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Abstract
Purpose of Review Non-invasive neuromodulation as a potential therapeutic target in addiction treatment is a fast-growing, but
nascent research field. With gambling disorder as the first behavioral addiction, the goal of this review is to provide an overview
of the current state-of-the-art of neuromodulation in substance use disorders and gambling disorder.
Recent Findings Only a few neuromodulation studies in gambling disorder are present, most of these are single-session studies.
Effects of rTMS on craving have been described, but large placebo effects are also present, indicating a need for larger, blinded,
multiple-session neuromodulation trials.
Summary The field of neuromodulation in gambling is in its infancy, given the limited number of studies, with small sample
sizes. The effects that neuromodulation can have on diminishing craving and improving cognitive functions in substance use
disorders are promising. As these factors also play a role in relapse in gambling disorder, these findings in SUDs indicate that
investment in larger studies in gambling disorder, focusing on both clinically relevant outcome measures and on intermediate
working mechanisms like craving and cognitive functions, is warranted.
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Introduction

Neuromodulation as an add-on treatment in addictive dis-
orders is gaining momentum in clinical addiction research.
In recent years, more and more small-scale trials, including
clinical trials with surrogate clinical outcome measures like
craving, and trials without an adequate control condition,
have been performed. On the other hand, the number of
large-scale sham-controlled trials with outcome measures
focused on treatment success (e.g., reduced substance use;

relapse) still is limited. With the introduction of gambling
disorder into the category of substance-related and addic-
tive disorders in the DSM-5, the question arises what these
findings on neuromodulation in substance-related disorders
imply for gambling disorder. In gambling disorder, studies
of neurocognitive functioning have revealed similar
impairments as in substance-related disorders [1•, 2–7],
most consistently in the areas of executive functioning like
behavioral impulsivity—response inhibition, planning,
cognitive flexibility, and more motivational cognitive
functions related to reward processing or reward sensitivi-
ty, like decision-making and delay discounting. These
cognitive functions are malleable by neuromodulation
techniques [8••], leading to the question whether
neuromodulation may also be a technique which could im-
prove neurocognitive functions in gambling disorders, and
in this way, diminish relapse—by influencing some of the
working mechanisms that lead to relapse [9–11]. This short
review focuses on how neuromodulation studies in gam-
bling disorders can benefit from the current state-of-the-
art in neuromodulation in substance-related disorders, and
what areas are most promising for future studies employing
neuromodulation in gambling disorder.
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Non-invasive Neuromodulation in Addiction:
Methods

Two main types of non-invasive neuromodulation are current-
ly employed in addictive disorders: transcranial magnetic
stimulation (TMS) and transcranial direct current stimulation
(tDCS). For these two types of neuromodulation, a variety of
stimulation settings can be used, and different neural targets
can be addressed. For TMS, repeated TMS (rTMS) induces
brief electrical currents in the cortical tissue, due to brief mag-
netic pulses generated by the TMS coil. TMS can be applied at
high frequency (usually 10–20 Hz), leading to an increase in
excitability of the targeted cortical area, or at low frequency
(e.g., 1 Hz), leading to a decrease in excitability of the targeted
area in the brain [12]. High-frequency rTMS is an FDA-
approved treatment method for treatment-resistant depression
[13], and recently has also been approved by the FDA for
obsessive compulsive disorder, as indicated on their website
[14]. Besides high- and low-frequency stimulation, theta burst
stimulation (TBS) is used as a distinct TMS protocol, in which
patterned stimulation is applied, by bursts of very short trains
of stimulation—with three pulses delivered with a frequency
of 50 Hz and an inter-burst interval of 200 ms [15]. When
applied as an intermittent protocol (iTBS), the effect is excit-
atory while with continuous TBS (cTBS) is inhibitory [15]. In
rTMS studies in substance use disorders (SUD), the most
frequent placement of the TMS coil is over the dorsolateral
prefrontal cortex (DLPFC), either applied at the left or right
side of the skull—although bilateral stimulation and other
cortical sites are possible as well.

tDCS is a neuromodulation technique in which a small
electrical current (1–2 mA) is induced through placement of
a pair of saline-soaked sponge electrodes, which are again
usually placed over the DLPFC. Unlike rTMS, which leads
to action potentials in neuronal axons, tDCS only leads to
modulation of neuronal excitability by this weak electrical
current, through depolarization or hyperpolarization of the
resting membrane potential [16]. In-depth review of all possi-
ble settings of rTMS and tDCS is beyond the scope of this
article. For gambling disorder, a relevant question is whether
neuromodulation techniques can add to the current arsenal in
treatment methods. For this purpose, disease markers that
have been related to the course of SUDs, or gambling disorder,
and that have been studied in neuromodulation studies in
SUDs, are summarized and discussed below. The current
neuromodulation literature in SUDs can be divided into stud-
ies that have focused on the effects of neuromodulation on (1)
craving, (2) cognitive functions, including executive functions
and reward processing, and (3) treatment success related fac-
tors like relapse or treatment retention [for reviews, see 8••,
17, 18]. Neuromodulation studies in gambling disorder are
discussed where such studies exist, or else implications of
findings in SUDs for GD are presented.

Effects of Neuromodulation on Craving

Studies using non-invasive neuromodulation in SUDs mainly
focus on craving as an outcome measure. An extensive body
of literature indicates that both TMS and tDCS reduce craving,
as indicated in numerous literature reviews [18–25, 26•].
However, caution is needed since these reviews point towards
substantial variability among study results, and identify
sources of heterogeneity between studies in many study char-
acteristics including stimulation parameters, target area, meth-
od of craving assessment, and clinical patient characteristics.
So far, three meta-analyses have been conducted on this topic.
The first included studies using either tDCS or TMS, and
included studies focusing on craving for substances but also
food [17]. In this meta-analysis, a medium effect size was
reported (Hedge’s g = 0.476) in favor of active stimulation
compared with sham stimulation in reducing craving. The
other two, more recent meta-analyses narrowed down their
inclusion criteria by including only randomized controlled
trials using rTMS as the neuromodulation method. One
found no overall difference between active and sham rTMS
(Hedge’s g = 0.043), but further analyses based on type, site,
and substance found that active stimulation was superior to
sham stimulation in studies that stimulated the right DLPFC
[27••]. The other meta-analysis found a medium effect size
(Hedge’s g = 0.75) favoring active stimulation over placebo;
when distinguishing nicotine use disorder and alcohol use
disorder, the effect size was large for nicotine (Hedge’s g =
1.00) and no favorable effect was present for alcohol (Hedge’s
g = − 0.06) [28]. The contradictory conclusions of these meta-
analyses further highlight the variability in the effects of
neuromodulation on craving in SUDs.

In gambling disorder, craving and its neural equivalent, cue
reactivity, resemble the findings on the role of craving and cue
reactivity in SUDs. Cue reactivity is the reactivity in the brain
to addiction-relevant cues, compared with neutral, non-
addiction-related cues [29, 30]. For instance, increased neural
cue reactivity in the striatum, putamen, orbitofrontal cortex,
and insular cortex has been reported. I.e., when disordered
gamblers are confronted with relevant gambling related cues,
subcortical and fronto-striatal circuitry is increased in activity,
and this is linked to higher self-reported craving [3, 31]. Only
very recently, the first pilot studies on neuromodulation and its
effects on craving in gambling disorder are emerging. Gay and
colleagues [32••] studied 22 disordered gamblers who were in
treatment, finding that a single-session high-frequency rTMS
(10 Hz, 94 trains of 3.2 s) over the left DLPFC reduced cue-
induced craving more than placebo (sham) stimulation. This
study had a cross-over design and used a commercial sham
coil in combination with local electrical stimulation with elec-
tromyography electrodes using a transcutaneous electrical
nerve stimulation (TENS) stimulator to optimize blinding.
This advanced form of placebo stimulation prevents that
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participants in a cross-over study can discern active from sham
stimulation by the differences in sensation on the skin. The
findings for the active condition in this study thus cannot be
attributed to placebo effects or unblinding; indeed, only 23%
of participants guessed their stimulation allocation correctly.
A further strength of this study was that neuronavigation was
used to locate the DLPFC, thus optimizing the targeting of the
stimulation site. A limitation of this study is the clinical valid-
ity of the outcome measure: the effects on cue-induced crav-
ing were measured directly after stimulation, but no changes
in gambling behavior were found between active and sham
rTMS in the seven days after stimulation.

In a study in 30 disordered gamblers, using a cross-over
design with sham and active right DLPFC rTMS (1 Hz,
6 min), reductions in craving were present in both the active
and sham conditions [33••]. The large placebo effect in this
study indicates that blinding in neuromodulation trials is of
special importance. Such placebo effects have also been ob-
served in pharmacological trials in gambling disorder, leading
to speculation that gambling disorder is a condition that may be
especially prone to placebo effects. This could be related to
cognitive misperceptions present in gambling disorder, which
for instance refer to thinking that one has control over random
events present in gambling. As the allocation to placebo or
active condition is also dependent on chance, specifically dis-
ordered gamblers maymore frequently have a strong belief that
they “are lucky,” and are receiving the active medication or
active neuromodulation. One other study investigated the ef-
fects of different forms of TMS on a construct related to crav-
ing, “desire to gamble,” and on gambling behavior itself [34•].
In this study in nine disordered gamblers using a cross-over
design, high-frequency rTMS (10 Hz, three times 15 trains of
1 s) over right medial prefrontal cortex (mPFC) was compared
with continuous theta burst TMS (cTBS: three times 50 Hz
triplets repeated at 5 Hz, 20 s) over right DLPFC as well as
sham stimulation (vertex stimulation with an 8-shaped coil,
perpendicular to the target area). The right DLPFC stimulation
led to a decrease in desire to gamble scores after a session of
slot machine play, whereas cTBS diminished diastolic blood
pressure after slot machine play. We consider this study further
in the sections on cognition and relapse.

Neuromodulation and Effects on Cognition

The dorsolateral prefrontal cortex (DLPFC) has a crucial
role in higher cognitive functions like executive functions
[35]. Executive functions have been shown to be impaired in
SUDs [36], and further related to relapse in SUDs [9].
Enhancing DLPFC activity could result in increased
cognitive functioning, which may be beneficial for treatment
outcome in SUDs. Indeed, positive effects of non-invasive
neuromodulation in SUD have been reported [37–49], as well

as no effect [38, 41, 42, 44, 47, 50–54] and even in some rare
cases negative effects [38, 43, 55].

Systematic reviews [8••, 26•, 56] discussing these studies
in more depth highlight mostly promising effects on executive
or cognitive functioning, but also point to methodological
variability between studies such as duration of sessions, num-
ber of sessions, target areas, and neuromodulation as add-on
treatment or as a standalone intervention, all impairing com-
parability. In addition, most studies have small sample sizes,
there is a lack of double-blind sham-controlled studies, and
different neurocognitive tasks are implemented to
measure constructs like decision-making and response inhibi-
tion. Even in instances when similar tasks are used, the out-
come measures employed can differ between the studies.
Differences in population characteristics such as treatment
seeking status, duration of abstinence, and type and severity
of substance use may influence the effect of neuromodulation
on cognitive functions. To shed light on these questions, stan-
dardized neuromodulation protocols are recommended. In
general, the field needs larger sham-controlled clinical trials
in order to firmly establish the effects of neuromodulation on
executive functions; however, most studies that are currently
present do indicate a positive effect of neuromodulation on
cognitive functions in SUDs.

As outlined in the introduction, disordered gambling has
been associated with diminished cognitive-motivational func-
tioning, as most consistently shown in executive functions and
decision-making [1•, 2–5]. These functions in turn have been
linked to relapse in SUDs [9], and in disordered gambling [10,
11]. Thus, improving cognitive-motivational functioning in dis-
ordered gambling may improve treatment effects. The number
of studies investigating neuromodulation in disordered gam-
bling is very limited as of yet, and for effects on cognitive
functions, only three published studies are present: A study
performed by Soyata and colleagues focused on the effects of
tDCS on decision-making and flexibility in 20 disordered gam-
blers, using a cross-over design. Compared with sham, tDCS
(anode right DLPFC, 2 mA, 35 cm2, 20 min) over the right
DLPFC resulted in improvement in decision-making as mea-
sured with the Iowa gambling task, and in improvement of
cognitive flexibility as measured with the Wisconsin Card
Sorting Test [57••]. However, no long-term cognitive outcomes
or clinical measures were included in this study, which can be
viewed more as a neuroscientific study into working mecha-
nisms of tDCS in gambling disorder. The study by Zack and
colleagues, discussed in detail in the section on craving and
neuromodulation above, indicated no changes of either mPFC
high-frequency rTMS or cTBS on impulsive choice as mea-
sured with the delay discounting task, whereas interference
effects on the Stroop became larger, contrary to expectations
[34•]. Finally, Dickler et al. [58] describe the effect of one
anodal tDCS session (1 mA, 35 mm2, 30 min) over the right
DLPFC on gamma-aminobutyric acid (GABA), glutamate, and
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N-acetyl aspartate (NAA) levels in the right DLPFC and right
striatum. Active stimulation increased GABA concentrations in
the right DLPFC; however, no significant changes in glutamate
and NAA concentrations were observed. Also, no changes in
metabolite concentrations were observed in the right striatum.
Furthermore, correlations were performed between behavior
(risk taking as assessed with the BART and impulsivity as
assessed with the BIS-11) and metabolite levels during active
stimulation. Positive correlations were found between risk tak-
ing and prefrontal glutamate, risk taking and striatal GABA,
and impulsivity and striatal NAA. Authors suggest this impli-
cates that when gambling disordered patients are more impul-
sive or more risk taking, they were more likely to respond to
tDCS; however, no direct comparison was made for correla-
tions between metabolite concentrations and sham stimulation.

Effects of Non-invasive Neuromodulation
on Relapse

Substance use outcome measures have been reported in only a
minority of neuromodulation trials in SUD populations [for
reviews, see 26•, 59••].We will here elaborate on a few clinical
trials with substantial (1–12 months) follow-up periods. For
tDCS, one study applied five sessions of standalone tDCS
treatment to participants that smoked at least ten cigarettes
per day. Active stimulation significantly decreased cigarettes
smoked per day and was modified by the level of motivation
to quit smoking at baseline [60]. Of the four studies that ap-
plied tDCS in alcohol-dependent patients as add-on treatment
with clinically relevant follow-up periods, two reported posi-
tive results on relapse [54, 61] and two reported no effect of
tDCS compared with placebo on relapse [47, 52]. For an over-
view of these studies and their stimulation protocol, see
Table 1. Altogether, based on the mixed results of the limited
available studies using tDCS to reduce substance use, it is
currently premature to draw firm conclusions on efficacy.

Next to tDCS, several clinical trials in SUDswith rTMS are
present. Three larger rTMS studies in heavy smokers were
conducted. The first showed significantly less relapse during
treatment, although at follow-up, no significant differences
between groups were found [62]. Another study found evi-
dence for HF compared with LF and sham regarding nicotine
intake, response rate, and reduction in cigarettes consumed at
six months follow-up [63]. The third study did not find differ-
ences in cigarette consumption at six-month follow-up [64].
Regarding alcohol as substance of use, two clinical trials are
available. The first study showed a positive effect on several
outcomes related to alcohol use or relapse during the four-
week treatment, but no longer follow-up period was conduct-
ed in this study [65]. The other study found decreased number
of drinks consumed daily up to three months in the active
group, while this pattern was not found in the sham group Ta
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(note however that no comparison between the active and
sham group was conducted) [66]. Besides nicotine and alco-
hol, two pilot studies in cocaine use disorder are present. In the
first study, outpatient cocaine-dependent individuals showed
decreased cocaine intake in the active group and not in the
placebo group (note: direct comparison between groups was
not significant) [67]. In the second, open-label pilot study,
decreased cocaine use after rTMS treatment compared with
medical treatment only was found [68]. For an overview of
these studies and their stimulation protocol, see Table 2.
Summarizing these results, the effect of neuromodulation on
substance use is scarcely studied and results are not at all
conclusive. Therefore, further studies are needed before any
conclusions can be drawn. The field is in need of studies that
are sham controlled; at least single blind and conducted in
larger clinical samples where tDCS or rTMS is added to con-
ventional evidence-based therapies for SUD, as indicated in
reviews [8••, 26•, 59••]. As reducing or abstaining from sub-
stances is the main goal of SUD treatment, it is highly relevant
for future studies to include clinically relevant follow-up pe-
riods assessing substance use.

Of the three studies in gambling disorder that used
neuromodulation and studied effects on actual gambling behav-
ior or clinical gambling scales, two studies are single-session
studies: one assessed acute gambling behavior (on a lab-based
slot machine) directly after single-session rTMS, cTBS, or sham
stimulation [34•], and no effects on acute gambling behavior
were present. In another study, no effects of a single session of
left DLPFC stimulation vs sham stimulation on gambling behav-
ior in the week after stimulation were present [32••]. Finally, in a
case series study in five disordered gamblers, effects of 15 daily
sessions with deep rTMS, using an H1 coil, with a 1-Hz inhib-
itory DLPFC protocol were investigated. This case series in four
participants (the fifth patient dropped out) did result in improve-
ment on clinical scales, ranging from the Hamilton Depression
Rating Scale to the Yale-Brown Obsessive Compulsive Scale, a
non-specified visual analogue scale, and the South Oaks
Gambling Screen after the last rTMS session [69]. Although
the authors report diminished scores after 15 sessions (in three
patients) and after two session (one patient), information from co-
laterals indicated no improvement in problem gambling. This led
the authors to conclude that the 1-Hz stimulation was not effec-
tive, and that an excitatory stimulation (e.g., 10 Hz) may have
differential effects. See Table 3 for an overview of the studies
conducted in gambling disorder.

Clearly, from the first two studies, it is evident that these
studies were not clinical trials, designed to investigate long-
term effects of neuromodulation on diminishing problematic
gambling. The third case series study actually was the first one
to employ TMS in gambling disorder, but only concerns four
disordered gamblers. Thus, the first clinical trial studies are
still needed addressing the clinical potential of neuromo
dulation in gambling disorder. Ta
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Conclusion and Discussion

In reviewing the current evidence for neuromodulation as a
treatment target in addiction, and its specific implications for
gambling disorder, it can be concluded that neuromodulation
targets relevant working mechanisms related to development,
course, and relapse in SUDs. Several reviews and meta-
analyses indicate that neuromodulation in SUDs has a benefi-
cial effect on craving and cognitive functions [8••, 18]. At the
same time, the evidence for effects of neuromodulation on
clinical outcomemeasures in addiction is still limited. For gam-
bling disorder, a mere six studies on neuromodulation are pres-
ent that investigated outcome measures ranging from gambling
urges, craving, cognitive flexibility, and decision-making
to gambling behavior directly following neuromodulation.
Clearly, the field is in need of larger studies.

The current studies in gambling disorder all employed single-
session (cross-over) designs and thus, the field is in need of
studies that also focus on multiple-session neuromodulation pro-
tocols, as the potential to have longer-term effects on craving,
cognition, and clinical outcome measures is higher for multiple-
session neuromodulation trials. In this respect, clinical trials in
depression could be used as a starting point, because rTMS is
now approved in several countries as a treatment method for
treatment-refractory depression. In gambling disorder, several
evidence-based treatment strategies are present, with larger effect
sizes for psychosocial interventions compared with pharmaco-
logical interventions [70, 71]. It is possible that the add-on of
neuromodulation to psychosocial treatment methods, like cogni-
tive behavioral therapy or motivational interviewing, may render
the brain more flexible, thus enhancing treatment effects. An
alternative working mechanism may be that DLPFC stimulation
by rTMS or neuromodulation by tDCS may enhance cognitive
control over craving, by improving DLPFC functioning. With
regular rTMS targeted at the DLPFC, changes in striatal
dopamine binding in depressed patients indicate that multiple
sessions of high-frequency rTMS can induce an increase in
striatal dopamine release [72]. Newer technological advances in
neuromodulation may broaden possibilities for neuromodulation
in addictive disorders as well. For example, deep rTMS has been
shown to enable subcortical changes in dopamine functioning,
by changing dopamine transporter availability in alcohol-
dependent patients [65], and this may render larger clinical
effects.

Besides the need for multiple-session rTMS studies, sample
sizes need to be increased in order for the field to move beyond
pilot studies, as currently, the studies are very small. In addition,
rTMS seems to be associated with a high placebo response,
which exists in pharmacological studies in disordered gambling
as well [71]. Well-controlled trials employing sham stimulation
protocols, including formal assessment of blinding in partici-
pants, are needed to overcome this problem. Cross-over designs
may not be ideal for blinding, although recent studies employing

commercially available sham coils in combination with local
electrical stimulation with electromyography electrodes can op-
timize blinding [32••].

As current therapies for disordered gambling have a compa-
rable treatment efficacywith those of SUDs and other psychiatric
disorders, there is a clear possibility for the improvement of
treatment effects. While neuromodulation still has a long way
to go in terms of clinical evidence base in SUDs and gambling
disorder, the available treatment options for addictive disorders
are all cost-effective. Therefore, there is no reason why cost-
effectiveness would not be possible for neuromodulation, as the
availability of neuromodulation equipment, like more costly
TMS machines, will increase, now that it is approved for other
psychiatric disorders, like treatment-refractory depression and
obsessive compulsive disorder recently.

In conclusion, although the number of studies employing
neuromodulation in gambling disorder is limited, and there is
no evidence yet from formal RCTs in gambling disorder, there
are indications that neuromodulation can diminish craving and
improve cognitive functions in gambling disorder. As evidence
from SUDs regarding the effects of neuromodulation on craving
and cognitive functions is promising, disordered gambling may
benefit from neuromodulation, not only through a direct effect on
reducing gambling problems but also through enhancing execu-
tive functions, thus improving control over craving, or through
diminishing craving, potentially through subcortical changes in-
duced by neuromodulation.
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