

]
x∗(t)

−
[
(ρ(t)− ς(t)) (A(t))−1

]
E
(
x∗(t)

)
, (93)

and the adjoint processes

�∗(t) = 	1(t)x
∗(t)+	2(t)E

(
x∗(t)

)
,

K ∗(t) = 	1(t)σtv
∗(t),

γ ∗
t (θ) = 	1(t)ξt (θ) v

∗(t),

satisfying the adjoint equation (9). Moreover, with this choice
of v∗(t), the maximum condition (14) of Theorem 3.1 holds.
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Since h (x(t),Ex(t)) = (x(t)− Ex(t))2 is convex and
H (·, ·, ·, �(t), K (t), γt (θ)) is concave, we can assert that
our admissible portfolio v∗(t) is optimal and the sufficient
conditions in Theorem 4.1 are satisfied where v∗(t) achieves
the maximum. Finally, we give the explicit optimal portfolio
in the state feedback form in the following theorem.

Theorem 5.1 The optimal solution of our mean-field sto-
chastic control problem P0 is given in the state feedback
form by

v∗(t, x∗(t),E
(
x∗(t)

)
)

=
[
(ρ(t)− ς(t)) (A(t))−1

]
x∗(t)

−
[
(ρ(t)− ς(t)) (A(t))−1

]
E
(
x∗(t)

)
, (94)

where A(t) is given by (86).

Problem Pε: The Hamiltonian function H for the problem
P is

H(z(·),v(·))(t, x, u)

= −�(t)ρ(t)x(t)− u(t)

⎧
⎨

⎩
�(t)(ς(t)− ρ(t))

+ K (t)σt +
∫

�

γt (θ) ξt (θ) μ(dθ)

⎫
⎬

⎭

+ σ 2
t v(t)u(t)Q(t)− 1

2
σ 2

t u2(t)Q(t)

+ u(t)v(t)
∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

− 1

2
v(t)

∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ),

where Q∗(·) is given by second-order adjoint equation
⎧
⎪⎨

⎪⎩

d Q∗(t) = −2ρ(t)Q∗(t)dt + R∗(t)dW (t)

+ ∫

�
�∗

t (θ)N (dθ, dt)

Q∗(T ) = 2.

By uniqueness of the solution of the above classical backward
SDE it is easy to show that

(Q∗(t), R∗(t), �∗
t (θ)) =

⎛

⎝2 exp

⎛

⎝2

T∫

t

ρ(r)dr

⎞

⎠ , 0, 0

⎞

⎠ ,

then we get

Hx∗(.),v∗(·)(t, x, v)

= −�(t)ρ(t)x(t)− v(t)

⎧
⎨

⎩
�∗(t)(ς(t)− ρ(t))

+ K ∗(t)σt +
∫

�

γ ∗
t (θ) ξt (θ) μ(dθ)

⎫
⎬

⎭

+ σ 2
t v

∗(t)v(t)Q∗(t)− 1

2
σ 2

t v
2(t)Q∗(t)

+ v(t)v∗(t)
∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

− 1

2
v2(t)

∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ). (95)

Since v∗(·) is optimal, by stochastic maximum principle, it
necessary that v∗(·) maximizes the H-function a.s. namely,

�∗(t)(ς(t)− ρ(t))+ K ∗(t)σt

+
∫

�

γ ∗
t (θ) ξt (θ) μ(dθ) = 0.

P − a.s, a.e.t. (96)

The Hamiltonian Hε for the problem Pε is

H(x
∗(·),v∗(·))

ε (t, x, v)

= −�(t)ρ(t)x(t)− v(t)

⎧
⎨

⎩
�∗(t)(ς(t)− ρ(t))

+ K ∗(t)σt +
∫

�

γ ∗
t (θ) ξt (θ) μ(dθ)

⎫
⎬

⎭

+ σ 2
t v

∗(t)v(t)Q∗(t)− 1

2
σ 2

t v
2(t)Q∗(t)

+ v(t)v∗(t)
∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

− 1

2
v2(t)

∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

− ε2

4
L(v(t)). (97)

The above function is maximized at vε(t) which satisfies

�∗(t)(ς(t)− ρ(t))+ K ∗(t)σt

+
∫

�

γ ∗
t (θ) ξt (θ) μ(dθ)+ σ 2

t v
∗(t)Q∗(t)

− σ 2
t v

ε(t)Q∗(t)

+ v∗(t)
∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

− vε(t)
∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

− ε2

4
L̇(vε(t)) = 0,

P − a.s, a.e.t.
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by applying (96) we have

⎡

⎣σ 2
t Q∗(t)+

∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

⎤

⎦

× (
v∗(t)− vε(t)

)− ε2

4
L̇(vε(t)) = 0. (98)

Combining (97)–(96) then we can shows that

max
v(·)∈U

H(x
∗(.),v∗(·))

ε (t, x(t), v(t))

− H(x
∗(.),v∗(·))

ε (t, x(t), v∗(t))

= H(x
∗(.),v∗(·))

ε (t, x(t), vε(t))

− H(x
∗(.),v∗(·))

ε (t, x(t), v∗(t))

= σ 2
t v

∗(t)vε(t)Q∗(t)− 1

2
σ 2

t

(
vε(t)

)2
Q∗(t)

− ε2

4
L(vε(t))+ (vε(t)v∗(t)

− 1

2

(
vε(t)

)2
)

∫

�

(
ξt− (θ)

)2 (
Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

−
⎧
⎨

⎩

1

2
σ 2

t

(
v∗(t)

)2
Q∗(t)− ε2

4
L(v∗(t))

+ 1

2

(
v∗(t)

)2
∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

⎫
⎬

⎭

= σ 2
t Q∗(t)

[

vε(t)v∗(t)− 1

2

(
vε(t)

)2 − 1

2

(
v∗(t)

)2
]

+ (vε(t)v∗(t)− 1

2

(
vε(t)

)2

− 1

2

(
v∗(t)

)2
)

∫

�

(ξt (θ))
2 (Q∗(t)+ γ ∗

t (θ)
)
μ(dθ)

− ε2

4

(
L(vε(t))− L(v∗(t))

)
.

since

vε(t)v∗(t)− 1

2

(
vε(t)

)2− 1

2

(
v∗(t)

)2 =−1

2

(
v∗(t)− vε(t)

)2
,

then by simple computation we get

max
v(·)∈U

H(x
∗(·),v∗(·))

ε (t, x, v(t))− H(x
∗(·).,v∗(·))

ε (t, x, v∗(t))

= −1

2

(
v∗(t)− vε(t)

)2
{

σ 2
t Q∗(t)+

∫

�

(ξt (θ))
2(Q∗(t)

+ γ ∗
t (θ))μ(dθ)

}

− ε2

4

(
L(vε(t))− L(v∗(t))

)

using (98), (47), and the fact that L (·) is convex and bounded
we obtain

max
v(·)∈U

H(x
∗(.),v∗(·))

ε (t, x, v(t))

− H(x
∗(.),v∗(·))

ε (t, x, v∗(t))

= −ε
2

8

(
v∗(t)− vε(t)

)
L̇(vε(t))

+ ε2

4

(
L(v∗(t))− L(vε(t))

) ≤ Cε2.

Moreover, by using (96) the hamiltonian Hε of problem Pε
is

Hε (t, x,E (x) , v(t),�(t), K (t), γt (θ))

= −�(t)ρ(t)x(t)− v(t)

⎧
⎨

⎩
�(t)(ς(t)− ρ(t))

+ K (t)σt +
∫

�

γt (θ) ξt (θ) μ(dθ)

⎫
⎬

⎭
− ε2

4
L(v(t))

= −�(t)ρ(t)x(t)− ε2

4
L(v(t)).

Since L(·) is convex then the Hamiltonian Hε (t, ·, ·, ·,
�(t), K (t), γt (θ)) is concave. By applying Theorem 4.1,
this proves that, the control v∗(t) given by (94) is indeed a
near-optimal for stochastic control problem Pε.
Concluding remarks In this paper, necessary and sufficient
conditions of near-optimal stochastic control for systems
governed by mean-field jump diffusion processes are proved.
The control variable is allowed to enter both diffusion and
jump coefficients and also the diffusion coefficients depend
on the state of the solution process as well as of its expected
value. Moreover, the cost functional is also of mean-field
type. Our result is applied to financial optimization problem,
where explicit expression of the optimal (and near-optimal)
portfolio is obtained in the state feedback form. If we assume
that ε = 0 Theorem 3.1 reduces to stochastic maximum prin-
ciple of optimality developed in Hafayed and Abbas ([17],
Theorem 3.1).

Moreover, if we assume that ε = 0 and when the coeffi-
cients f , σ of the underlying jump diffusion processes and
the cost functional do not explicitly depend on the expected
value, Theorem 3.1 reduces to necessary conditions of opti-
mality developed in Tang and Li ([9], Theorem 2.1) and
Theorem 4.1 reduces to sufficient conditions of optimality
developed in Framstad et al. ([12] Theorem 2.1).
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6 Appendix

The following result gives the definition and some basic prop-
erties of the Clarke’s generalized gradient.

Definition 6.1 Let F be a convex set in R
n and let f : F →

R be a locally Lipschitz function. The generalized gradient
of f at x̂ ∈ F , denoted by ∂

◦
x f (̂x), is a set defined by

∂
◦
x f (̂x) = {

ξ ∈ R
n : 〈ξ, υ〉 ≤ f ◦ (̂x, υ) , for anyυ ∈ R

n} ,

where f ◦ (̂x, υ) = lim supy→x̂,t→0
1
t ( f (y + tυ)− f (y)) .

Proposition 6.1 If f : R
n → R is locally Lipschitz at x ∈

R
n, then the following statements holds

1. ∂
◦
x f (x) is nonempty, compact and convex set in R

n.
2. ∂

◦
x (− f ) (x) = −∂◦

x ( f ) (x).
3. ∂

◦
x f (x) � 0 if f attains a local minimum or maximum

at x.
4. If f is continuously differentiable at x, then ∂

◦
x f (x) ={

f ′ (x)
}
.

5. If f, g : R
n → R are locally Lipschitz functions at

x ∈ R
d , then ∂

◦
x ( f + g) (x) ⊂ ∂

◦
x f (x)+ ∂

◦
x g (x) .

For the detailed proof of the above Proposition see Clarke
[29] or the book by Yong and Zhou ([27] Lemma 2.3).
As a simple example of the generalized gradient, we consider
the absolute value function f : x �→ |x − a| which is con-
tinuously differentiable everywhere except at x = a. Since
f ′ (x) = 1 for x > a and f ′ (x) = −1 for x < a, then a
simple calculation shows that the generalized gradient of f
at x = a is given by ∂

◦
x f (a) = co {−1, 1} = [−1, 1].

The following result gives special case of the Itô formula
for jump diffusions.

Lemma 6.1 (Integration by parts formula for jumps
processes) Suppose that the processes x1(t) and x2(t) are
given by: for j = 1, 2, t ∈ [s, T ] :
{

dx j (t) = f
(
t, x j (t), u(t)

)
dt + σ

(
t, x j (t), u(t)

)
dW (t)

+ ∫

�
g
(
t, x j (t−), u(t), θ

)
N (dθ, dt) , x j (s) = 0.

Then we get

E (x1(T )x2(T ))

= E

⎡

⎣

T∫

s

x1(t)dx2(t)+
T∫

s

x2(t)dx1(t)

⎤

⎦

+ E

T∫

s

σ ∗ (t, x1(t), u(t)) σ (t, x2(t), u(t)) dt

+ E

T∫

s

∫

�

g∗ (t, x1(t), u(t), θ) g (t, x2(t), u(t), θ) μ(dθ)dt.

See Framstad et al. ([12], Lemma 2.1) for the detailed proof
of the above Lemma.

Proposition 6.2 Let G be the predictable σ -field on � ×
[s, T ], and f be a G × B(�)-measurable function such that

E

T∫

s

∫

�

| f (r, θ)|2 μ(dθ)dr < ∞,

then for all β ≥ 2 there exists a positive constant C =
C(T, β, μ(�)) such that

E

⎡

⎢
⎣ sup

0≤t≤T

∣
∣
∣
∣
∣
∣

t∫

s

∫

�

f (r, θ) N (dθ, dr)

∣
∣
∣
∣
∣
∣

β
⎤

⎥
⎦

≤ CE

⎡

⎣

T∫

s

∫

�

| f (r, θ)|β μ(dθ)dr

⎤

⎦ .

See Bouchard and Elie ([30], Appendix).
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