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Abstract Growing evidence points to the role of epigenetic
mechanisms, including DNA methylation, in substance use
and addiction. We conducted a systematic review of 47 recent
(2012-2015) animal and human studies that investigate DNA
methylation and substance use/exposure, spanning preconcep-
tion to adulthood. The majority of extant studies (i) focused on
exposure during adulthood, (ii) examined the effects of alco-
hol use, (iii) employed a candidate gene approach, and (iv)
were cross-sectional. While studies generally support an asso-
ciation between substance use/exposure and DNA methyla-
tion and also suggest that developmental context and timing
matter, a dearth of longitudinal data and low comparability
across studies currently limits the conclusions that can be
drawn. Future challenges and directions for the field are
discussed.
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Introduction

Addiction to psychoactive substances (e.g., alcohol, illicit
drugs) is a debilitating condition characterised by compulsive
drug-seeking and repeated harmful use, despite adverse con-
sequences [1]. Like other complex diseases, addiction results
from both genetic and environmental factors, which combine
to exert additive, evocative, and interactive effects across the
lifespan [2¢]. How such gene-environment associations oper-
ate at a molecular level, however, remains unclear. In recent
years, epigenetic mechanisms have been proposed as a poten-
tial candidate, as they respond to both genetic and environ-
mental influences [3, 4¢¢] and are thought to mediate vulner-
ability to disorders, including addiction [3, 4e].

Epigenetic mechanisms, such as DNA methylation
(DNAm) regulate when and where genes are expressed with-
out changing the DNA sequence itself [5]. DNAm refers to the
addition of a methyl group, primarily in the context of
cytosine-guanine (CpG) dinucleotides. The genome contains
an excess of 28 million CpG sites, around 10 % of which
cluster into CpG ‘islands’, close to gene promoter regions
[6]. Methylated CpG islands impede transcription factors from
accessing the DNA sequence. As such, DNAm is typically
associated with decreased gene expression, although the func-
tional role of methylation changes within genomic regions
other than CpG islands (e.g., intergenic regions) remains un-
clear [7¢]. Importantly, DNAm is dynamic across the
lifespan—although patterns are mitotically stable, which can
lead to long-term alterations in gene activity, they also show a
considerable degree of flexibility over time, enabling cells to
respond to changing internal and external inputs [8].

A growing number of studies have begun to clarify the role
of DNAm in substance abuse and addiction. Experimental
studies in animals have led the way, documenting a number
of important findings. First, substance use can alter DNAm—
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for example, repeated administration of substances (e.g., alco-
hol, cocaine) has been found to modify methylation patterns in
the reward regions of the brain (e.g., striatum [9]). Second,
DNAm contributes to the pathophysiology of addiction. Spe-
cifically, drug-induced methylation changes have been shown
to influence the expression of genes involved in synaptic plas-
ticity and memory consolidation, which in turn drive long-
term neuroadaptations underlying the onset and persistence
of addictive behaviours [4¢¢]. Third, animal studies have be-
gun to shed light on the role of developmental context on
DNAm and addiction risk. For example, alcohol intake during
the first half of pregnancy has been found to alter epigenetic
patterns in the developing embryo, leading to reduced fetal
growth and congenital abnormalities similar to those observed
in human fetal alcohol syndrome, as well as subsequent risk
for addiction [10].

So far, studies in humans have provided initial support for
animal findings, reporting methylomic differences between
substance abusers and drug-free controls across a number of
substances and tissue types [9, 11¢°]. However, unlike animal
studies that make it possible to experimentally manipulate the
type, extent, and timing of substance exposure, studies in
humans have been primarily cross-sectional and correlational,
making the causal links between epigenetic changes and sub-
sequent addiction more problematic to draw.

The aim of this systematic review is three-fold: (i) to collate
findings from recent animal and human research investigating
the link between substance exposure, DNAm, and addiction;
(i1) to consider the relevance of timing of substance exposure,
beginning in preconception through to adulthood; and (iii) to
outline future directions for the field.

Methods
Inclusion Criteria

We included studies that investigated associations between
DNAm and substance use/exposure. In line with the journal’s
focus on current research, we only included articles published
during the past 3 years (1 January 2012 to 31 February 2015).
No restriction was applied regarding (i) species (e.g., human,
mouse), (ii) period of exposure (e.g., prenatal, adulthood), (iii)
substance (e.g., alcohol, cocaine), (iv) tissue (e.g., blood,
brain), (v) approach (e.g., candidate vs genome-wide), and
(vi) design (e.g., cross-sectional vs longitudinal).

Search Strategy
PubMed and PsychInfo were searched for relevant studies
written in English. Search terms were applied in MeSH or

index terms, as well as text words. Included terms related to
either (i) DNA methylation (e.g., methylat*; epigen*), or (ii)
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substance (e.g., substance use, abuse, dependence; drug; ad-
diction; cocaine; heroin; cannabis; alcohol; opiate*; smoking;
tobacco). ‘Cancer’ and ‘medication’ were specified as exclu-
sion terms to avoid studies investigating DNAm in relation to
clinical drugs.

Study Selection

Our search yielded 621 records, with 381 remaining after fil-
tering out duplicates (see Fig. 1). Titles and abstracts were
screened, and studies were excluded if they were not empirical
(e.g., reviews), focussed on epigenetic mechanisms other than
DNAm (e.g., histone modifications), or examined drugs other
than the ones specified above (e.g., clinical drugs). Given that
the majority of DNAm studies on tobacco use examined med-
ical diseases (e.g., cancer) as opposed to addiction-relevant
phenotypes, studies with tobacco were not included in the
review. Sixty-one studies were retained, and their full text
articles were assessed for eligibility. Sixteen articles were re-
moved due to the following reasons: (i) six did not include
DNAm data; (ii) six did not report direct associations between
DNAm and substance use/exposure; (iii) two did not include
substance data; (iv) one was published before 2012; and (v)
one was based on cell culture data. A total of 45 original
reports were therefore included in the systematic review.

Results
Descriptive Summary

Study characteristics are summarised in Table 1 (see also
Fig. 2). Twenty-four studies examined animal samples (7=
14 and n0use=10) and 21 examined humans. The majority of
studies investigated substance exposure during adulthood (n=
33), focused on alcohol (n=36), involved peripheral samples
(n=25), examined DNAm at a single time point (n=40), and
used a candidate gene approach (7=26). The most common
peripheral tissue examined was blood (n=18), followed by
liver, sperm, pancreas, saliva, placenta, kidney, intestine, and
colon. Most commonly examined central tissues were pre-
frontal cortex (n=5) and hippocampus (n=4), followed by
nucleus accumbens, hypothalamus, amygdala, cerebellum,
ventral tegmental area, striatum, and neocortex. Below, we
describe findings first in animals and then in humans, in order
of developmental period of substance exposure.

Animal Studies
Preconception

Three candidate gene studies investigated parental alcohol use
prior to conception. In the first, paternal consumption in mice
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related to decreased DNAm of Bdnf—implicated in stress re-
sponse and neural development—in paternal sperm cells and
offspring ventral tegmental area [12]. In the second, paternal
alcohol consumption in rats was associated with increased
Pomc methylation (another gene relevant in stress response)
within both parental sperm and offspring hypothalamus, al-
though findings were specific to the male germline [13]. In
contrast, the third study [14] found that DNAm in H79 CTCF
binding sites—involved in imprinting mechanisms—was re-
duced in offspring tail blood but not in paternal sperm cells.

Prenatal

Three studies from the same working group found that prena-
tal alcohol exposure associated with increased Pomc methyl-
ation in the rat hypothalamus, which in turn related to de-
creased gene expression [13, 15, 16]. These changes were
maintained transgenerationally (up to three generations), but
could be rescued by gestational choline supplementation.
Epigenome-wide associations between prenatal alcohol expo-
sure and DNAm in brain tissue from adult offspring were
identified by one study, particularly within genetic pathways
related to nervous system development (including the Cdk5
signalling pathway) and neurological diseases, including the
Alzheimer’s disease-linked gene App [17]. Another study
found that in utero, exposure to methamphetamine was

associated with aberrant hippocampal DNAm in adolescent
mice offspring [18]. Hypermethylated genetic pathways relat-
ed to cerebral cortex GABAergic interneuron differentiation,
while hypomethylated pathways related to embryonic
development.

Neonatal

Two mouse studies investigated the effect of neonatal alcohol
exposure on global methylation within the hippocampus and
neocortex [19, 20]. While the first study reported a reduction
in global methylation in response to acute alcohol exposure (8
and 24-h postexposure; [20]), the second study observed an
increase in global methylation in the exposed group across
both regions, which could be partially ameliorated by choline
treatment [21]. Although of interest, it is important to note that
neonatal substance exposure may be less relevant to human
studies compared to other developmental periods, as it is rel-
atively uncommon in humans.

Adulthood

This developmental period received by far the greatest re-
search attention (71 % of animal studies, n=17) and was pri-
marily examined in relation to alcohol exposure (n=11). In
global methylation studies, exposed mice were found to have
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Table 1 Summary of

study characteristics Summary table (N=45)

Developmental period

Preconception 3
Prenatal 6
Neonatal 3
Childhood 0
Adolescence 1
Adulthood 33
Time points (DNAm)
1 TP 40
2 TP 3
3 TP
Approach
Candidate gene/s 26
Global DNAm 12
EWAS 9
Species
Animal 24
Human 21
Tissue
Peripheral 25
Central 21
Substance
Alcohol 36
Cocaine 6
Cannabis 6
Opiates 3
Methamphetamine 2

N.B. The total number of studies for each
characteristic may exceed 45 due to the
presence of studies fitting multiple do-
mains. To clarify, global methylation stud-
ies examine proxy markers of ‘global’
DNAm, using repetitive elements such as
Alu and Line-1 (comprising of 11-17 % of
the genome). Candidate studies focus on
DNAm in individual, preselected genes
(typically one) based on a priori hypothe-
ses, while epigenome-wide studies
(EWAS) are hypothesis-free and investi-
gate thousands of DNAm markers across
the genome

EWAS epigenome-wide association studies

lower DNAm in the cerebral cortex [21] but not in liver [22],
although reductions were reported in global DNA
hydroxymethylation (another type of DNA modification,
characterised by the addition of a hydroxymethyl group).
Findings from candidate gene studies further indicated that
alcohol exposure in adulthood is associated with increased
DNAm in multiple genes, including the serotonin receptor
Htr3a in blood and hippocampal tissue [23], the sodium
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transporter Slc5a6 gene in pancreatic tissue [24], and immune
function TLR-pathway genes in the liver [25]. Decreased
DNAm was instead observed for the glutamate gene Nr2b in
the prefrontal cortex [26] and Bdnf gene in motile sperm [12].
Tissue- and gene-specific DNAm alterations were identified
by one study in folate-regulating genes [27]. Finally, no asso-
ciations were found in opioid-related genes Pdny and Pnoc in
the rat amygdala [28], as well as imprinting-control genes H/19
and Rasgfl in mouse sperm [14].

Seven studies examined DNAm in relation to cocaine and/
or opiate exposure. No associations with global methylation
were reported in the corpus callosum of cocaine-exposed
rats after 1 or 30 days of forced abstinence [29], as well
as cocaine or heroin-exposed mice [30]—although a spe-
cific reduction in hydroxymethylation in the liver follow-
ing cocaine administration was reported within the same
sample [31]. Drug- and tissue-specific effects were also
identified in the study by Tian et al. [32] where global
DNAm reductions were evident in the prefrontal cortex
(but not in the nucleus accumbens) of mice exposed to
cocaine (not heroin)—an effect that was reversible
through repeated administration of methionine. With re-
gard to candidate genes, increased Drd2 receptor meth-
ylation was observed in the nucleus accumbens of rats
exposed to glucocorticoids in utero [33]. This association
was specific to morphine administration and reversed by
L-dopa treatment. Also in the nucleus accumbens, repeat-
ed SAM pretreatment was found to modify cocaine-
induced methylation changes in the neuropeptides Cck
and Gal, as well as the glutamate transporter Sic/7a7
[34]. Pol Bodetto et al. [35] reported that methylation
of Pp2c¢f3, a gene involved in cellular function, was
higher in the brain of cocaine-exposed rats versus con-
trols. Finally, in a study investigating myelin-producing
genes, reduced mean DNAm of Sox/0 was identified in
the corpus callosum of cocaine-exposed rats, particularly
after a period of forced abstinence [29]. None of the
studies examined epigenome-wide alterations in response
to adult substance exposure.

Human Studies
Prenatal

Two studies examined DNAm in relation to prenatal alcohol
exposure. Wilhelm-Benartzi et al. [36] found that maternal
alcohol intake positively associated with global LINE-1 (but
not with AluYDb8) methylation in placental tissue. One candi-
date gene study found that cord blood methylation of the de-
velopmental gene ZAC! positively correlated with prenatal
maternal alcohol intake as well as associating with reduced
fetal and postnatal weight [37].
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Fig. 2 Flowchart of study characteristics. N.B. The same study may fit
into multiple categories. Grey-shaded boxes represent developmental
periods that have not been investigated. For each level (1-5), boxes are
shaded according to study frequency (e.g., the least frequently
investigated tissue is represented by lighter shading, while the most
commonly investigated tissue is represented by darker shading). Boxes

Adolescence

Only one study examined adolescent substance use.
Researching the impact of cannabis smoking on whole blood
COMT methylation (important for neurotransmitter catalysis),
van der Knaap et al. [38] found no main effect of cannabis use.
However, a significant methylation by genotype interaction
was identified, where Met/Met carriers with higher DNAm
were least likely to be frequent cannabis users.

Adulthood

Eighty-five per cent of studies in humans (n=18) examined
adult substance use, again focusing primarily on alcohol ex-
posure (n=16). One global methylation study found decreased
DNAm in the blood of alcohol drinkers (Alu, not LINE-1
[39]). Results contrast those of increased global methylation
identified in the frontal cortex of HIV+ methamphetamine
users versus non users [40], as well as in the blood of
methadone-substituted former opiate addicts, an effect which
was also replicated in independent sample of opioid-treated
patients [41].

Candidate gene studies focused mainly on genes involved
in neural function, most likely guided by existing neurochem-
ical data regarding addiction on animals and humans. Higher
DNAm was observed in the blood of alcohol-dependent indi-
viduals within the HTR3A serotonin receptor gene [42] and

marked with an asterisk indicate presence of longitudinal studies with
repeated measures of DNA methylation (here, boxes indicate the
number of longitudinal studies out of the total number of studies). Meth
methamphetamine, C central tissue (brain), P peripheral tissue, Ca
candidate gene, Ew epigenome-wide, G/ global

OPRM]1 opioid receptor gene [43]—an association that was
also identified in opiate addicts [41]. Lower DNAm of the
leptin hormone (LEP) gene was instead identified in the blood
of patients with stronger alcohol cravings [44]. No significant
associations were reported between alcohol use and DNAm in
anumber of genes, including PDNYand PNOC opioid-related
genes (blood; [42]), the serotonin transporter 5-HTT in fe-
males exposed to trauma (alcohol, cannabis; [45]), the DAT
dopamine transporter in blood [46], and the drug metabolism
gene UGTIAI in human liver [47]. Of the candidate gene
studies reviewed, two featured repeated measures of DNAm,
comparing alcohol-dependent cases versus controls at base-
line, day 7 and day 14 posttreatment admission. While the first
found significant differences in DNAm of volume-regulating
neuropeptides AVP and ANP both at baseline and between day
7 and 14 of withdrawal [48], the second [49] reported in-
creased nerve growth factor (NVGF) methylation in cases ver-
sus controls, but only between day 7 and 14.

All epigenome-wide investigations focussed on the effect
of alcohol in blood. Generally, results were mixed, depending
on sample characteristics and methods. In terms of specif-
ic genes, two epigenome-wide association studies
(EWASs) confirmed associations with alcohol
metabolism-related genes, including alcohol and aldehyde
dehydrogenases (ADHI1A, ADH7, ALDH3B2, ALDHI1A2)
and cytochrome P450 2A13 [50, 51]. In one study [52],
the tumour suppressor gene BLCAP and ABR—involved
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in vestibular morphogenesis—were hypomethylated in
heavy alcohol drinkers versus abstinent controls, suggest-
ing one mechanism by which tumour risk may be higher
in alcohol drinkers. In another study, alcohol-dependent
discordant siblings showed hypomethylation of SSTR4—
an important gene for hormonal function—and hyperme-
thylation of the GABA receptor gene GABRP [53]. Final-
ly, two EWASs measured DNAm at multiple time points:
before and after a 25-day treatment programme [54], or a
12-year interim period [55]. While the former [54] found
no significant differences pre-vs-post treatment, the latter
[55] observed a general increase in methylation with al-
cohol consumption over a 12-year period, particularly in
CKM, PHOX2A4, and NPDCI. With regard to wider bio-
logical pathways, EWAS studies indicated that the most
common pathways that were hypermethylated in response
to alcohol use were those related to G-protein mediated
and GTPase signal transduction processes [51, 54, 55],
whereas pathways associated with stimulus and stress re-
sponses, as well as immune and inflammatory processes,
where likely to be hypomethylated [51]. Hypomethylation
was also observed in long terminal repeat (LTR) regions
of retrotransposons in the superior frontal cortex of post-
mortem alcohol users [56]. Other important pathways re-
lated to apoptosis [52, 54, 55], metabolism [53], as well
as GABA and dopamine systems [40, 53].

Discussion

The aim of the present review was to summarise the latest
animal and human research investigating the association be-
tween substance use, DNA methylation, and addiction risk,
spanning preconception to adulthood. Based on the 45 reports
included, we may conclude that there is preliminary support
for a link between substance exposure, DNAm, and addiction.
However, findings are often mixed and have limited compa-
rability. In this section, we review key similarities and differ-
ences across studies, evaluate evidence for the importance of
timing of substance exposure, and outline future directions for
the field.

Summary of Study Characteristics and Findings

The majority of studies across species focused on substance
exposure during adulthood, examined the effects of alcohol,
employed a candidate gene approach, and were cross-sectional.
One key difference related to tissue, with animal studies most
often investigating brain samples and human studies examin-
ing DNAm in blood. Global methylation studies were more
common in rodents, while epigenome-wide studies were more
frequently carried out in humans. Although prospective lon-
gitudinal designs were more common in animal studies, the
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only four reports to include repeated DNAm measures were
based on humans.

As a symptom of how young the field is, there are not
sufficient data to assess how DNAm of specific genes relates
to exposure to specific substances across developmental pe-
riods and tissue types. We do, however, highlight five genes
that were investigated by multiple studies and, promisingly,
showed a consistent direction of associations. In three rodent
studies from the same working group [13, 15, 16], increased
methylation and decreased expression of Pomc—a gene im-
plicated in stress response, metabolism, and immune func-
tion—was observed in response to prenatal alcohol exposure
across multiple tissues. These results highlight one mecha-
nism through which fetal alcohol programming can occur,
contributing to HPA axis dysregulation and increased addic-
tion risk [16]. In two other studies, the opioid receptor mu 1
(OPRM1)—a gene important for mediating drug-induced ac-
tivation of reward pathways—was hypermethylated in the
blood of former opiate addicts [41] and alcohol-dependent
individuals [43]. It was not possible to establish, however,
whether higher methylation was a predisposing factor for ad-
diction and/or a consequence of long-term substance use. Fur-
thermore, hypermethylation of the serotonin receptor 3A
(HTR3A) was identified in relation to alcohol exposure across
both humans [42] and rodents [23]. Finally, a null association
between alcohol exposure and methylation in the opioid sig-
naling genes PDNY and PNOC was reported in human blood
[42] and brain tissue in rats [28]. Despite these consistent
findings, it is noteworthy that genes investigated by candidate
studies did not typically converge with those identified by
studies using hypothesis-free, epigenome-wide analyses. In-
stead, EWAS studies more often reported significant associa-
tions with drug metabolizing genes, as well as highlighting
wider biological pathways linked to substance exposure, in-
cluding signal transduction, inflammation, and apoptosis, in
addition to stress response and neurotransmission. How these
pathways specifically contribute to addiction, however, re-
mains unclear.

Given the limited comparability across studies, we were
not able to systematically assess the importance of develop-
mental context in the relationship between substance use,
DNAm, and addiction risk. However, the studies reviewed
did provide preliminary support for the relevance of timing
of substance exposure on DNAm. For example, evidence
from animal models demonstrated that substance exposure
can influence DNAm even prior to conception, supporting
the existence of transgenerational effects [ 12—14]. Studies also
pointed to the prenatal period as a particularly sensitive devel-
opmental window. For example, in utero substance exposure
influenced DNAm of developmental genes, which in turn af-
fected postnatal outcomes (e.g., reduced postnatal weight
[37]), although the relevance of these changes for addiction
risk is yet to be characterised. It is important to note that the
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period between birth and adulthood received very little atten-
tion. In fact, none of the studies investigated childhood and
only one examined adolescence—a key period of vulnerabil-
ity for the development of substance use disorders [57].

Current Challenges for the Field

Despite considerable advances in epigenetic research, studies
investigating the role of DNAm in substance use and addic-
tion continue to face a number of key challenges [11ee, 58e¢].
Firstly, our knowledge of the methylome is still limited. Be-
cause we know little about ‘typical’ methylation patterns in
humans, it is difficult to establish when such patterns deviate
to contribute to diseased states. This is complicated by the fact
that DNAm patterns can vary across multiple factors, includ-
ing tissue, cell type, sex, and age [59¢]. In general, the com-
pilation of reference datasets will be important for providing a
‘typical’ benchmark against which to compare epigenetic
findings. Knowledge is also limited regarding the relative con-
tribution of genetic and environmental influences on observed
methylation patterns, which will require the use of genetically
informative designs, such as twin studies and studies identi-
fying methylation quantitative trait loci [60, 61]. More work
will also be needed to determine the functional significance of
identified DNAm changes at transcriptomic, metabolomic,
proteomic, and neural biological levels.

A second set of challenges relates to research methodology.
Methods have varied widely across studies, including differ-
ences in preprocessing, quality control, genomic coverage,
data analysis, choice of covariates and significance thresholds
used for detecting effects. Together, these sources of variabil-
ity have limited comparability across studies and complicated
efforts to replicate findings—a necessary step for weeding out
false positives. The increased availability of standardised
pipelines will considerably help in this respect [62¢]. Further-
more, the integration of discovery and replicate samples will
become increasingly important, as was the case for genomic
studies. More research will also be needed to determine what
sample sizes are required to reach appropriate statistical pow-
er, although simulation-based studies are beginning to provide
recommendations [63].

A third issue relates to difficulties in establishing causal
relationships between substance use, DNAm, and addiction.
Most of the studies reviewed adopted a cross-sectional ap-
proach with DNAm data sampled at only one time point.
Human studies, in particular, focussed primarily on adults
who had already been exposed to substances. As such, it re-
mains unclear whether DNAm can be a risk factor for, as well
as a consequence of substance use, and how substance expo-
sure and DNAm interrelate over time to influence addiction
risk.

Below, we propose a number of ways in which future re-
search may strengthen causal inferences and improve

understanding of the role of DNAm in substance exposure
and addiction.

A Proposed Model for Conducting Research on DNA
Methylation, Substance Use, and Addiction

Firstly, it will be important to capitalise on the strengths of
animal models to clearly delineate the mechanisms linking
substance exposure, DNAm, and addiction. Systematic inves-
tigations will need to be conducted within a given substance,
across multiple tissues, over developmental periods, and in
different strains. Importantly, it will be necessary to collect
prospective, repeated measures of DNAm pre- and post-sub-
stance exposure, in order to (i) investigate whether preexposure
DNAm predicts individual differences in drug-seeking behav-
iours, (ii) trace the timing and stability of DNAm changes
following exposure, and (iii) clarify whether DNAm mediates
the effect of substance use on the onset and persistence of
addiction. The sampling of multiple tissues over time will also
make it possible to establish cross-tissue variability and locate
peripheral biomarkers that most closely resemble DNAm
changes in neural networks underlying addiction. Furthermore,
incorporating additional omics data, such as gene expression,
serum levels, protein content, and enzymatic activity, will be
useful for clarifying the functional relevance of observed
DNAm changes at multiple biological levels [e.g., 13, 16].
Importantly, the use of methyl-modifying agents (e.g., methi-
onine, choline [15, 32]) will offer valuable opportunities for
testing the reversibility of drug-induced DNAm changes, iden-
tifying whether certain developmental periods are more sensi-
tive to intervention, and examining whether normalisation of
DNAm patterns parallel changes in addiction-relevant pheno-
types. Finally, the availability of methylomic data in relation to
different substances will make it possible to disentangle
DNAm markers that are common to multiple substances (per-
haps reflecting a general liability to addiction) as opposed to
substance-specific markers.

The knowledge generated from animal research could then
be used to inform the design of human studies and to map out
the most promising DNAm markers for further investigation.
This will require, however, the use of strategies to maximise
cross-species comparability. For example, the use of data from
epidemiological birth cohorts that feature repeated measures of
DNA [e.g., 64], could allow researchers to examine whether
preexposure versus postexposure DNAm changes identified in
longitudinal animal studies extend to humans. Furthermore,
analytic methods that make it possible to integrate repeated
measures of environmental exposure (e.g., substance use),
DNAm, and phenotypic outcomes (e.g., addiction)—such as
structural equation modelling—will be particularly useful for
tracing longitudinal associations and for testing mediation hy-
potheses [65]. The development of advanced causal inference
methods, such as the two-step epigenetic Mendelian
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randomisation [66, 67], may also show promise for testing
causal pathways documented in animals. As discussed above,
the inclusion of additional biological markers (e.g., serum
levels) will be necessary for establishing the functional rele-
vance of identified DNAm markers. Furthermore, given the
scarce availability of central tissues in human research (i.e.,
postmortem), it will be important in the future to investigate
whether peripheral DNAm markers can be related to in vivo
structural and functional brain data (e.g., striatal activity when
viewing addiction-related cues). Finally, increased use of ap-
proaches that capitalise on co-methylation patterns between
CpG sites, such as regional or network-based approaches, will
be important for reducing multiple testing and increasing pow-
er to detect effects in humans, enabling to move beyond indi-
vidual methylation sites toward wider biological systems [68].

Conclusions

DNA methylation is emerging as an important molecular
mechanism mediating substance use response and addiction
risk. However, the limited understanding of the epigenome,
heterogeneity across studies, a reliance on cross-sectional de-
signs, and lack of replications make it difficult to interpret the
relevance of the extant data for mechanisms of addiction.
Rapid developments in knowledge, methodology, and re-
search designs will offer exciting opportunities for delineating
the role of DNAm in the pathophysiology of addiction, as well
as testing its potential clinical utility as an exposure indicator,
disease biomarker, and therapeutic target (Table 2).
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