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Abstract
The number of devices equipped with global satellite positioning has exceeded seven bil-
lion recently. There are a wide variety of receivers regarding their accuracy and reliabil-
ity. Low cost, multi-frequency units have been released on the market latterly; however, 
the number of single-frequency receivers is still significant. Since their measurements are 
influenced by ionospheric delay, accurate ionosphere models are of utmost importance 
to reduce the effect. This paper summarizes how Gauss process regression (GPR) can 
be applied to derive near real-time regional ionosphere models using raw Global Navi-
gation Satellite System (GNSS) observations of permanent stations. While Gauss pro-
cess is widely used in machine learning, GPR is a nonparametric, Bayesian approach to 
regression. GPR has several benefits for ionosphere monitoring since it is quite robust and 
efficient to derive a grid model from data available in irregular set of ionospheric pierce 
points. The corresponding instrumental delays are estimated by a parallel Kalman filter. 
The presented algorithm can be applied near real-time, however the results are offline cal-
culated and are compared to two high quality TEC map products. Based on the analysis, 
the accuracy of the GPR modell is in 2 TECu range. The developed methods could be effi-
ciently applied in the field of autonomous vehicle navigation with meeting both accuracy 
and integrity requirements.

Keywords GNSS · Ionosphere modelling · Regional TEC map · Gauss process regression

1 Introduction

The ionosphere is the upper part of the Earth’s atmosphere with an altitude between about 
40 and 2000 km. The ionosphere is ionized by solar radiation which means that there are 
free electrons and positive ions in this region Schaer (1999). In addition to playing and 
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important role in the Earth’s magnetic field, the ionosphere influences radio signal propa-
gation from satellites to the Earth.

One of the major parts of the error budget in the GNSS (Global Navigation Satellite 
System) measurements is the ionospheric delay. The effect depends on the number of 
charged particles, the Total Electron Content (TEC) along the path of the signal through 
the ionosphere. With multi-frequency devices, the delay can be removed by the so-called 
ionospheric-free linear combination Hofmann-Wellenhof et  al. (2008). However, still 
major part of the devices operates on a single-frequency; thus the ionosphere modelling is 
crucial to mitigate its effect.

One of the earliest and simplest models is the Klubochar model Klobuchar (1987). The 
corresponding parameters are broadcast by the GPS satellites among navigational mes-
sages. In general, Klobuchar model can describe just a limited part of the whole effect 
(Feess and Stephens 1987; Filjar et al. 2009), however in extreme conditions, during iono-
spheric storms for instance, its accuracy can be degraded even more (Bergeot et al. 2010; 
Gordienko et  al. 2005; Hu et  al. 2005). The most recent satellite system, the European 
Galielo, broadcasts its own ionosphere model, the NeQuick one Angrisano et al. (2013). 
According to a throughout investigation and comparison of Klobuchar and NeQuick model 
Farah (2008), it can be concluded in general that NeQuick model offers a better behaviour 
when the ionosphere is stable but slightly poorer behaviour with higher variability of iono-
sphere or close to maximum TEC values.

High quality TEC maps can be derived from the measurements of permanent station 
with post-processing Schaer (1999). The spherical harmonics and B-spline based TEC 
models are adequate for global and regional representation, while the polynomial based 
models are limited for regional modelling. These models describe the TEC of the iono-
sphere as a function of time and space Hernández-Pajares et  al. (2009). The commonly 
accepted exchange format is the IONEX Schaer et  al. (1998), that represents the 2- and 
3-dimensional TEC maps given in a geographic grid. Thanks to the rapid development of 
computer processing, providing global and regional tec maps can be done in near-real-time 
(Coster et  al. 1992; Bergeot et  al. 2014; Erdogan et  al. 2017; Chang et  al. 2019; Renga 
et al. 2018).

The Gauss process regression (GPR) method is well-known in the machine learning 
community and proved its utility in various domain. It is also worth to mention that the 
mathematical background of the GPR and popular Kriging in geostatistics are the same 
Stein (1999). Data from a single station in India was used to forecast ionospheric delay 
using GPR technique with almost 100% accuracy Lakshmi et  al. (2020). Another GPR 
approach was used to predict daily TEC values based upon the TEC values recorded at 
various permanent GNSS station in Turkey Inyurt et al. (2020). A comparison of Gaussian 
process (GP) and neural network model was performed by Ackermann et al. (2011) over 
a test area in South Africa. The GP framework presented many advantages over compet-
ing modeling strategies, such as providing powerful and convenient ways of incorporat-
ing prior knowledge and requiring less training data than neural networks. Another recent 
study shows the GP ability to enhance the positioning performance by improved TEC esti-
mation in real-time Lin et al. (2019).

The safety critical applications demand for high reliability besides accuracy. Auxiliary 
services are preferred to achieve this high standard of requirements. For the European 
region, the EGNOS (European Geostationary Navigation Overlay Service) grants real-time 
corrections from the measurements of RIMS (Ranging and Integrity Monitoring Stations) 
Ventura-Travest and Flament (2007). The stations are located across the European region 
in a sparse network (Fig. 1). The very first initiative to monitor the achievable accuracy and 
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integrity with EGNOS was performed by the EGNOS Data Collection Network (EDCN) 
project Soley et al. (2004). EGNOS performance can be slightly degraded at the boundary 
of coverage area due to lack of reliable ionosphere modelling over the periphery Grunwald 
et al. (2016) or Lupsic and Takács (2019).

This paper presents a GPR based novel ionospheric model for real-time TEC map gen-
eration from RIMS data available in the European region. The accuracy of the developed 
model is investigated by comparing to widely used and referred global and regional models 
developed using raw GNSS observations.

1.1  Algorithm outline

A brief overview about the developed algorithm is presented in Fig. 2 and the mathemati-
cal details of each block will be featured in the following sections. A regional receiver 
network, in our case the EGNOS system provides code and phase measurements in dou-
ble frequencies. Combined measurements cancel out the geometry dependency and the 
result directly reflects the state of the ionosphere and the combined instrumental delays 
of receiver and the tracked satellite. This is the so called L4 combination and the rigori-
ous mathematical description of its calculation is presented in Sect. 2.1. In case of known 
instrumental delays, the slant ionospheric delays from the L4 observation can be calculated. 
A single layer model determines the conversion from the slant ionospheric delay to verti-
cal ionospheric delay alongside the location of the ionospheric pierce point (IPP) [Sec. 
2.1]. The vertical ionospheric delay with their corresponding locations are the input to the 

Fig. 1  RIMS positions across the European region
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Gauss process regression model which is described in Sect. 2.2. The GPR model creates 
the Total Electron Content map and updates it in real time. The presented algorithm in the 
paper is designed to be capable of run in real time, therefore the instrumental delays shall 
be estimated, and monitored continuously in parallel with the GPR. For that purpose, a 
polynomial model was used to describe the vertical total electron content (VTEC) and the 
data was processed iterative with a Kalman filter. The Sect. 2.4 is dedicated to present this 
part of the algorithm. It is worth to mention any other near-real time estimation could be 
used which provides an adequate accuracy for instrumental delays.

2  Mathematical background

2.1  Ionospheric TEC measurements from GNSS

The ionospheric refraction is frequency-dependent, therefore with a dual-frequency 
receiver this delay can be eliminated in first order by the ionospheric-free combination. On 
the other hand, with the geometry-free combination, one could extract information about 
the state of the ionosphere Ciraolo et al. (2007). The combination can be created from the 
pseudorange measurements and the phase measurements. The noise of phase observation 
is typically two or three orders smaller than the code but suffers from the initial ambiguity. 
This ambiguity can be resolved by quasi ionosphere-free (QIF) (Teunissen 1995; Zhang 
et al. 2016).

The ionospheric delay depends on the frequency and the total electron content along the 
signal path between satellite and receiver.

where Ne is the electron density in el∕m2 dimension, which varies along the ray path. The 
vertical total electron content (VTEC) definition follows the form of Eq. (1) but the inte-
gration path is vertical.

(1)STEC = ∫
s

r

Ne(l)dl,

Fig. 2  Algorithm outline
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Converting the ionospheric delay from one frequency to another can be easily done with 
the Eq. (2), where j is the target and i is the reference frequency. Is

r,i
 is the delay on the ref-

erence signal. The code and phase observation can be divided to frequency dependent and 
independent parts.

where j indicates the carrier frequency, Rs
r,j
,�s

r,j
 code and phase measurement respectively, 

� is the real geometry distance between the r receiver and s satellite, dtr is the receiver 
clock bias, dts stands for the satellite clock bias, Ts

r
 is the tropospheric delay, Is

r,j
 the iono-

spheric delay in j frequency, dr,j, �r,j are the hardware bias of the receiver in j frequency of 
the code and phase observation respectively, ds

j
, �s

j
 are for the hardware bias of the satellite 

in j frequency of the code and phase measurement respectively, �s
r,j
, �s

r,j
 denote stochastic, 

Gaussian type noises, Nr,j is the integer phase ambiguity, �j the wavelength of j frequency, 
�s
r,j
, � s

r,j
 denote the multipath. Subtracting the code and phase measurement in frequnecy 

1, 2 yields a geometry-free combination.

where � is a frequency dependent constant, br, bs are the differential code biases, �s
r,P
, �s

r,P
 

are the combined noise, and multipath delay respectively. The same combination can be 
created from the phase measurement as well,

where Cs
arc,r

 is the ambiguity bias, Br,B
s are the receiver and satellite interfrequency bias 

(ISB), Ms
r,�

, �s
r,�

 are the combined multipath delay and noise. The significantly lower noise 

(2)Is
r,j
=

40.3 ⋅ STEC

f 2
j

=
f 2
i

f 2
j

Is
r,i

(3)Rs
r,j
=�s

r
+ c(dtr − dts) + Ts

r
+ Is

r,j
+ �s

r,j
+ dr,j + ds

j
+ �s

r,j

(4)�s
r,j
=�s

r
+ c(dtr − dts) + Ts

r
− Is

r,j
+ � s

r,j
+ �r,j + �s

j
+ �jN

s
r,j
+ �s

r,j
,

(5)Rs
r,I

= Rs
r,1

− Rs
r,2

= �Is
r,1

+ br + bs +Ms
r,I

+ �s
r,P

� =

(
1 −

f 2
1

f 2
1

)
,

br = dr,1 − dr,2,

bs = ds
1
− ds

2
,

�s
r,P

= �s
r,1

− �s
r,2
,

Ms
r,P

= �s
r,j
− xis

r,j
,

(6)�s
r,I

= �s
r,2

−�s
r,1

= �Is
r,1

+ Br + Bs +Ms
r,�

+ Cs
arc,r

+ �s
r,�

,

Cs
arc,r

= �2N
s
r,2

− �1N
s
r,1

Br = �r,2 − �r,1,

Bs = �s
2
− �s

1
,

�s
r,�

= �s
r,2

− �s
r,1
,

Ms
r,�

= � s
r,2

− � s
r,1
,
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level of the phase observation can be exploited in the L4 combination. The CPBs
r
 (Carrier 

Phase Bias) is the offset between the �s
r,I

 and Rs
r,I

 combination and it can be estimated aver-
aging out the geomatry-free code and phase differences in a cycle slip free continuous arc.

where N is the number of observation in the continuously observed arc. The leveled geom-
etry-free combination, Ls

r,4
 for a given arc is

To achieve a near real-time ionosphere estimation the levelling method is not quite suitable 
Xiang et  al. (2017), instead of that a Hatch-filter smoothing was applied. The smoothed 
geometry-free code R̂s

r,I
(n) can be calculated as:

where, n = k when k < N and n = N when k ≥ N . The N value was choosed to 50 in this 
paper, but to avoid the nonconvergent smoothed code R̂s

r,I
(n) create a significant bias to the 

estimation, the first 10 samples in each new arc were not used for TEC modelling. A cycle 
slip detection is substantial to avoid abrupt biases in L4 smoothing and in case of this event 
the Hatch-filter algorithm resets.

Once the L4 is calculated and smoothed, one can create a direct link with corre-
sponding STEC value and the satellite and receiver biases.

where the � , br , bs represents the same terms from Eq. (5) and �L4 is the noise of the 
smoothed Ls

r,4
 measurement. The vertical total electron content is one of the main proper-

ties of the ionosphere. One of the most used, and simplest method to establish connection 
between the slant and vertical TEC is a single layer model (SLM).

where STEC is the total electron content between a receiver and a satellite, m(z) is the 
elevation dependent mapping function. Fig. 3. depicts the concept of SLM, where the the 
vertical dimension of ionosphere is reduced to a single layer. The slant total electron con-
tent is considered at the ionospheric point, where the line of sight crosses the single layer. 
The m(z) mapping function converts the STEC to VTEC value therefore the different line 
of sight measurements are comparable. The latitude and longitude of the sub-ionospheric 
point are the characteristic properties of the IPPs alongside with its VTEC value. Substitut-
ing Eq. (11) to Eq. (10) yields the following:

In case of known br and bs the VTEC value can be calculated by rearranging the Eq. 
(12).

(7)CPBs
r
≈

1

N

N∑
n=1

(�s
r,I

− Rs
r,I
)n,

(8)Ls
r,4

= �s
r,I

− CPBs
r
= �STEC + br + bs + �L4

(9)R̂s
r,I
(k) =

1

n
Rs
r,I
(k) +

n − 1

n

[
R̂s
r,I
(k − 1) +𝛷s

r,I
(k) −𝛷s

r,I
(k − 1)

]
,

(10)Ls
r,4
(t) = �STEC(t) + br(t) + bs(t) + �L4 ,

(11)STEC(t) = m(z)VTEC(�,�, t),

(12)Ls
r,4
(t) = �m(z)VTEC(�,�, t) + br(t) + bs(t) + �L4 ,
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The latitude and longitude of the IPP can be calculated from the single layer model and 
from the known position of the receiver and satellite. These are the input set to the GPR 
modell, and in case of RIMS stations 200–400 separate IPPs with their VTEC values can 
be calculated in each epoch (Fig. 4). The next section will present the details how one can 
create a consistent TEC map from the fore-mentioned snapshot data with Gauss-process 
regression.

(13)VTEC(�,�, t) =
Ls
r,4
(t) − bs(t) − br(t) − �L4

�m(z)

Fig. 3  Single layer ionospheric model, SLM

Fig. 4  VTEC map created by GPR model. Green circles represents the positions of the RIMS stations, and 
the spherical stars are the positions of the ionospheric pierce points. Their colors and heights depict the 
corresponding VTEC values derived from the L4 observations and from the known DCBs values according 
to Eq. (13). The stars represent a snapshot of input value set to the GPR model, and the grid surface is the 
VTEC output of GPR modell
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2.2  Gauss process regression

The central understanding of Gaussian process lays in the multivariate normal distribution. 
A random vector y = (y1,… , yl) has the multivariate normal distirbution if it is derived 
from the following transformation of z = (z1,… , zM) , where each zm ∼ N(0, 1) Blitzstein 
and Hwang (2019):

where A is a K ×M matrix and � ∈ ℝ
K . This represented as y ∼ N(�,�) , where 

� = Cov(y, y) = �AT . The mean vector represented by � , and the covariance matrix is the 
� . Therefore the probabilistic functions of y is

Consider splitting a multivariate normal variable y into (y1, y2) two sub-vectors. Each of 
it has multivariate normal distribution hence we can split the A matrix above accordingly. 
Rewriting the y vector in terms of its sub-vectors gives

The conditional distribution of y2 given y1 is P(y1|y2) = N(�1|2,�1|2) , where

Gaussian process is a collection of random variables, any finite number of which have a 
joint Gaussian distribution. Formally, an f  function is a Gaussian process if any finite set of 
values f (x1), ...f (xN) has a multivariate normal distribution on any S domain, x1, ...xN ∈ S . 
GP is specifed by a mean function m(x) and a covariance function k(x, x′) , which is denoted 
as f ∼ GP(m(x), k(x, x′)) . The mean and covariance of f GP for any x, x′ are m(x) = E

[
f (x)

]
 

and k(x, x′) = Cov(f (x), f (x′)) . The goal is to estimate function values of GP conditioned 
on some training data. Denote the set of inputs as X ∈ ℝ

N×D , and the corresponding func-
tion values as f ∈ ℝ

N , where D is the domain dimension. In the simplest case, the mean 
function is assumed as constant zero, the f  values are noise-free. The k(x, x′) covariance 
function is driven by its � hyperparameters, or kernel parameters. One of the most popular 
kernel function is the squared exponential given by the following formula:

where �2
f
 and l are the hyperparameters, denoted by � above. To estimate the function val-

ues f ∗ for a new set of inputs X∗ similarly to Eq. (16) assume

(14)y = Az + �,

(15)f (y) =
1

(2�)K|�| 1

2

exp
(
−
1

2
(y − �)T�−1(y − �)

)

(16)y =

(
y1
y2

)
∼ N

((
�1

�2

)
,

(
�11 �12

�21 �22

))
.

(17)�1|2 =�2 +�21�
−1
11
(y1 − �1),

(18)�1|2 =�22 −�21�
−1
11
�12.

(19)k(x, x′) = �2 exp

(
−
(x − x′)

2l2
)

)
,

(20)
(
f

f ∗

)
∼ N

((
0

0

)
,

(
KXX KXX∗

KX∗X
KX∗X∗

))
.
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The KXX,KXX∗
,KX∗X

,KX∗X∗
 covariance matrices are constructed from the kernel function. 

The conditional distribution of f ∗ can be calculated from the conditional properties of mul-
tivariate normal.

This derived formula is called the predictive distribution and it models the distribution of 
an unobserved set of inputs. The function values can be estimated by taking the mean, and 
furthermore the covariance structure of the estimated values are generally known. In prac-
tice the function values are not accessed directly but can be observed with some noise.

where �n ∼ N(0, �2) . The observation noise can be incorporated into the kernel function by 
adding �2 to every diagonal term in each covariance matrix. The new kernel takes the form 
of

where I(⋅) represents the indicator function. The predicted distribution of the unobserved 
y∗ values of the X∗ set of input can be derived similarly as Eq. (21).

2.3  TEC map estimation with Gauss process regression

In the previous section the model was considered with a zero mean function, however, in 
many cases a trend function defines the relation between the input and output data. Con-
sider a training sata set {(xi, yi; i = 1, 2,… , n)} , with a following linear connection:

where xi ∈ ℝ
d and yi ∈ ℝ , � ∼ N(0, �2) . The h(x) is a chosen base function and the � coef-

ficients and the � standard deviation are estimated from the training data set. In case of 
ionosphere modelling, the xi ≡ {�i, �i}, yi ≡ VTECi;i = 1, 2,… , n , where n is the num-
ber of observaion used for the TEC map construction, �i, �i are the latitude and longitude 
of the IPP, and the VTECi is the corresponding vertical electron content derived from the 
observations and the single-layer mapping model Dach et al. (2007). The h(x) function can 
be polynomial or spherical harmonics which established their viability in TEC modelling 
(Komjathy et al. 2005; Sun et al. 2020), and one of its variant is used for DCBs estimation 
in Eq. (44). Instead of solving Eq. (25) for � , a location dependent GP will be introduced. 
The � noise parameter is implicitly in the kernel like in Eq. (23). Consider the following 
model, where the definition of x , y are the same as in Eq. (25).

where f (x) is a zero mean GP with covariance function k(x, x�) , f (x) ∼ GP(0, k(x, x�)) . The 
basis functions h(x) transforms the original x vector to a ℝp feature space. The � repre-
sents the coefficients of the basis vector with its p-by-1 dimension. The GPR model for an 
instance of response y is the following:

(21)P(f ∗|X∗,X, f ,�) = N(KX∗X
K−1

XX
f ,KX∗X∗

K−1
XX

KXX∗
)

(22)yn = f (xn) + �n,

(23)k�(x, x′) = k(x, x′) + �2
n
I(x = x′),

(24)P(y∗|X∗,X, y,�) = N(KX∗X
K−1

XX
y,KX∗X∗

K−1
XX

KXX∗
)

(25)y = h(x)T� + �,

(26)y = h(x)T� + f (x),
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The GPR model is nonparametric, hence it introduces an f (xi) latent variable for each xi 
observation. The vector form of the model is

where

The basis matrix H has a dimension of n × p , where n is the number of observations, or 
training data, and p is the dimension of feature space. In case of the missing H matrix, the 
form converts back to the Eq. (22). The simplest choice for basis function is constant, so 
the feature space p would be one dimension, so the H = 1 basis matrix is an n × 1 vector 
of ones. In this paper the constant base matrix was used. Worth to mention the linear and 
quadratic form, where Hlin = [1,X] and Hquad = [1,X,X2] respectively. Extracted form of 
the matrices in details in case of ionosphere modelling are:

The f  latent variable in the Eqs. (29) and (28) has a joint distribution by definition, and it 
follows the form of

where the K(X,X) has the form of

The used k(x, x�) covariance function in this paper is the Matern52 kernel defined as

where r is the Euclidean distance between xi and xj . The � hyperparameters in the above 
mentioned kernel are �f  and �l . The k(xi, xj|�) form highlights the dependency of the 
k(xi, xj) kernel from the � hyperparameters. To create a TEC map, first the � basis function 

(27)P(yi|f (xi), xi) ∼ N(yi|h(xi)T� + f (xi), �
2)

(28)P(y|f ,X) ∼ N(y|H� + f , �2I),

(29)X =

⎛
⎜⎜⎜⎝

xT
1

xT
2

⋮

xT
n

⎞
⎟⎟⎟⎠
, y =

⎛
⎜⎜⎜⎝

y1
y2
⋮

yn

⎞
⎟⎟⎟⎠
,H =

⎛
⎜⎜⎜⎝

h(xT
1
)

h(xT
2
)

⋮

h(xT
n
)

⎞
⎟⎟⎟⎠
, f =

⎛
⎜⎜⎜⎝

f (x1)

f (x2)

⋮

f (xn)

⎞
⎟⎟⎟⎠
.

Hlin =[1,X] =

⎛
⎜⎜⎜⎝

1 �1 �1
1 �2 �2
⋮ ⋮ ⋮

1 �n �n

⎞
⎟⎟⎟⎠
,

Hquad =[1,X,X2] =

⎛
⎜⎜⎜⎝

1 �1 �1 �2
1
�2
1

1 �2 �2 �2
2
�2
2

⋮ ⋮ ⋮ ⋮ ⋮

1 �n �n �2
n
�2
n

⎞
⎟⎟⎟⎠
.

(30)P(f |X) ∼ N(f |0,K(X,X)),

(31)K(X,X) =

⎛⎜⎜⎜⎝

k(x1, x1) k(x1, x2) … k(x1, xn)

k(x2, x1) k(x2, x2) … k(x2, xn)

⋮ ⋮ ⋮ ⋮

k(xn, x1) k(xn, x2) … k(xn, xn)

⎞⎟⎟⎟⎠

(32)k(xi, xj) = �2
f

�
1 +

√
5r

�l
+

√
5r2

3�2
l

�
exp

�
−

√
5r

�l

�
,
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coefficients, the �2 noise variance and the kernel’s � hyperparamaters shall be estimated 
from the given (X, y) training data set. The used approach is the P(y|X) likelihood maxi-
mization as a function of � , � and �2 . The estimation is conducted by maximization of the 
marginal log likelihood function:

The marginal log likelihood function has a form of:

where

First maximize the log likelihood function with respect to � for given � and �2 . The 
�̂(�, 𝜎2) estimation is

Substituting Eq. (36) to Eq. (34) yields a �-profiled log likelihood.

Equation (37) is maximized over � and �2 to find their estimates, then back substitute the 
optimized � and �2 to the Eq. (36) to fix the � coefficients. The last step is to make predic-
tion to the new yg TEC values in the given Xg data set, to create a TEC map. The observa-
tion noise free prediction follows as

where

and yg,Xg,Hg have similar from as in Eq. (29) but with the new Xg = (x
g

1
, x

g

2
,… , x

g
n) con-

sists the grid coordinates and yg vector contains the corresponding VTEC values. The 
expected TEC values of the created TEC map can be derived from Eq. (38) and found as

where

2.4  Differential code bias estimation with Kalman filter

Kalman filter is a common choice for real-time estimation. Consider extending the Eq. 
(12) where the following m(z) mapping function of the used single layer model Dach et al. 
(2007):

(33)�̂, �̂, �̂�2 = arg max
�,�,𝜎2

logP(y|X, �,�, 𝜎2).

(34)logP(y|X, �,�, �2) = −
1

2
(� −H�)TM−1(y −H�) −

n

2
log 2� −

1

2
log|M|,

(35)M = K(X,X|�) + �2I.

(36)�̂(�, 𝜎2) = [HTM−1H]−1 HTM−1y.

(37)logP(y|X,𝜽, �2) = −
1

2
(� −H𝜷)TM−1(y −H𝜷) −

n

2
log 2� −

1

2
log|M|

(38)P(yg|y,X,Xg) = N(yg|HXg
� + �,�),

(39)� = K(Xg,Xg) − K(Xg,X)(K(X,X) + �2I)−1K(X,Xg),

(40)E(yg|y,X,Xg), �,�, �
2) = (HXg

� + K(X,Xg|�)�,

(41)� = (K(X,X|�) + �2I)−1(y −H�).
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with single-layer height H = 506.7 km, Earth radius Re = 6371 km, and �m = 0.9782 . The 
VTEC is estimated with second degree polynomials in � latitude and � longitude. The fol-
lowing equation can be derived from the general form of Eq. (25), with polynomials as h(x) 
base function and � as the adjustable polynomial coefficients.

where

The ajn , n, j ∈ 0,… 5 are the coefficients estimated by the Kalman filter are the same 
declared as � in Eq. (25). The �j

0
,�

j

0
 , j ∈ 0,… 5 are the center of the polynomials. The 

�(�,�) is a weight factor. The inverse distance of the IPP and the center of polynomial is 
a common choice for the weight factor but in this paper the closest polynomial is the only 
contributor.

where dj = ‖‖‖(�,�) − (�
j

0
,�

j

0
)
‖‖‖ is the Euclidean distance of the (�,�) IPP coordinates and 

the origo of the j-th polynomial.
The first four polynomials cover the European region. The number and position of 

them are arbitrary and summarized in Table  1. During the model alignment, it was 
found that even one polynomial is able to follow the main trend of the ionosphere 
which is suffice for DCB estimation, however usage of four polynomials has gained 
better and more consistent results. The number of six, and nine were also tested, but 
due to the non-uniform spatial distribution of IPPs, some polynomials suffered the lack 
of nearby measurement points and struggled to converge, causing biases in DCBs. The 

(42)m(z) =

(
1 −

(
Re

Re + H
sin(�mz)

)2
)−

1

2

,

(43)VTEC(�,�) =

5∑
j=0

�j(�,�)VTECj(�,�|�j
0
,�

j

0
),

(44)

VTECj(�,�|�j
0
,�

j

0
) = a

j

0
+ a

j

1
(�

j

0
− �) + a

j

2
(�

j

0
− �)

+ a
j

3
(�

j

0
− �)2 + a

j

4
(�

j

0
− �)2

+ a
j

5
(�

j

0
− �)(�

j

0
− �)

(45)�j(�,�) =

{
1, if dj ≡ min

n∈0…5
dn

0, otherwise,

Table 1  Center coordinate of 
polynomials

Polynomials Coordinates of centers

Latitude [°] Longitude [°]

0. 60 0
1. 60 30
2. 30 30
3. 30 0
4. – 25.88 27.7
5. 46.07 – 64.47
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4th and 5th polynomial are dedicated to HBK and MON station respectively. They are 
located in North-America and South-Africa, therefore their observations cannot con-
tribute to the TEC calculation of the European region but served well for DCB estima-
tion of the satellites.

The Kalman filter has a prediction step and update step. The estimated x state vector 
contains the ai

n
 polynomial coefficients and the DCBs of satellites and permanent sta-

tions. The equations follow as

where Fk is the transition matrix, which in this model corresponds to a simple identity 
matrix. The yk is the observation vector, which contains the L4 combinations. The Dk 
design matrix transforms the xk unknown parameters from the state space to the observa-
tion space according to Eqs. (12) and (43).

The �k is the process noise vector and ek is the measurement noise vector. Both of 
them are assumed as a white noise with zero expected values and the two vector mutu-
ally independent of each other.

where �k,l is the Kronecker delta. The covariance matrix of the process noise �� consist 
three different sub-blocks, �poly

�
 for the polynomial coefficients, �sv

�
 for satllites’ DCBs and 

�stat
�

 for stations’ DCBs.

where �sv
�

 and �stat
�

 have �2
sv

 and �2
stat

 in diagonal and zeros in off-diagonal. The �poly
�  has a 

form of:

where �polyi
� ∈ i = [0,… , 5] have only diagonal elements but differ in respect of coeffi-

cients. The GNSS observation was considered An elevation dependent wighting scheme 
was applied on the �y observation covariance matrix. The non-diagonal elements were set 
to zero, and the �i

y
 diagonal variances were calculated by the following formula (adapted 

from Wang et al. 2015):

where zi is the zenith angle corresponding to the ith IPP, and the �2 comes from the likeli-
hood maximization presented in Eq. (33).

(46)
xk = Fkxk−1 + �k−1

yk = Dkxk + ek,

(47)

E[�k] = 0; E[�k,�
T
l
] = �k,l��

E[ek] = 0; E[ek, e
T
l
] = �k,l�y

E[�k, e
T
l
] = 0,

(48)�� =

⎛⎜⎜⎝

�poly
�

0 0

0 �sv
�

0

0 0 �stat
�

⎞⎟⎟⎠
,

(49)�poly
�

=

⎛⎜⎜⎝

�poly0
�

0

⋱

0 �poly5
�

⎞⎟⎟⎠
,

(50)�i
y
= �2(1 + sin2(zi)),
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3  Results

3.1  Concept validation with simulation

This section presents the GPR’s capabilities for TEC map generation from the available 
VTEC values at the corresponding coordinates of IPPs. The assessment consists a simula-
tion of the VTEC values in the IPPs for a given epoch from a known reference map. The 
IPPs position have been calculated from the postion of RIMS and GPS satellites with an 
ionospheric layer height 350 km. The used reference map is the product of Royal Observa-
tory of Belgium (ROB) Bergeot et al. (2014) at date of 2020-01-23. The published ROB 
map has a 15 minutes time update and 0.5◦ × 0.5◦ spatial resolution in lattidue and lon-
gitude. The VTEC values come from the ROB product, then a zero mean Gaussion noise 
scaled by the obliquity factor is added to the simulated data. As first step, the Ls

4
 combina-

tion was calculated from the reference ROB map.

where Ls
4
 is the simulated measurement, �s

L4
∼ N(0, �2

s
) is a zero mean Gaussian noise. In 

the second step, the VTEC values are calculated from the Ls
4
 for a given epoch. The 

VTEC(�ipp,�ipp)
s comes from the Eq. (51) as

The DCBs are considered as known values therefore the VTECs distribution comes only 
from Ls

4
 , scaled by the invers of the obliquity factor.

The VTECs values with the corresponding IPP coordinates are collected for a given epoch 
and feeded to the GPR model to estimate a TEC map at matching grid points of the 
ROB map. A day long data set was used, therefore 24 × 4 TEC map were estimated with 
2.5◦ × 2.5◦ spatial resolution, altogether more then 20000 points.

After differentiation with the reference VTEC values, the discrepancies have been 
evaulated. The standard deviation of the added noise varied from 0 to 10 TECu. In noise 
free case, an almost perfect match is expected with the reference map. Besides the GPR, 
two additional methods were used for interpolation to give more perspective to the results. 
The assisting methods are the following: radial base function (RBF) with multiquadratic 
function, and third degree polynomial fit (POLY), adapted from (Yilmaz et al. 2009; Yu 
et al. 2015). The dk

n
 denotates the differenced VTEC value, where k is the time index and n 

is the grid point index, computed as:

where m ∈ [GPR,RBF,POLY] indicates the type of method.
The dk

n
(GPR) , dk

n
(RBF) and the dk

n
(POLY) values were calculated with 

�s = 0, 1, 2, 3, 4, 6, 8, 10 [TECu] added noise. In Fig. 5, the two-dimensional histograms 
show the dk

n
 values in respect of the reference values. Result of the three interpolation 

(51)Ls
4
= �f m(zipp)VTEC(�ipp,�ipp)

R + br + bs + �s
L4
,

(52)VTEC(�ipp,�ipp)
s =

Ls
4
− br − bs

�f m(zipp)

(53)VTEC(�ipp,�ipp)
s ∼ N

(
VTEC(�ipp,�ipp)

R,
�2
s

m(zipp)
2

)

(54)dk
n
(m) = VTECref

n
(tk) − VTECm

n
(tk)
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method with zero and �s = 6[TECu] added noise. The Fig. 5 contains altogether six sub-
plots. The Fig. 5a, b for the GPR, Fig. 5c, d for the RBF and Fig. 5e, f for the POLY 
method in case of zero and 6 TECu simulation noise. The Gaussian process regression 
model demonstrates its capabilaties to effectively estimates TEC map from a snapshot 
measurement dataset. In error free case scenario, the GPR has better characteristics than 

Fig. 5  Histogram of differencies derived from GPR, RBF, POLY methods with added gaussian noise, 
� = [0, 6] TECu
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the RBF or polynomial fit method (Fig. 5.a). In case of large noise the polynomial fit 
shows inferior quality than the other two examined methods (Fig. 5f).

In Fig.  6, the global mean of |dk
n
| showed in respect of the added noise. The error bars 

stand for the global standard deviation of dk
n
 . In both quality indicators, the GPR shows better 

performance in overall domain of the increasing measurement noise Hhowever However the 
performance of the polynomial and the radial base function could be definitely improved with 
better parameter adjustments strategies. This simulation has no goal to state a comprehensive 
qaulity assessment of the three chosen estimation method, only to show GPR’s ability to cre-
ate regional TEC maps from epoch-wise observation data of a sparse monitoring network.

3.2  Real‑time ionosphere map creation from RIMS observations

The performance of the GPR model was investigated in nine days from 2020, grouped by 
three consecutive days. The first three days are Jan 23-25, when the sunspot numbers reached 
the lowest in the current 11 year long cycle McIntosh et al. (2020). The next three days are 
April 19-21. They were chosen because of the observed high ionospheric activity on April 
20. And the last three days are July 19-21. The EGNOS RIMS observation data were used to 
run the Kalman filter aided GPR model. The created TEC maps are compared to the ROB and 
CODE products, and they were regarded as reference. To give perspective of the derived qual-
ity indicators, the same comparison was also performed to the two reference ionospheric map. 
Three type of VTEC differences are derived based Eq. (55).

where mi,mj ∈ [ROB,CODE,GPR] indicates the type of TEC map.
The global mean, the absolute mean and the standard deviation of dk

n
 values are derived 

from Eq. (55) and showed in Fig. 7a, b, c respectively for each day and combination. The 

(55)dk
n
(mi,mj) = VTECmi

n
(tk) − VTEC

mj

n (tk)

Fig. 6  Global mean of absolute differences in respect of simulation noise
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mean absolute values of ROB-CODE combination are close to 0.5 TECu for each day, 
meanwhile the GPR combinations with the references have 1 TECu absolute mean. These 
discrepancies are consistent in the analyzed time intervals. The standard deviation of ROB-
CODE are varies around 0.6-0.7 TECu. The standard deviations of GPR-ROB and GPR-
CODE are less than twice the ROB-CODE and approximately 0.9-1.2 TECu. The global 
means of ROB-CODE are also closer to the expected zero than the GPR counterparts.

Spatial characteristics of mean and standard deviations are depicted in Figs. 8, 9 respec-
tively. There is a visible trend in the mean values. The GPR method tends to overestimate 
the ionospheric delay in the northern region, hence the values are negative. On the other 
hand, the GPR underestimates the TEC values in the Mediterranean region. This skew does 
not appear when the two reference maps are analyzed in Fig. 8c. The mean absolute dis-
crepancies of GPR are less than 2 TECu in all grid points. The gridwise standard devia-
tions are less in the terrestrial regions, and shows correlation with the means both in case 
of ROB-GPR and CODE-GPR.

The two-dimensional histograms help to visualize the distribution of TEC differences 
in respect of the estimated values (Fig. 10). The plotted data are collected from all 9 inves-
tigated day. One can observe again a skewness in the GPR data in the lower TEC region 
(Fig. 10a, b). The outliers are contained in range of ±5 TECu. This distortion is not visible 
when the differencies of reference maps are depicted (Fig. 10c).

Fig. 7  Daily statistics between the ROB-GPR, CODE-GPR and ROB-CODE products depicted by blue, red 
and yellow lines respectively. The upper subfigures refer to data collected from January, the middle subfig-
ures’ data are from April, and the lower subfigures’ data are from July

Fig. 8  Mean of TEC value differences between ROB-GPR, CODE-GPR and ROB-CODE products in the 
assessed grid points of the nine examined day
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To gain better insight, six grid points were chosen to show the daily variation of the 
VTEC values (Fig. 11). The shaded area represents the 2 � standard deviation. There is no 
shading in case of ROB product because of the lack of available variance information. It 
is noticeable that GPR estimates correctly the TEC variation in each case. Mark the bias 
at lower and higher latitude (Fig. 11a, b and e, f). This flaw in the estimation was already 
visible in Fig. 8, and it is present during the whole day, and not the result of a temporally 
localized disturbance. The authors assume that the main source of this systematic error is 
the insufficient DCB estimation of the RIMS receivers.

4  Conclusion

The presented Gaussian process regression approach is a novel and promising method 
for ionospheric model derivation from multi-frequency GNSS measurements. It is capa-
ble to accurately estimate regional Total Electron Content (TEC) maps from snapshot 
measurements of a relatively sparse monitoring station. Accuracy of the GPR-based 
models in this paper is about ±2 TECu, which is comparable to the ±1 TECu accuracy 
of the corresponding models in the literature. In addition to the TEC modelling, the 
hardware delays were also estimated by a Kalman filter continuously and independently 
of the GPR. In further research, this loosely coupled setup could be tightened with 
direct DCBs estimation by the GPR. The hyperparameters of the GPR are calculated 

Fig. 9  Standard deviation of TEC value differences between ROB-GPR, CODE-GPR and ROB-CODE 
products in the assessed grid points of the nine examined day

Fig. 10  Two-dimensional histograms of the differences between ROB-GPR, CODE-GPR and ROB-CODE 
TEC maps in respect of the TEC values of ROB product
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epoch-wise manner without taking into account the previous values, so it opens a win-
dow to tighten the hyperparameter searching space based on the previous values.

Fig. 11  Daily TEC variations at 6 selected location assessed from GPR model and CODE, ROB products 
on 2020 April 20
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