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Abstract It is often advantageous for ground vehicles to
operate at or near their performance limits, with respect to
vehicle traction. Real-world performance requirements result
in maximization of the vector sum of accelerations to account
for both longitudinal and lateral motion. At the core of this
work is a traction control algorithm that operates on the same
correlated input signals that a human expert driver would in
order to maximize traction. An adaptive gradient ascent algo-
rithm is proposed as a solution to vehicle traction control, and
a real-time implementation is described using linear operator
techniques, even though the tire–ground interface is highly
non-linear. Two variations of the algorithm are presented,
and both use a dynamic filter to estimate the gradient of the
dynamic system with respect to the input. The first method
uses measurements of the longitudinal and lateral acceler-
ations of the vehicle, while the second method uses mea-
surements of the traction forces directly. Performance of the
proposed adaptive traction control algorithm is demonstrated
using a series of driving maneuvers in which the longitudi-
nal and lateral accelerations are maximized simultaneously
or selectively. The simulations demonstrate the ability of the
first algorithm to simultaneously maximize longitudinal and
lateral acceleration, while the second algorithm demonstrates
the ability to more selectively maximize individual traction
forces. The algorithms developed in this work are well suited
for efficient real-time control in ground vehicles in a vari-
ety of applications in which it is necessary to maximize both
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longitudinal and lateral acceleration as opposed to solely lon-
gitudinal acceleration.
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1 Introduction

The primary motivation for this research is the belief that
significant performance benefits can be obtained if traction
control algorithms were to consider both longitudinal and
lateral motion. Current traction control algorithms are gen-
erally restricted to the longitudinal and yaw degrees of free-
dom, the latter being considered mainly for stability con-
cerns. Human expert drivers are able to control their vehicles
at high-performance traction levels without direct sensing of
speed, slip, or traction forces. Clearly human drivers rely on
indirect inputs such as visual, audible, inertial, and tactile
cues, along with some form of internal representation of the
dynamics developed through reinforcement learning. In pre-
vious work [1], it was shown that human experts performed
the task of longitudinal traction control using sensed longitu-
dinal acceleration. In the same work, a controller was devel-
oped using the same sensory inputs, i.e., longitudinal accel-
eration, to regulate engine output. This control architecture
outperformed a more traditional traction control approach
using PID control to regulate wheel slip over unknown and
spatially varying surfaces [1]. This work uses a feedback
control algorithm that builds on previous work, using mea-
surements of longitudinal and lateral acceleration, to regulate
engine torque. This work considers high-performance trac-
tion control as either getting from point A to point B in a
minimum amount of time or maximizing the distance trav-
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eled in a fixed amount of time, barring engine power limi-
tations. The solution to this problem for ground vehicles is
controlling the vehicle such that it operates at the maximum
of the vector sum of longitudinal and lateral tractive forces,
along a path, and subsequently the maximum of acceleration.
This is not a trivial task as the model of the vehicle and tire–
ground interface are often unknown or only approximately
understood. The objective of the control architecture devel-
oped in this work is to regulate engine output to maximize
longitudinal and lateral accelerations both simultaneously or
selectively.

Several solutions to the traction control problem exist in
both industry and academia. The motorsports community has
reaped the benefits of traction control for years. Commercial
vehicle applications have used anti-lock brake systems since
the early 1970s, with the addition of traction control and
stability control becoming more prevalent in the last decade.
The unmanned ground vehicle community has yet to fully
embrace technologies that have been mainly used in a driver
assist application for ground vehicles. There is a great deal of
technology that can be used, but more importantly improved
upon in developing a more robust traction control algorithm
capable of adaptation in both time and space.

Motorsports applications have reaped the most value from
automatic traction control, largely because the tire–ground
interface in these applications has less variability [2], and
is relatively better understood through extensive testing [3].
Some form of automatic traction control system (TCS), or
its more prevalent complement, an anti-lock braking system
(ABS), is also available on a wide range of passenger cars
and trucks [4]. In fact, in the past decade there has been
an increase in available solutions to traction control within
the motorsports community. Well-developed solutions are
offered through a variety of companies such as Motec, EFI
Technology, and Pectel. With the use of drive by wire engine
control there are two different methods to decrease the torque
being applied to the wheel; reduce engine torque and/or
increase braking force. In a fuel-injected engine, reducing
the engine torque typically requires cutting ignition spark or
cutting fuel [5]. Motec, a supplier of one of the more popular
engine management systems, uses a slip control system that
measures individual wheel speeds (undriven and driven) and
compares them to a table of allowable amounts of slip (differ-
ences in wheel speeds) versus engine speed. This is similar
to existing traction control and anti-lock brake control algo-
rithms that regulate slip to an acceptable range [6,7], often
sacrificing performance to do so. The Motec system then uses
a combination of cutting ignition spark and fuel to decrease
the engine torque. This method breaks down as the velocity
of the vehicle approaches zero and for this reason, the trac-
tion control is either run in a mode analogous to open loop
control where a minimum engine speed is specified before
cutting ignition spark or fuel is allowed. Once the vehicle has

exceeded this predetermined speed the slip control algorithm
takes over [5].

Even commercially available automatic traction control
systems are designed with restrictive assumptions such as
relative uniformity in the ground surface, which ultimately
limits the operational envelope [4,7–10]. Many traction con-
trol methods track a desired slip ratio using linear control
theory or more advanced non-linear approaches such as slid-
ing mode control [8]. In fact, sliding mode control is a popular
choice to control the slip seen at the tire–ground interface [8].
The work of Lee and Tomizuka [8] develops two approaches,
one which assumes explicit knowledge of vehicle parame-
ters and traction curve to calculate the friction coefficient of
the road and subsequently track the desired slip ratio [8].
The second approach is a fuzzy logic approach to control
the slip ratio with crudely defined fuzzy sets over the inter-
val κ ∈ [−2, 2] with labels: Negative Big, Negative Small,
Zero, Positive Small, and Positive Big. The second approach
of Lee and Tomizuka [8] can be summed up in three steps:
1. Estimate the local slope of the longitudinal traction curve
∂Ft/∂κ , 2. Move the target slip toward the peak value. 3.
Steer the wheel slip toward the new target slip via sliding
mode or fuzzy logic slip control, then return to 1. Fuzzy logic
model-based approaches are also very popular when devel-
oping traction control solutions [8,11]. Following the work
of Colli et al. [11] a Fuzzy Adherence Gradient Approach
is developed in which a fuzzy logic set is developed to esti-
mate the gradient of the traction curve ∂Ft/∂κ . However, as
Colli et al. point out there is a singularity in this gradient at
steady-state conditions, which includes the peak of the trac-
tion curve. To get around this issue the gradient estimation is
only updated when an appreciable change in vehicle operat-
ing conditions is seen [11], where the appreciable change is
defined by a predetermined threshold. Even the fuzzy logic
approach of Colli et al. is model-based with respect to the
friction estimation [11]. Kazemi et al. have developed a 7-
DOF model, and applied a sliding mode controller to create
an anti-lock brake system that is able to maximize tractive
forces on each individual wheel, and in doing so prevents
unwanted yaw accelerations [7].

Defense and civil applications of Unmanned Ground Vehi-
cle (UGV) technology are rapidly progressing to the point
where high-performance traction control systems for both
acceleration and braking will be necessary to achieve future
mobility and mission needs [12]. Existing UGV platforms are
typically restricted to operate within a conservative perfor-
mance envelope relative to traction at the tire–ground inter-
face. The majority of research in this area has focused on
the path planning and associated perception challenges. Per-
formance is commonly sacrificed in favor of stability as a
mechanism for accommodating the interface uncertainties.
Traction control solutions that offer higher levels of perfor-
mance than what is currently available today will provide
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significant value for a wide range of ground vehicle applica-
tions, provided they can adapt in a manner similar to that of
a human expert.

A necessary and relevant component to all vehicle sim-
ulations, as well as any traction control studies, is the use
of a traction model of the tire–ground interface. The major-
ity of tire–ground interface models used in simulation are
highly non-linear. The most commonly used model in high-
performance racing simulations is that of Pacejka [13]. The
Pacejka model is a semi-empirical model which can be used
to model pure longitudinal motion, pure lateral motion, or
combined mode friction (longitudinal and lateral). Many
vehicle control algorithms such as anti-lock brake systems
and traction control can benefit from real-time knowledge
of the tire–ground interface properties [14]. This work does
not explicitly address estimation of the tire–ground interface
model, but this has been a popular area of research in the last
decade [2,15,16]. In fact, models have been developed to
estimate the tractive forces in real time for both manned and
unmanned ground vehicles by Li et al. [2], Tran et al. [12],
and Pasterkamp et al. [16]. In some cases these algorithms
estimate the entire friction curve [14], while some simply
estimate the peak of the curve [17]. The popular slip-slope
method does exactly this, it estimates the slip in the linear
region of the friction curve, the offset in the curve at zero slip,
and the variance in the error, where the error is the difference
between the actual data and the linear approximation in the
least squares sense. This information is then used in a clas-
sifier to estimate the location of μmax or the location of the
peak tractive force [17]. A key drawback to this method is the
cost, upfront and computational, associated with collection
of the necessary training data for the classifier. The use of a
classifier is also restrictive in the sense that it constrains the
estimation to known surfaces. Rajamani et al. developed a
slightly more robust process to use the slip-slope method, by
using a recursive least squares estimate of the linear portion
of the traction curve [17]. This method provides a control
engineer with the option of tuning a forgetting factor, allow-
ing for the adjustment between fast convergence and immu-
nity to noise. All of this work is focused on generating a more
robust friction model that allows the control engineer to push
the limits of the more traditional traction control algorithms.
Rajamani et al. [17] have also developed a suite of friction
estimation techniques to estimate the tractive forces [17] in
real time. As Rajamani et al. show, given explicit knowledge
of the vehicle model, it is possible to obtain accurate mea-
surements of the tractive forces. Ray has used an extended
Kalman filter (EKF) to show that it is possible to estimate the
tractive forces of the vehicle using onboard sensors (vehicle
speed, wheel speed, and yaw rate) and knowledge of the sys-
tem inputs [18,19]. Provided the filter is tuned correctly, it
is possible for this estimation algorithm to accurately track
discrete changes in tractive forces and the respective coef-

ficients of friction [19]. The work of Wilkin et al. [20] can
be considered as an extension of Ray’s to practice where a
fully instrumented race car is used with wheel force trans-
ducers to assess the accuracy of the extended Kalman filter.
In fact, Ray and Wilkin et al. model each tractive force as a
random walk output of a dynamic system composed of rigid
body modes [19,20], which is very similar to the way distur-
bance accommodating control algorithms attempt to model
disturbances [21,22].

2 Traction force and vehicle model

A tire–ground interface model is a necessary and relevant
component of any vehicle simulation. The non-linear trac-
tive forces used in this work are developed using the Pacejka
Magic Tire Formula [13]. The family of Pacejka models are
semi-empirical formulas expressed with a set of coefficients
that are unique to each tire–ground interface. The values of
these coefficients are derived from a non-linear curve fit of
experimental tire force and moment data collected over a
range of operating conditions. The combined mode forces,
simultaneous longitudinal and lateral, are developed using
Genta’s method [23] to scale the forces for pure slip deter-
mined by Pacejka [13].

2.1 Traction force models

Before the traction model is presented it is necessary to define
the terms slip angle and slip ratio. The slip angle α is mea-
sured from the longitudinal (x) axis of the wheel toward the
actual net velocity of the wheel, and is defined by Eq. 1.

α
(
vxt , vyt

) = arctan

(
vyt

|vxt |
)

(1)

Using the SAE J670 definition [13], the slip ratio represents
the longitudinal slip, which is defined by Eq. 2 [24].

κ (ω, vxt ) =
(
ωR − vxt

vxt

)
(2)

where ω is the angular velocity of the wheel, and R is the
effective rolling radius of the wheel. Note that ωR > vxt →
κ > 0 during acceleration, and ωR < vxt → κ < 0 when
braking [3]. The general form of the Magic Formula is based
on a common non-linear function given by Eq. 3.

Y (s; p) = D sin [C arctan (Bs [1 − E]

+ E arctan [Bs])] + S (3)

When the general slip state s is the slip angle α, then Eq. 3
represents the pure lateral traction force. When the general
slip state s is the slip ratio κ , then Eq. 3 represents the pure
longitudinal traction force. The coefficients B, C, D, and E
are, respectively, referred to as the stiffness, shape, peak, and
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Fig. 1 Typical longitudinal force values when operating in combined
mode friction regime for dry pavement

curvature coefficients for a given tire–ground interface [13],
and are functions of the vector of constant parameter values p
that are empirically derived from experimental test data [24].
For pure longitudinal slip or lateral slip the tractive force is
given by Y in Eq. 3. In the more common case where the
tire simultaneously experiences combined longitudinal and
lateral slip, the pure slip forces defined by Eq. 3 are modified
according to Genta [23] using the scaling terms σ ∗

x and σ ∗
y

according to Eqs. 4 and 5. The method developed by Genta
[23] is also empirical, and is designed to account for the fact
that a tire has a finite limit when it comes to tractive capacity
and is superior to the elliptical approximation [23].

Fx (α, κ, γ, Fz) = σ ∗
x

σ ∗ |Y (κ, γ, Fz; px)| (4)

Fy (α, κ, γ, Fz) = −σ
∗
y

σ ∗
∣∣Y

(
α, γ, Fz; py

)∣∣ (5)

Figures 1 and 2 are the plots of the longitudinal and lateral
forces in combined slip according to Eqs. 4 and 5 for dry
pavement. These plots clearly illustrate the saturation of both
lateral and longitudinal forces in combined slip.

2.2 Planar vehicle dynamics

The kinematic model of lateral vehicle motion developed by
Rajamani [25] is shown in Fig. 3. The front and rear steering
angles are represented as δ f and δr , respectively. The dis-
tances between the front and rear axles to the center of gravity
are represented as L f and Lr and when added together will
equal the wheelbase of the vehicle, L . The vehicles’ velocity,
represented by v in Fig. 3, is a vector quantity composed of
the longitudinal velocity vxc and lateral velocity vyc of the
vehicle. The yaw rate ψ̇ is measured about the vehicles’ cen-
ter of gravity, while the yaw angle ψ is an absolute value.
The longitudinal tire forces Fxt f and Fxtr and the lateral tire

Fig. 2 Typical lateral force values when operating in combined mode
friction regime for dry pavement

Fig. 3 Bicycle model used to include lateral dynamics

Fig. 4 Longitudinal dynamics of bicycle model

forces Fyt f and Fytr are developed in the reference frame of
each tire using the aforementioned tire model.

The kinematic bicycle model of Fig. 3, and the longitudi-
nal vehicle model of Fig. 4 are combined to form the complete
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Fig. 5 Plant dynamics are a combination of a linear system with non-
linear feedback

model which can be represented as a single dynamic system
in continuous time by Eq. 6, where N is the number of states,
P is the number of outputs, M is the number of inputs and
Q is the number of non-linear feedback terms.

ẋ = Acx + Bcu + Fcu′ (6)

y = Ccx + Dcu + Gcu′ (7)

y′ =
[

IN

0

]
x +

[
0

IM

]
u =

[
x
u

]
(8)

u′ =
⎡

⎢
⎣

f1
(
y′)

...

fQ
(
y′)

⎤

⎥
⎦ = f

(
y′) (9)

The structure of Eq. 6 separates the dynamic system into
a set of linear states and inputs combined with a set of non-
linear feedback terms u′ ∈ �Q according to Fig. 5, as has
been done in previous work [1,26,27].

The dynamic bicycle model can then be described, accord-
ing the structure of Eqs. 6 and 7, using Eqs. 8–19.

Ac =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

−γx
m 0 0 0 0 0
0 −γy

m 0 0 0 0
0 0 0 0 0 0
0 0 0 −β

Jw
0 0

0 0 0 0 −β
Jw

1
Jw

0 0 0 0 0 −2π fe

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

(10)

Bc = [
0 0 0 0 0 2π fe

]T
(11)

Fc =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

1
m cos(δ f )

1
m

−1
m cos(90 − δ f ) 0

1
m sin(δ f ) 0 1

m sin(90 − δ f )
1
m

L f
Jm

sin(δ f ) 0
L f
Jm

sin(90 − δ f ) − Lr
Jm−R

Jw
0 0 0

0 −R
Jw

0 0
0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

(12)

Cc =
[ −γx

m 0 0 0 0 0
0 −γy

m 0 0 0 0

]

(13)

Dc = [
0 0

]T
(14)

Gc =
[ 1

m cos(δ f )
1
m

−1
m cos(90 − δ f ) 0

1
m sin(δ f ) 0 1

m sin(90 − δ f )
1
m

]
(15)

x = [
vx vy ψ̇ ω f ωr Te

]T
(16)

y = [
v̇x v̇y

]T
(17)

u = [
Tc

]
(18)

u′ = [
Fxt f Fxtr Fyt f Fytr

]T
(19)

3 Adaptive traction control algorithm

Our primary objective is to develop a traction control method
that commands throttle position (wheel torque) based only
on sensed longitudinal acceleration. Since it is also an objec-
tive to implement the method on a digital controller, we will
first discretize the dynamic vehicle model while retaining the
non-linearities. The block diagram in Fig. 5 indicates that the
linear dynamic system has two outputs and two inputs. This
particular structure, i.e., continuous LTI dynamics coupled
with a non-linear feedback path, is a generalized non-linear
dynamic system representation. A gradient-based approach,
motivated by a HIL traction control study [1], is proposed
as a candidate solution for determining the optimal throt-
tle position to maximize longitudinal and lateral accelera-
tions. There are many possible gradient-based approaches
that can be employed; however, for this study, a steepest
ascent approach was chosen.

Assuming an appropriate method is chosen to discretize
the system of Eqs. 6 and 7, it is possible to arrive at the system
of Eqs. 20 and 21.

xk+1 = Axk + Buk + Fu′
k (20)

yk = Cxk + Duk + Gu′
k (21)

The output yk of the dynamic system, at this point, is not
assigned to a measured quantity and is considered a gen-
eral output of the dynamic system of Fig. 5. In subsequent
sections, yk will be defined as the longitudinal and lateral
accelerations or the vector of traction forces. To develop the
necessary mathematics, we start with the generic objective
function J (uk) defined as Eq. 22. The objective function of
Eq. 22 includes a weighting matrix Q ∈ �(Px P), which is a
positive definite, symmetric matrix used to weight each com-
ponent of the objective function, where P is the number of
outputs in Eq. 7.

J (uk) = 1

2
yT

k Qyk (22)

Mathematically, maximizing yk can be accomplished using
a gradient-based adaptive algorithm such as Eq. 23.

uk+1 = uk + μ∇k (23)

The gradient of the objective function ∇k is defined accord-
ing to Eq. 24.

123



244 W. T. Kirchner, S. C. Southward

∇k ≡ ∂ J (uk)

∂uk

∂ J (uk)

∂uk
= 1

2

∂
(
yT

k Qyk
)

∂uk

= 1

2

∂yT
k

∂uk
Qyk + 1

2

(
yT

k Q
∂yk

∂uk

)T

= ∂yT
k

∂uk
Qyk . (24)

It is important to note here the structure that this algorithm
takes for the multi-input multi-output (MIMO) and single-
input multi-output (SIMO) cases. Noting that the model des-
ignation as MIMO or SIMO refers to the plant model, where
the input refers to uk and output refers to yk . The single-input
single-output (SISO) and multi-input single-output (MISO)
case are straightforward; however, the application to MIMO
and SIMO cases requires clarification. Using the gradient
term defined according to Eq. 24 requires the use of a filter
bank for the MIMO and SIMO cases. Essentially the fil-
ter bank is composed of individual filters that use the same
structure as they would for the SISO and MISO cases. This
becomes clear when studying Eq. 25, and should clear up any
ambiguity when comparing the MIMO and SIMO structure
to the MISO and SISO structure.

∂ J (uk)

∂uk
=

⎡

⎢⎢⎢
⎣

∂y1,k
∂uk
∂y2,k
∂uk· · ·
∂yn,k
∂uk

⎤

⎥⎥⎥
⎦

T

Qyk (25)

After formulating the gradient as the discrete time process
of Eq. 24, it is necessary to develop ∂yk/∂uk as a discrete
time filter. This is similar to Filtered-X LMS algorithm imple-
mentations [28], where the gradient term is represented by a
dynamic filtering operation. To begin, it is possible to repre-
sent the state equation of Eqs. 20 and 21 as Eq. 26, where z
is the unit advance operator.

x = [zI − A]−1 [
Bu + Fu′] (26)

Substituting Eq. 26 into the output equation Eqs. 20 and
21 results in Eq. 27, which is exactly what would be expected
from linear systems theory with the addition of the non-linear
feedback term(s) u′.

y =
[
C [zI − A]−1 B

+ D] u +
[
C [zI − A]−1 F + G

]
u′

Using the definition, H ≡ [zI − A]−1, combined with the
system of Eqs. 26 and 27, it is possible to define an equivalent
system in the form of Eq. 27.

[
x(z)
y(z)

]
= T

[
u(z)

u′ (y′)
]

(27)

T =
[

H(z)B H(z)F
CH(z)B + D CH(z)F + G

]

Again, it is important to note that when u′ (y′(z)
) = 0

or F = G = 0, the system reduces to a linear time invari-
ant system. In order to evaluate the gradient term in Eq. 24
the output of Eq. 27 can be differentiated, resulting in an
expression for ∂y(z)/∂u(z).

∂y(z)
∂u(z)

= [CH(z)B + D]
∂u(z)
∂u(z)

+ [CH(z)F + G]
∂f

(
y′(z)

)

∂u(z)
(28)

By definition, the non-linear feedback term f(y′(z)) is a func-
tion of both the states x(z) and the inputs u(z). Expanding
the partial derivative of this term results in Eq. 29.

∂f
(
y′(z)

)

∂u(z)
= ∂f(z)
∂x(z)

∂x(z)
∂u(z)

(29)

Substituting Eq. 29 into the output equation, Eq. 28, results
in an expanded expression for ∂y(z)/∂u(z) in Eq. 30.

∂y(z)
∂u(z)

= [CH(z)B + D]

+ [CH(z)F + G]

[
∂f(z)
∂x(z)

∂x(z)
∂u(z)

]
(30)

The partial derivative of the state vector, which shows up in
Eq. 30, can be expressed as Eq. 31.

∂x(z)
∂u(z)

= H(z)B + H(z)F
[
∂f(z)
∂x(z)

∂x(z)
∂u(z)

]
(31)

Since Eq. 31 is recursive, it is necessary to break the loop
as shown in Eq. 32.

∂x(z)
∂u(z)

=
[

I − H(z)F
∂f(z)
∂x(z)

]−1

H(z)B (32)

Substituting Eq. 32 back into Eq. 30 results in Eq. 33,
where the unit advance operator z has been dropped for ease
in notation.

∂y
∂u

= [CHB + D] + [CHF + G]
{
∂f
∂x

[
I − HF

∂f
∂x

]−1

HB

}

(33)

Equation 33 appears to be difficult to implement in real
time. In practice it is more robust and efficient to express Eq.
33 as a discrete state space system. To simplify the notation
one additional definition is made.

Ω = F
∂f
∂x

(34)
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SubstitutingΩ into the portion of Eq. 33 contained inside
the curly brackets results in Eq. 35.

∂f
∂x

[
I − HF

∂f
∂x

]−1

HB = ∂f
∂x

[I − HΩ]−1 HB (35)

The dynamic system of Eq. 35 can be given a set of input
and output vectors defined as q(z) and r(z), respectively.
Using these vectors Eq. 35 can be reformulated as Eq. 36.

r(1)(z) =
[
∂f
∂x

[I − HΩ]−1 HB
]

q(1)(z)

= ∂f
∂x

[I − HΩ]−1 HBq(1)(z)+ [0] q(1)(z) (36)

At this point it is convenient to define the state vector
w(1)(z) according to Eq. 37.

w(1)(z) = [I − HΩ]−1 HBq(1)(z) (37)

Using Eq. 37 it is possible to express Eq. 36 as Eq. 38.

r(1)(z) = ∂f
∂x

w(1)(z)+ [0] q(1)(z) (38)

With a little algebra it is possible to formulate the state
equation according to Eq. 39.

[I − HΩ] w(1)(z) = HBq(1)(z) (39)

We can now substitute the previous definition of H ≡
[zI − A]−1 back into Eq. 37 and arrive at Eq. 40.
[
I − [zI − A]−1Ω

]
w(1)(z) = [zI − A]−1 Bq(1)(z) (40)

With some more algebra we arrive at Eq. 41.

[zI − A −Ω] w(1)(z) = Bq(1)(z) (41)

Equations 41 and 38 can be expressed as a state-space system
according to Eq. 42. The transfer function corresponding to
the state-space system of Eq. 42 will be referred to as P(1)(z).

w(1)
k+1 = [A +Ω] w(1)

k + Bq(1)k

r(1)k =
[
∂fk
∂xk

]
w(1)

k + [0] q(1)k
(42)

Using similar algebra and notation it is possible to define the
remaining two components of Eq. 33 as the systems defined
in Eqs. 43 and 44. As before, the transfer functions corre-
sponding to the systems of Eqs. 43 and 44 are defined as
P(2)(z) and P(3)(z), respectively.

[CHB + D] 	⇒ w(2)
k+1 = Aw(2)

k + Bq(2)k

r(2)k = Cw(2)
k + Dq(2)k

(43)

[CHF + G] 	⇒ w(3)
k+1 = Aw(3)

k + Fq(3)k

r(3)k = Cw(3)
k + Gq(3)k

(44)

It is now possible to express ∂yk/∂uk in block diagram form
as Fig. 6. For the path with P(1)(z) and P(3)(z) in series, we

Fig. 6 Block diagram of discrete filter used to calculate the gradient

define an equivalent system as P(13)(z) according to Eq. 45.

P(13)(z) = P(3)(z)× P(1)(z) (45)

Using Eqs. 42 and 44 it is possible to define the equivalent
system P(13)(z) according to Eqs. 46 and 47.

w(13)
k+1 =

[
A F ∂fk

∂xk

0 A +Ω

]

w(13)
k +

[
0
B

]
q(1)k (46)

r(3)k =
[

C G ∂fk
∂xk

]
w(13)

k + [0] q(1)k (47)

The state vector is defined as w(13) ≡ [w(1) w(3)]T . Com-
bining P(2)(z) in parallel to the series combination resulting
in Eq. 47, the single dynamic system can be represented as
Eq. 48 for P(z). This dynamic system represents the discrete
filter of Fig. 6.

P(z) = P(2)(z)+
[
P(3)(z)× P(1)(z)

]
(48)

The corresponding state vector is defined asw≡ [w(13)w(2)]T .
This single dynamic system, which is linear time varying, is
expanded to the system described by Eqs. 50 and 49. This sys-
tem is well suited for real-time application provided the apri-
ori knowledge necessary to calculate ∂fk/∂xk and ∂fk/∂uk

is available.

wk+1 =
⎡

⎢
⎣

[
A F ∂fk

∂xk

0 A +Ω

]

0

0 A

⎤

⎥
⎦ wk +

⎡

⎣
0
B
B

⎤

⎦ yk (49)

∇k =
[

C G ∂fk
∂xk

C
]

wk + [D] yk (50)

The ∂fk/∂xk term in Eqs. 49 and 50 involving partial deriva-
tives of the non-linear function of Eq. 3 with respect to states
and inputs represent quasi-constant transformation matrices.
The partial ∂fk/∂xk for the 3-DOF dynamic bicycle model is
quite tedious to calculate. The relevant partial derivatives,
∂Fxt/∂κ , ∂Fxt/∂α, ∂Fyt/∂κ , ∂Fyt/∂α are presented, for
illustration, in Figs. 7 and 8.

3.1 Indirect adaptation law

When yk , the output of the dynamic system, is defined as the
longitudinal and lateral accelerations, yk = [v̇x,k, v̇y,k] the
adaptation is referred to as the indirect adaptation law. If we
define the positive definite matrix Q = [

q11 q12 ; q21 q22
]
,
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Fig. 7 Partial derivatives of Fxt with respect to slip ratio κ and slip
angle α when operating in combined mode friction regime

Fig. 8 Partial derivatives of Fyt with respect to slip ratio κ and slip
angle α when operating in combined mode friction regime

then Eq. 24 can be expanded and expressed as Eq. 52 for
using the indirect adaptation law. To reinforce the concept of
using a filter bank to determine the gradient of the dynamic
system, it should be noted that the two partial derivative terms
on the right-hand side of Eq. 52 are both filters. It should now
be clear how the discrete filter to estimate the gradient can be
used for a generic class of SISO, SIMO, MISO, and MIMO
systems.

∂ J (uk)

∂uk
= ∂ Jx (uk)

∂uk
+ ∂ Jy(uk)

∂uk
(51)

∂ J (uk)

∂uk
= ∂v̇x,k

∂Tc,k

[
q11v̇x,k + q12v̇y,k

]

+∂v̇y,k

∂Tc,k

[
q21v̇x,k + q22v̇y,k

]
(52)

3.2 Direct adaptation law

The motivation for the direct adaptation law will become
clear when analyzing the results of a simulation study com-
paring both indirect and direct adaptation laws. The direct
adaptation law is presented here for consistency and is jus-
tified later. When considering the models used in this work,
the dynamic bicycle model and non-linear tire model, it is
possible to define an alternative objective function. In this
case, the challenge of maximizing vehicle acceleration is
equivalent to maximizing the vector sum of traction forces.
Therefore, the direct adaptation law is defined according to
Eq. 53, where we use the sum of the squares of the forces

f = u′ = [
Fxt f Fxtr Fyt f Fytr

]T
. It is important to note

that each force is weighted according to the values in matrix
Q ∈ �(Qx Q) which is constrained to be positive definite,
where Q is the number of non-linear feedback terms from
Eq. 9. This adaptation law is referred to as the direct adapta-
tion law because the forces, which are essentially non-linear
states, are filtered directly.

J f (uk) = 1

2
fT
k Qbfk (53)

The goal is still to maximize the objective function in Eq. 53.
This can be accomplished using the aforementioned gradient-
based adaptive algorithm of Eq. 23. To determine the gradient
of Eq. 53 it is necessary to differentiate with respect to the
input vector u. The gradient is then defined according to Eq.
55, similar to previous gradient definition but in this case the
objective function has changed. As before, in order for Eq. 55
to be valid, Q must be symmetric as well as positive definite.

∇ f,k ≡ ∂ J (uk)

∂uk
(54)

∂ J (uk)

∂uk
= 1

2

∂
(
fT
k Qbfk

)

∂uk

= 1

2

∂fT
k

∂uk
Qyk + 1

2

(
fT
k Qb

∂fk

∂uk

)T

= ∂fT
k

∂uk
Qfk . (55)

To further expand the objective function of Eq. 55 we return
to Eq. 29 listed here for consistency.

∂f
(
y′(z)

)

∂u(z)
= ∂f(z)
∂x(z)

∂x(z)
∂u(z)

The derivation continues, starting with Eq. 29 and continuing
to the system of Eq. 42. It should be clear now that the system
of Eq. 42 filters the acceleration signals, as is the case when
using the objective function of Eq. 22 or the non-linear forces
f
(
y′(z)

)
as is the case when using the objective function

of Eq. 53. This should come as no surprise, as according
to Newtons second law, the net force f

(
y′(z)

)
on a body is
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directly proportional to its acceleration y(z). When returning
to analyze the filter of Fig. 6 and Eqs. 49 and 50, it can be seen
that the subsystem characterized by P(3)(z) and the system
of Eq. 44 merely filters the gradient of the forces with respect
to the inputs into the resulting gradient of the accelerations.
It is also important to note that the output from the linear path
P(2)(z) of the filter shown in Fig. 44 is always zero for the
models used in this work as the acceleration y is not a direct
function of the input u, but rather, dynamically a function of
u′ through the non-linear functions of f which is captured in
the P(1)(z) ⇀ P(3)(z) path. In the case of the 3-DOF bicycle
model the filter bank is described according to Eq. 56.

∂ J f (uk)

∂uk
=

⎡

⎢⎢⎢⎢
⎣

∂ f1
∂Tc,k

(
q11 Fxt f,k + q12 Fxtr,k + q13 Fyt f,k + q14 Fytr,k

)

∂ f2
∂Tc,k

(
q21 Fxt f,k + q22 Fxtr,k + q23 Fyt f,k + q24 Fytr,k

)

∂ f3
∂Tc,k

(
q31 Fxt f,k + q32 Fxtr,k + q33 Fyt f,k + q34 Fytr,k

)

∂ f4
∂Tc,k

(
q41 Fxt f,k + q42 Fxtr,k + q43 Fyt f,k + q44 Fytr,k

)

⎤

⎥⎥⎥⎥
⎦

(56)

The direct adaptation algorithm described in this section is
preferable to indirect adaptation law, as it provides greater
control authority over each component of the forces using the
weighting matrix Q. There is some additional work that is
needed, however, when using this particular objective func-
tion, and that is resolving the forces back to the vehicle refer-
ence frame. This transformation is not required of the indirect
adaptation law, because the derivation is done solely in the
vehicle reference frame. This transformation is performed
using Eqs. 57 and 58 and then the total gradient is computed
by the addition of these two terms according to Eq. 59.

∂ J f x

∂uk
=

⎡

⎢⎢
⎣

cos(δ f )

1
− cos(90 − δ f )

0

⎤

⎥⎥
⎦

T

∂ J f

∂uk
(57)

∂ J f y

∂uk
=

⎡

⎢⎢
⎣

sin(δ f )

0
sin(90 − δ f )

1

⎤

⎥⎥
⎦

T

∂ J f

∂uk
(58)

∇k = ∂ J f x

∂uk
+ ∂ J f y

∂uk
(59)

4 Simulation results

Maximizing longitudinal and lateral accelerations simulta-
neously is not trivial. The approach described in the previous
section gives the driver (or another automatic control system)
complete control of the steering angle, and does not attempt

Table 1 Driving scenarios

Scenario Steering angle
δ f (deg)

Description

1 0 Longitudinal acceleration only

2 20 Longitudinal and lateral acceleration

3 40 Longitudinal and lateral acceleration

to prescribe requirements for path planning. The objective
of this study was to maximize the vector sum of longitudi-
nal and lateral accelerations, and evaluate the performance
at a series of fixed steering inputs. A total of three circular
driving maneuvers were analyzed. The control algorithm is
limited to regulating the engine output to maximize the vec-
tor sum of accelerations. The three driving scenarios studied
are outlined in Table 1.

The model parameters for the 3-DOF bicycle model used
in this simulation study are presented in Table 2, while the
control gains for both the indirect and direct adaptation laws
are presented in Table 3

4.1 Indirect adaptation law

The simulations in this section were performed for the 3-DOF
bicycle model using values from Tables 2 and 3. When using
this algorithm a slight modification to the update law of Eq.
23 is necessary. This modification is performed according to
Eq. 60, which is similar to the signed regressor algorithm
used in the signal processing community [29].

uk+1 = uk + μ×
{∇ f,k

−η
∂ J f x )

∂uk
> 0 and

∂ J f y
∂uk

> 0
∂ J f x
∂uk

< 0 or
∂ J f y
∂uk

< 0

(60)

The weighting matrix used in these four simulations is
defined according to Table 3. The position results for three of
the four simulations, presented in Fig. 9, show exactly what
would be expected as steering angle is increased; the circular
path of the vehicle decreases in radius. This is a direct result
of the effects of slip in generating longitudinal and lateral
forces; a larger steering angle will cause a faster buildup in
the front slip angle α f and corresponding lateralforce Fytr .

The velocity and acceleration results, presented in Fig.
10, show two distinct regions in the time domain. The first
region in all of the simulations is the transient region where
the acceleration builds up to an asymptotic limit. The sec-
ond region shows that the algorithm tracks this limit. In the
case of the bicycle model this asymptotic limit changes as
a function of the viscous drag in the undriven wheel. This
is exactly what is expected of the algorithm with respect to
longitudinal motion. However, what is not expected is the
fact that for the simulation where δ f = 40◦, the front slip
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Table 2 Model parameters
Parameter Value Units Description

m 540 kg Mass of vehicle

JW 2.0 kgm2 Rotational inertia of driven wheel

R 0.31 m Effective radius of driven wheel

aD 0 Ns/m Aerodynamic down force constant

β 1.0 Nms/rad Viscous friction constant

γx 0.2 Ns/m Aerodynamic drag constant

γy 0.2 Ns/m Aerodynamic drag constant

fe 5 Hz Break frequency of low pass filter

Jm 1300 kgm2 Rotational inertia of vehicle (yaw axis)

L f 1.6 m Distance from center or gravity to front axle

Lr 1.6 m Distance from center or gravity to rear axle

h 0 m Height of center of gravity (Pitch DOF)

v0 4 m/s Slip approximation threshold

Table 3 Control parameters
Parameter Adaptation law Description

Indirect Direct

μ 5e2 4e−4 Step size for adaptive algorithm

η 2e−3 2.5e−3 Negative step size for adaptive algorithm

q11 1 1 Component of diagonal weighting matrix Q

q22 2 1 Component of diagonal weighting matrix Q

q33 – 10 Component of diagonal weighting matrix Q

q44 – 10 Component of diagonal weighting matrix Q

Fig. 9 Position results for Scenarios 2–4 from Table 1 using the Indi-
rect Adaptation Law

angle α f exceeds the value at which the peak lateral force is
achieved which is approximately 8− 10◦. The existence of a
peak lateral force can be reinforced by referring back to Fig.
2. Figure 11a–d presents the slip ratios and slip angles of all
simulations for comparison. It can readily be seen that the

algorithm converges to the value at which the rear slip ratio
creates the peak longitudinal force in Fig. 11b. This is not
true for either the front slip angle α f or the rear slip angle αr

shown in Fig. 11c, d.
The cause of this is two fold. The dominant partial deriv-

ative in the gradient filter is ∂Fxtr/∂κr and this partial deriv-
ative is embedded in the state equation of the filter and is not
easily isolated by the weighting matrix Q. This functional
dependence can be seen explicitly when looking at the con-
tinuous time representation of the gradient filter. Addition-
ally, the relative magnitudes are drastically different when
the slip ratio or slip angle at which the peak tractive force
is achieved and exceeded, and is the motivation for using a
signed regressor in the update law of Eq. 60. Although not
stated at the time, this can be seen by returning to Figs. 1
and 8. This also suggests that if your goal is to maximize
the vector sum of accelerations, then a valid solution may
be to continue to increase the control torque despite the fact
that one or more of the optimal slip ratios or slip angles have
been exceeded. This is an interesting observation as it sug-
gests that maximizing the vector sum of accelerations does
not always imply that the algorithm converges on the optimal
slip ratios or slip angles simultaneously.
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Fig. 10 Velocity (vk ) and acceleration (ak ) results for Scenarios 1–4
from Table 1 using the Indirect Adaptation Law

Fig. 11 Slip ratio (κ) and slip angle (α) results for Scenarios 1–4 from
Table 1 using the Indirect Adaptation Law

This conclusion is further supported by Fig. 12a–c where
the longitudinal component of the gradient of Jk,x is domi-

Fig. 12 Gradient (∇ f , J f x and J f y) results for Scenarios 1–4 from
Table 1 using the Indirect Adaptation Law

nated by the partial derivatives of the rear wheel, while the lat-
eral component seems to suggest that the only way to increase
the acceleration is to decrease throttle. Regardless of poten-
tial changes in the weighting matrix the lateral component
of the gradient filter itself retains this behavior due to the
mismatch in partial derivative magnitudes.

The control input is presented in Fig. 12d. The control
torque Tc displays the same two regions that were pointed
out in the acceleration results. The first region in all of the
simulations is the region where the control torque builds up
to an asymptotic limit at which peak acceleration is achieved,
while the second region shows that the algorithm tracks this
limit.

For the purpose of comparing the indirect algorithm with
the direct algorithm and to reinforce the claim that the peak
lateral force is not being achieved, Fig. 13 is presented. Figure
13c, d shows that the peak lateral force for the front tire is
exceeded for the simulation in which δ f = 40◦ and the peak
lateral force for the rear tire is never achieved. All of the
simulations track the peak longitudinal force quite nicely as
shown in Fig. 13b.

The behavior that has been demonstrated in these results,
specifically exceeding the slip angle at which the peak lateral
force is achieved for the front tire, should be seen as a function
of the physical system and not a failure of the algorithm itself.
No effort was made in this work to determine the true optimal
path and subsequent realizable forces necessary to produce
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Fig. 13 Tractive force (Fxt and Fyt ) results for Scenarios 1–4 from
Table 1 using the Indirect Adaptation Law

maximum lateral and longitudinal accelerations and in some
cases the behavior of the indirect adaptation law may be desir-
able. This point will be further discussed as part of the con-
clusions. The results of indirect adaptation algorithm, mainly
the fact that the algorithm will result in slip angles that exceed
the value at which the peak lateral force of the front tire is
achieved, were the motivation for the direct adaptation law.

4.2 Direct adaptation law

Simulations using the driving scenarios defined according
to Table 1 were performed using the direct adaptation law as
well. As was the case in the previous section, the model para-
meters and control gains were defined according to Tables 2
and 3. The update law of Eq. 60, using the signed regressor,
remains unchanged as well. It is important to note that if either
∂ J f x (uk)/∂uk or ∂ J f y(uk)/∂uk is negative then the control
input Tc is reduced. This was done by design, to ensure that
the algorithm does not command the vehicle to excessively
overshoot the peak slip ratios κ∗ or slip angles α∗. This also
opens the door to investigating the optimal control settings for
a variety of paths, which this work does not address explic-
itly but is an interesting area of future research. The position
results for these simulations are presented in Fig. 14, with the
exception of the case where δ f = 0◦. The position results are
rather intuitive, as the steering angle δ f increases the vehicle
converges to a path of decreasing radius.

Fig. 14 Position results for Scenarios 2–4 from Table 1 using the Direct
Adaptation Law

Fig. 15 Velocity (vk ) and acceleration (ak ) results for Scenarios 1–4
from Table 1 using the Direct Adaptation Law

Somewhat more informative are the velocity and acceler-
ation results of Fig. 15, where all four sets of results display
two distinct regions in the results: a build up to maximum
longitudinal acceleration for 0 < t < 1 sec and a tracking
of the peak acceleration for 1 < t < 20 sec.

The most informative results are slip ratios κ and slip
angles α presented in Fig. 16. It can be seen from Fig. 16(c)
and 18(c) that the only simulation to reach the slip angle
at which the maximum lateral force is achieved was when
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Fig. 16 Slip ratio (κ) and slip angle (α) results for Scenarios 1–4 from
Table 1 using the Direct Adaptation Law

δ f = 40◦. There is little difference in the remainder of
the simulations as the control input Tc is dominated by the
longitudinal forces and accelerations. However, the compet-
ing behavior of maximizing both longitudinal acceleration
and lateral accelerations is demonstrated for the case when
δ f = 40◦. The rear slip ratio κr in Fig. 16 is actually being
regulated to a value that is less than the value at which the
maximum longitudinal force is created, and this is due to
the fact that the front slip angle α f is tracking the value at
which the peak lateral force is created. Careful analysis of
the behavior of both of these signals compared to that of the
simulations in this section suggests a slower system response
when considering the lateral force Fyt f and Fytr output rela-
tive to the control input Tc, while the longitudinal force Fxtr

displays a much quicker response to the control input Tc. This
makes sense intuitively because the time required to build up
a significant longitudinal force in a vehicle is significantly
less than that required to build up a significant lateral force
when limited to controlling only the input torque Tc. These
results also show that the ability of the direct algorithm to
isolate both the longitudinal and lateral motion is superior to
that of the indirect algorithm.

The results of the individual components of Eq. 59 are
presented in Fig. 17a–c.

For consistency the control input Tc is presented along-
side the specified steering angle δ f in Fig. 17d. The same
two regions prevalent in all the results can be seen readily in
this data as well; transient buildup to peak acceleration, and

Fig. 17 Gradient (∇ f , J f x and J f y) results for Scenarios 1–4 from
Table 1 using the Direct Adaptation Law

Fig. 18 Tractive force (Fxt and Fyt ) results for Scenarios 1–4 from
Table 1 using the Direct Adaptation Law

tracking of that peak acceleration. The forces, which will be
estimated in subsequent Chapters are shown here to reinforce
the two separate but distinct regions. All the simulations pre-
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sented here reach the peak longitudinal force for Fxtr while
only one simulation, δ f = 40◦ reaches the peak lateral force.
Provided the other simulations were allowed to continue past
20 s they too would be expected to reach this asymptotic limit
as well (Fig. 18).

5 Conclusions

The algorithms in this work have been demonstrated to
maximize both longitudinal and lateral accelerations both
simultaneously and selectively. This work did not explic-
itly address the challenge of path planning as the driving
scenarios selected for simulation can be considered as the
primitives of vehicle motion. In other words, the majority
of driving scenarios can be characterized as a linear com-
bination of the driving scenarios present in this work. The
results of the indirect adaptation law suggest that maximum
acceleration is not necessarily achieved by tracking the peak
tractive forces of all the tires simultaneously. Meanwhile, the
direct adaptation algorithm demonstrated the ability to have
a greater ability to maximize individual tire forces selec-
tively. These two key behaviors suggest that the indirect
algorithm may be better suited for situations where perfor-
mance is the primary objective. The direct adaptation algo-
rithm would seem to provide advantages when it is neces-
sary to selectively maximize tire forces, or more specifically,
prevent excessive slip from building up in individual tires.
Nonetheless, both algorithms proved to be able to success-
fully maximize vehicle acceleration simultaneously or indi-
vidual tire forces selectively, and should be considered as a
significant advantage compared to traditional traction control
algorithms.
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