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Abstract
The essentially non-oscillatory (ENO) procedure and its variant, the ENO-SR procedure, are
very efficient algorithms for interpolating (reconstructing) rough functions.We prove that the
ENO (and ENO-SR) procedure are equivalent to deep ReLU neural networks. This demon-
strates the ability of deepReLUneural networks to approximate rough functions to high-order
of accuracy. Numerical tests for the resulting trained neural networks show excellent perfor-
mance for interpolating functions, approximating solutions of nonlinear conservation laws
and at data compression.

Keywords Deep ReLU networks · ENO · Interpolation · Rough functions · Data
compression

Mathematics Subject Classification 65D05 · 65D15 · 65G99

1 Introduction

Rough functions i.e, functions which are at most Lipschitz continuous and could even be
discontinuous, arise in a wide variety of problems in physics and engineering. Prominent
examples include (weak) solutions of nonlinear partial differential equations. For instance,
solutions of nonlinear hyperbolic systems of conservation laws such as the compressible
Euler equations of gas dynamics, contain shock waves and are in general discontinuous
[9]. Similarly, solutions to the incompressible Euler equations would well be only Hölder
continuous in the turbulent regime, [12]. Moreover, solutions of fully non-linear PDEs such
as Hamilton-Jacobi equations are in general Lipschitz continuous, [11]. Images constitute
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another class of rough or rather piecewise smooth functions as they are often assumed to be
no more regular than functions of bounded variation on account of their sharp edges [5].

Given this context, the efficient and robust numerical approximation of rough functions
is of great importance. However, classical approximation theory has severe drawbacks when
it comes to the interpolation (or approximation) of such rough functions. In particular, it
is well known that standard linear interpolation procedures degrade to at best first-order of
accuracy (in terms of the interpolation mesh width) as soon as the derivative of the under-
lying function has a singularity [1] and references therein. This order of accuracy degrades
further if the underlying function is itself discontinuous. Moreover approximating rough
functions with polynomials can lead to spurious oscillations at points of singularity. Hence,
the approximation of rough functions poses a formidable challenge.

Artificial neural networks, formed by concatenating affine transformations with pointwise
application of nonlinearities, have been shown to possess universal approximation properties,
[6, 8, 18] and references therein. This implies that for any continuous (even for merely
measurable) function, there exists a neural network that approximates it accurately. However,
the precise architecture of this network is not specified in these universality results. Recently
in [26], Yarotsky was able to construct deep neural networks with ReLU activation functions
and very explicit estimates on the size and parameters of the network, that can approximate
Lipschitz functions to second-order accuracy. Even more surprisingly, in a very recent paper
[27], the authors were able to construct deep neural networks with alternating ReLU and
Sine activation functions that can approximate Lipschitz (or Hölder continuous) functions to
exponential accuracy.

The afore-mentioned results of Yarotsky clearly illustrate the power of deep neural net-
works in approximating rough functions. However, there is a practical issue in the use of
these deep neural networks as they are mappings from the space coordinate x ∈ D ⊂ R

d to
the output f ∗(x) ∈ R, with the neural network f ∗ approximating the underlying function
f : D → R. Hence, for every given function f , the neural network f ∗ has to be trained
i.e, its weights and biases determined by minimizing a suitable loss function with respect
to some underlying samples of f [14]. Although it makes sense to train neural networks to
approximate individual functions f in high dimensions, for instance in the context of uncer-
tainty quantification of PDEs [20] and references therein, doing so for every low-dimensional
function is unrealistic. Moreover, in a large number of contexts, the goal of approximating a
function is to produce an interpolant f̃ , given the vector { f (xi )} at sampling points xi ∈ D as
input. Training a neural network as regression function for every individual f might become
expensive quickly. Hence, for a fixed set of sampling points, one would like to construct
neural networks that map the full input vector into an output interpolant (or its evaluation at
certain sampling points). If this is possible, one would only need to train a neural network
once and then apply it to every individual function f . However, it is unclear if the function
approximation results for neural networks are informative in this particular context.

On the other hand, data-dependent interpolation procedures have been developed in the
last decades to deal with the interpolation of rough functions. A notable example of these data
dependent algorithms is provided by the essentially non-oscillatory (ENO) procedure. First
developed in the context of reconstruction of non-oscillatory polynomials from cell averages
in [16], ENOwas also adapted for interpolating rough functions in [23] and references therein.
Once augmented with a sub-cell resolution (SR) procedure of [15], it was proved in [1] that
the ENO-SR interpolant also approximated (univariate) Lipschitz functions to second-order
accuracy. Moreover, ENO was shown to satisfy a subtle non-linear stability property, the
so-called sign property [13]. Given these desirable properties, it is not surprising that the
ENO procedure has been very successfully employed in a variety of contexts, ranging from
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the numerical approximation of hyperbolic systems of conservation laws [16] and Hamilton-
Jacobi equations [24] to data compression in image processing, [1, 2, 17] and references
therein.

Given the ability of neural networks as well as ENO algorithms to approximate rough
functions accurately, it is natural to investigate connections between them. This is the central
premise of the current paper, where we aim to reinterpret ENO (and ENO-SR) algorithms in
terms of deep neural networks. We prove the following results,

• We prove that for any order, the ENO interpolation (and the ENO reconstruction) proce-
dure can be cast as a suitable deep ReLU neural network.

• We prove that a variant of the piecewise linear ENO-SR (sub-cell resolution) procedure
of [15] can also be cast as a deep ReLU neural network. Thus, we prove that there exists a
deepReLUneural network that approximates piecewise smooth (say Lipschitz) functions
to second-order accuracy.

• The above theorems provide the requisite architecture for the resulting deep neural net-
works and we train them to obtain what we term as DeLENO (deep learning ENO)
approximation procedures for rough functions. We test this procedure in the context of
numerical methods for conservation laws and for data and image compression.

Thus, our results reinforce the enormous abilities of deep ReLU neural networks to approxi-
mate functions, in particular rough functions and add a different perspective to many existing
results on approximation with ReLU networks.

2 Deep neural networks

In statistics, machine learning, numerical mathematics and many other scientific disciplines,
the goal of a certain task can often be reduced to the following. We consider a (usually
unknown) function L : D ⊂ R

m → R
n and we assume access to a (finite) set of labelled

data S ⊂ {(X ,L(X)) : X ∈ D}, using which we wish to select an approximation L̂ from
a parametrized function class Lθ that predicts the outputs of L on D with a high degree of
accuracy.

One possible function class is that of deep neural networks (DNNs). In particular, we
consider multilayer perceptrons (MLPs) in which the basic computing units (neurons) are
stacked in multiple layers to form a feedforward network. The input is fed into the source
layer and flows through a number of hidden layers to the output layer. An example of an
MLP with two hidden layers is shown in Fig. 1.

In our terminology, an MLP of depth L consists of an input layer, L −1 hidden layers and
an output layer. We denote the vector fed into the input layer by X = Z0. The l-th layer (with
nl neurons) receives an input vector Zl−1 ∈ R

nl−1 and transforms it into the vector Zl ∈ R
nl

by first applying an affine linear transformation, followed by a component-wise (non-linear)
activation function Al ,

Zl = Al(Wl Zl−1 + bl), Wl ∈ R
nl×nl−1 , bl ∈ R

nl , 1 ≤ l ≤ L, (2.1)

with Zl serving as the input for the (l + 1)-th layer. For consistency, we set n0 = m and
nL = n. In (2.1), Wl and bl are respectively known as the weights and biases associated
with the l-th layer. The parameter space � then consists of all possible weights and biases. A
neural network is said to be deep if L ≥ 3 and such a deep neural network (DNN) is denoted
as a ReLU DNN if the activation functions are defined by the very popular rectified linear
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Fig. 1 An MLP with 2 hidden layers. The source layer transmits the signal X to the first hidden layer. The
final output of the network is Ŷ

(ReLU) function,

Al(Z) = (Z)+ = max(0, Z) for 1 ≤ l ≤ L − 1 and AL(Z) = Z . (2.2)

Depending on the nature of the problem, the output of the ANNmay have to pass through
an output function S to convert the signal into a meaningful form. In classification problems,
a suitable choice for such an output function would be the softmax function

S(x) : Rn → R
n : x �→

(
ex1∑n
j=1 e

x j
, . . . ,

exn∑n
j=1 e

x j

)
. (2.3)

This choice ensures that the final output vector Ŷ = S(Z L) satisfies
∑n

j=1 Ŷ j = 1 and

0 ≤ Ŷ j ≤ 1 for all 1 ≤ j ≤ n, which allows Ŷ j to be viewed as the probability that the input
Z0 belongs to the j-th class. Note that the class predicted by the network is argmax j Ŷ j . For
regression problems, no additional output function is needed.

Remark 2.1 It is possible that multiple classes have the largest probability. In this case,
the predicted class can be uniquely defined as min argmax j {Ŷ j }, following the usual coding
conventions. Also note that the softmax function only contributes towards the interpretability
of the network output and has no effect on the predicted class, that is,

min argmax
j

{Ŷ j } = min argmax
j

{ZL
j }.

This observation will be used at a later stage.

The expressive power of ReLU neural networks, in particular their capability of approx-
imating rough functions, has already been demonstrated in literature [22, 27]. In practice
however, there is a major issue in this approach when used to approximate an unknown func-
tion f : D ⊆ R → R based on a finite set S ⊂ {(x, f (x)) : x ∈ D}, as for each individual
function f a new neural network has to be found. This network (or an approximation) is
found by the process of training the network. The computational cost is significantly higher
than that of other classical regressionmethods in low dimensions, whichmakes this approach
rather impractical, at least for functions in low dimensions. This motivates us to investigate
how one can obtain a neural network that takes input in D and produces an output inter-
polant, or rather its evaluation at certain sample points. Such a network primarily depends
only on the training data S and can be reused for each individual function, thereby drastically
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reducing the computational cost. Instead of creating an entirely novel data-dependent inter-
polation procedure, we base ourselves in this paper on the essentially non-oscillatory (ENO)
interpolation framework of [15, 16], which we introduce in the next section.

3 ENO framework for interpolating rough functions

In this section,we explore the essentially non-oscillatory (ENO) interpolation framework [15,
16], on which we will base our theoretical results of later sections. Although the ENO proce-
dure has its origins in the context of the numerical approximation of solutions of hyperbolic
conservation laws, this data-dependent scheme has also proven its use for the interpolation
of rough functions [23].

3.1 ENO interpolation

We first focus on the original ENO procedure, as introduced in [16]. This procedure can
attain any order of accuracy for smooth functions, but reduces to first-order accuracy for
functions that are merely Lipschitz continuous. In particular, the ENO-p interpolant is p-th
order accurate in smooth regions and suppresses the appearance of spurious oscillations in
the vicinity of points of discontinuity. In the following, we describe the main idea behind
this algorithm.

Let f be a function on� = [c, d] ⊂ R that is at least p times continuously differentiable.
We define a sequence of nested uniform grids {T k}Kk=0 on �, where

T k = {xki }Nk
i=0, I ki = [xki−1, x

k
i ], xki = c + ihk, hk = (d − c)

Nk
, Nk = 2k N0, (3.1)

for 0 ≤ i ≤ Nk , 0 ≤ k ≤ K and some positive integer N0. Furthermore we define f k =
{ f (x) : x ∈ T k}, f ki = f (xki ) and we let f k−p+2, . . . , f k−1 and f kNk+1, . . . f

k
Nk+p−2 be

suitably prescribed ghost values. We are interested in finding an interpolation operator Ihk

such that

Ihk f (x) = f (x) for x ∈ T k and
∥∥∥Ihk f − f

∥∥∥∞ = O(h p
k ) for k → ∞.

In standard approximation theory, this is achieved by defining Ihk f on I ki as the unique
polynomial pki of degree p − 1 that agrees with f on a chosen set of p points, including
xki−1 and xki . The linear interpolant (p = 2) can be uniquely obtained using the stencil
{xki−1, x

k
i }. However, there are several candidate stencils to choose from when p > 2. The

ENO interpolation procedure considers the stencil sets

Sr
i = {xki−1−r+ j }p−1

j=0 , 0 ≤ r ≤ p − 2,

where r is called the (left) stencil shift. The smoothest stencil is then selected based on the
local smoothness of f using Newton’s undivided differences. These are inductively defined
in the following way. Let �0

j = f ki+ j for −p+ 1 ≤ j ≤ p− 2 and 0 ≤ i ≤ Nk . We can then
define

�s
j =

{
�s−1

j − �s−1
j−1 for s odd

�s−1
j+1 − �s−1

j for s even.
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Algorithm 1 describes how the stencil shift r can be obtained using these undivided differ-
ences. Note that r uniquely defines the polynomial pki . We can then write the final interpolant
as

Ihk f (x) =
Nk∑
i=1

pki (x)1[xki−1,x
k
i )(x).

This interpolant can be proven to be total-variation bounded (TVB), which guarantees the
disappearance of spurious oscillations (e.g. near discontinuities) when the grid is refined.
This property motivates the use of the ENO framework over standard techniques for the
interpolation of rough functions.

In many applications, one is only interested in predicting the values of f k+1 given f k . In
this case, there is no need to calculate Ihk f and evaluate it on T k+1. Instead, one can use
Lagrangian interpolation theory to see that there exist fixed coefficients C p

r, j
such that

Ihk f (xk+1
2i−1) =

p−1∑
j=0

C p
rki , j

f k
i−rki + j

for 1 ≤ i ≤ Nk and

Ihk f (xk+1
2i ) = f k+1

2i = f ki for 0 ≤ i ≤ Nk, (3.2)

where rki is the stencil shift corresponding to the smoothest stencil for interval I ki . The
coefficients C p

r , j are listed in Table 5 in Appendix B.

Remark 3.1 ENO was initially introduced by [16] for high-order accurate piecewise poly-
nomial reconstruction, given cell averages of a function. This allows the development of
high-order accurate numerical methods for hyperbolic conservation laws, the so-called ENO
schemes. ENO reconstruction can be loosely interpreted as ENO interpolation applied to the
primitive function and is discussed in Appendix A.

Remark 3.2 The prediction of f k+1 from f k can be framed in the context of multi-resolution
representations of functions, which are useful for data compression [17]. As we will use
ENO interpolation for data compression in Sect. 6, we refer to Appendix C for details on
multi-resolution representations.

Algorithm 1: ENO interpolation stencil selection

Input: ENO order p, input array �0 = { f ki+ j }p−2
j=−p+1, for any 0 ≤ i ≤ Nk .

Output: Stencil shift r .
Evaluate Newton undivided differences:
for j = 1 to p − 1 do

�j = �j−1[2 : end] − �j−1[1 : end − 1]
Find shift:
r = 0
for j = 2 to p − 1 do

if |�j[p − 2 − r ]| < |� j [p − 1 − r ]| then
r = r + 1

return r
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Fig. 2 Visualization of the second-order ENO-SR algorithm in the case where an interval is labelled as good
(left) and bad (right). The superscript k was omitted for clarity

3.2 An adapted second-order ENO-SR algorithm

Even though ENO is able to interpolate rough functions without undesirable side effects (e.g.
oscillations near discontinuities), there is still room for improvement. By itself, the ENO
interpolation procedure degrades to first-order accuracy for piecewise smooth functions i.e,
functions with a singularity in the second derivative. However, following [15], one can use
sub-cell resolution (SR), together with ENO interpolation, to obtain a second-order accurate
approximation of such functions. We propose a simplified variant of the ENO-SR procedure
from [1] and prove that it is still second-order accurate. In the following, we assume f to
be a continuous function that is two times differentiable except at a single point z where the
first derivative has a jump of size [ f ′] = f ′(z+) − f ′(z−). We use the notation introduced
in Sect. 3.1.

The first step of the adapted second-order ENO-SR algorithm is to label intervals that
might contain the singular point z as bad (B), other intervals get the label good (G). We use
second-order differences

�2
h f (x) := f (x − h) − 2 f (x) + f (x + h) (3.3)

as smoothness indicators. The rules of the ENO-SR detection mechanism are the following:

(1) The intervals I ki−1 and I ki are labelled B if

|�2
hk f (x

k
i−1)| > max

n=1,2,3
|�2

hk f (x
k
i−1±n)|.

(2) Interval I ki is labelled B if

|�2
hk f (x

k
i )| > max

n=1,2
|�2

hk f (x
k
i+n)| and |�2

hk f (x
k
i−1)| > max

n=1,2
|�2

hk f (x
k
i−1−n)|.

(3) All other intervals are labelled G.

Note that neither detection rule implies the other and that an interval can be labelled B by
both rules at the same time. In the following, we will denote by pki : [c, d] → R the linear
interpolation of the endpoints of I ki . The rules of the interpolation procedure are stated below,
a visualization of the algorithm can be found in Fig. 2.

(1) If I ki was labelled as G, then we take the linear interpolation on this interval as approxi-
mation for f ,

Ihk
i f (x) = pki (x).

(2) If I ki was labelled as B, we use pki−2 and pki+2 to predict the location of the singularity.
If both lines intersect at a single point y, then we define

Ihk
i f (x) = pki−2(x)1[c,max{y,c})(x) + pki+2(x)1[min{y,d},d](x).
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The relation between this intersection point y and the singularity z is quantified by
Lemma D.3. If the two lines do not intersect, we treat I ki as a good interval and let

Ihk
i f (x) = pki (x).

The theorem below states that our adaptation of ENO-SR is indeed second-order accurate.

Theorem 3.3 Let f be a globally continuous function with a bounded second derivative on
R\{z} and a discontinuity in the first derivative at a point z. The adapted ENO-SR interpolant
Ih f satisfies ∥∥∥ f − Ih f

∥∥∥∞ ≤ Ch2 sup
R\{z}

| f ′′|

for all h > 0, with C > 0 independent of f .

Proof The proof is an adaptation of the proof of Theorem 1 in [1] and can be found in
Appendix D. �

4 ENO as a ReLU DNN

As mentioned in the introduction, we aim to recast the ENO interpolation algorithm from
Sect. 3.1 as a ReLU DNN. Our first approach to this end begins by noticing that the crucial
step of the ENO procedure is determining the correct stencil shift. Given the stencil shift, the
retrieval of the ENO interpolant is straightforward. ENO-p can therefore be interpreted as a
classification problem, with the goal of mapping an input vector (the evaluation of a certain
function on a number of points) to one of the p−1 classes (the stencil shifts).We now present
one of the main results of this paper. The following theorem states that the stencil selection
of p-th order ENO interpolation can be exactly obtained by a ReLU DNN for every order p.
The stencil shift can be obtained from the network output by using the default output function
for classification problems (cf. Remark 2.1).

Theorem 4.1 There exists a ReLU neural network consisting of p +
⌈
log2

( p−2
� p−2

2 �
)⌉

hidden

layers, that takes input �0 = { f ki+ j }p−2
j=−p+1 and leads to exactly the same stencil shift as the

one obtained by Algorithm 1.

Proof Wefirst sketch an intuitive argument why there exists a ReLUDNN that, after applying
min argmax, leads to the ENO-p stencil shift, using notation from Sect. 3.1. For a function
f : [c, d] → R, Algorithm 1 maps every input stencil �0 ∈ [c, d]2p−2 to a certain stencil
shift r . A more careful look at the algorithm reveals that the input space [c, d]2p−2 can be
partitioned into polytopes such that the interior of every polytope ismapped to one of the p−1
possible stencil shifts. Given that every ReLUDNN is a continuous, piecewise affine function
(e.g. [4]), one can construct for every i ∈ {0, . . . , p− 2} a ReLU DNN φi : [c, d]2p−2 → R

that is equal to 0 on the interior of every polytope corresponding to stencil shift i and that is
strictly smaller than 0 on the interior of every polytope not corresponding to stencil shift i .
It is then clear that

min argmax{φ0, . . . , φp−2} − 1 (4.1)

corresponds to the ENO stencil shift on the interiors of all polytopes. Thanks to the minimum
in (4.1), it also corresponds to the unique stencil shift from Algorithm 3.2 on the faces of the
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polytopes, where multiple φi are equal to zero. The claim then follows from the fact that the
mapping �0 �→ (φ0(�

0), . . . , φp−2(�
0)) can be written as a ReLU DNN.

In what follows, we present a more constructive proof that sheds light on the architecture
that is needed to represent ENO and the sparsity of the corresponding weights. In addition,
a technique to replace the Heaviside function (as in Algorithm 1) is used. Recall that we
look for the ENO stencil shift r := rki corresponding to the interval I ki . Let k ∈ N and
define �0

j = f ki+ j for −p + 1 ≤ j ≤ p − 2 and 0 ≤ i ≤ Nk , where f k−p+1, . . . , f k−1 and

f kNk+1, . . . , f kNk+p−2 are suitably defined ghost values. Note that �0
j depends on i , but this

dependence is omitted in the notation. Following Sect. 3.1, we define �s
j = �s−1

j − �s−1
j−1

for s odd and �s
j = �s−1

j+1 − �s−1
j for s even, and with �s we denote the vector consisting

of all �s
j for all applicable j . In what follows, we use Y l and Zl to denote the values of the

l-th layer of the neural network before and after activation, respectively. We use the notation
Xl for an auxiliary vector needed to calculate Y l .

Step 1. Take the input to the network to be

Z0 = [�0−p+1, . . . , �
0
p−2] ∈ R

2(p−1).

These are all the candidate function values considered in Algorithm 1.
Step 2. We want to obtain all quantities �s

j that are compared in Algorithm 1, as shown
in Fig. 3. We therefore choose the first layer (before activation) to be

Y 1 =
[
Y�

−Y�

]
∈ R

2M where Y� =
⎡
⎢⎣

�2
0

�2−1
...

⎤
⎥⎦ ∈ R

M

is the vector of all the terms compared in Algorithm 1 and M = p(p−1)
2 − 1. Note that every

undivided difference is a linear combination of the network input. Therefore one can obtain
Y 1 from Z0 by taking a null bias vector and weight matrixW 1 ∈ R

2M×(2p−2). After applying
the ReLU activation function, we obtain

Z1 =
[

(Y�)+
(−Y�)+

]
.

Step 3. We next construct a vector X2 ∈ R
L , where L = (p−2)(p−1)

2 , that contains all the
quantities of the if-statement in Algorithm 1. This is ensured by setting,

X2 =

⎡
⎢⎢⎢⎣

|�2−1| − |�2
0|

|�3
0| − |�3

1||�3−1| − |�3
0|

...

⎤
⎥⎥⎥⎦ .

Keeping inmind that |a| = (a)++(−a)+ fora ∈ Rwesee that there is amatrix W̃ 2 ∈ R
L×2M

such that X2 = W̃ 2Z1. We wish to quantify for each component of X2 whether it is strictly
negative or not (cf. the if-statement of Algorithm 1). For this reason, we define the functions
H1 : R → R and H2 : R → R by

H1(x) =

⎧⎪⎨
⎪⎩
0 x ≤ −1

x + 1 −1 < x < 0

1 x ≥ 0

and H2(x) =

⎧⎪⎨
⎪⎩

−1 x ≤ 0

x − 1 0 < x < 1

0 x ≥ 1

.
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Fig. 3 Only undivided
differences in the shaded region
are compared in Algorithm 1

The key property of these functions is that H1 and H2 agree with the Heaviside function on
x > 0 and x < 0, respectively. When x = 0 the output is respectively +1 or −1. Now note
that H1(x) = (x + 1)+ − (x)+ and H2(x) = (x)+ − (x − 1)+ − 1. This motivates us to
define

Y 2 =
⎡
⎣X2 + 1

X2

X2 − 1

⎤
⎦ ∈ R

3L ,

which can be obtained from Z1 by taking weight matrix W 2 ∈ R
3L×2M and bias vector

b2 ∈ R
3L ,

W 2 =
⎛
⎝
⎡
⎣11
1

⎤
⎦⊗ IL

⎞
⎠ · W̃ 2 and b2j =

⎧⎪⎨
⎪⎩
1 1 ≤ j ≤ L

0 L + 1 ≤ j ≤ 2L

−1 2L + 1 ≤ j ≤ 3L

where IL denotes the L× L unit matrix. After activation we obtain Z2 = (Y 2)+ = (W 2Z1+
b2)+.

Step 4. We first define X3 ∈ R
2L by

X3
j =

{
H1(X2

j ) = Z2
j − Z2

L+ j 1 ≤ j ≤ L

H2(X2
j−L) = Z2

j − Z2
L+ j − 1 L + 1 ≤ j ≤ 2L.

This is clearly for every j an affine transformation of the entries of Z2. For this reason there
exist a matrix W̃ 3 ∈ R

2L×3L and a bias vector b̃3 ∈ R
2L such that X3 = W̃ 3Z2 + b̃3.

In order to visualize the next steps, we arrange the elements of X3 in a triangular
directed acyclic graph, shown in Fig. 4, where every node N j corresponds to the tuple
(X3

j , X
3
j+L ) = (H1(X2

j ), H2(X2
j )).We note that this tuple is either of the form (+1, H2(X2

j ))

or (H1(X2
j ),−1). Algorithm 1 is equivalent to finding a path from the top node to one of

the bins on the bottom. Starting from N1, we move to the closest element to the right in the
row below (i.e. N2) if N1 is of the form (+1, H2(X2

j )). If N1 is of the form (H1(X2
j ),−1),

we move to the closest element to the left in the row below (i.e. N3). If N1 is of the form
(+1,−1), then it is not important in which direction we move. Both paths lead to a suitable
ENO stencil shift. Repeating the same procedure at each row, one ends up in one of the p−1
bins at the bottom representing the stencil shift r .

There are 2p−2 paths from the top to one of the bins at the bottom. In order to represent
the path using a (p − 2)-tuple of entries of X3, one needs to choose between H1(X2

j ) and
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H2(X2
j ) at every node of the path, leading to 2

p−2 variants of each path. At least one of these
variants only takes the values +1 and −1 on the nodes and is identical to the path described
above; this is the variant we wish to select. Counting all variants, the total number of paths
is 22p−4.

Consider a pathP = (X3
j1
, . . . , X3

jp−2
) that leads to bin r . We define for this path a weight

vector W ∈ {−1, 0, 1}2L whose elements are set as

Wj =

⎧⎪⎨
⎪⎩

+1 if X3
j = +1and j = jsfor some1 ≤ s ≤ p − 2

−1 if X3
j = −1and j = jsfor some1 ≤ s ≤ p − 2

0 otherwise.

For this particular weight vector and for any possible X3 ∈ R
2L we have W · X3 ≤ p − 2,

with equality achieved if and only if the entries of X3 appearing in P are assigned the
precise values used to construct W . One can construct such a weight vector for each of the
22p−4 paths. We next construct the weight matrix Ŵ 3 ∈ R

22p−4×2L in such a way that the
first 2p−2 · (p−2

0

)
rows correspond to the weight vectors for paths reaching r = 0, the next

2p−2 · (p−2
1

)
for paths reaching r = 1 et cetera. We also construct the bias vector b̂3 ∈ R

22p−4

by setting each element to p− 2 and we define X̂3 = Ŵ 3X3 + b̂3 = Ŵ 3(W̃ 3Z2 + b̃3) + b̂3.
By construction, X̂3

j = 2p − 4 if and only if path j corresponds to a suitable ENO stencil

shift, otherwise 0 ≤ X̂3
j < 2p − 4.

Step 5. Finally we define the final output vector by taking the maximum of all components
of X̂3 that correspond to the same bin,

Ŷ j = max

⎧⎨
⎩X̂3

⎛
⎝1 + 2p−2 ·

j−2∑
k=0

(
p − 2

k

)⎞⎠ , . . . , X̂3

⎛
⎝2p−2 ·

j−1∑
k=0

(
p − 2

k

)⎞⎠
⎫⎬
⎭ ,

for j = 1, . . . , p − 1 and where X̂3( j) := X̂3
j . Note that Ŷ j is the maximum of 2p−2 · (p−2

j−1

)
real positive numbers. Using the observation that max{a, b} = (a)+ + (b−a)+ for a, b ≥ 0,

one finds that the calculation of Ŷ requires p − 2+
⌈
log2

( p−2
� p−2

2 �
)⌉

additional hidden layers.

By construction, it is true that Ŷ j = 2p − 4 if and only if the ( j − 1)-th bin is reached.
Furthermore, Ŷ j < 2p − 4 if the ( j − 1)-th bin is not reached. The set of all suitable stencil
shifts R and the unique stencil shift r from Algorithm 1 are then respectively given by

R = argmax j Ŷ j − 1 and r = min R = min argmax j Ŷ j − 1, (4.2)

Fig. 4 Arrangement of
N1, . . . , NL into directed acyclic
graph
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where for classification problems, min argmax is the default output function to obtain the
class from the network output (see Remark 2.1). �
Remark 4.2 The neural network constructed in the above theorem is local in the sense that
for each cell, it provides a stencil shift. These local neural networks can be concatenated to
form a single neural network that takes as its input, the vector f k of sampled values and
returns the vector of interpolated values that approximates f k+1. The global neural network
combines the output stencil shift of each local neural network with a simple linear mapping
(3.2).

Although the previous theorem provides a network architecture for every order p, the
obtained networks are excessively large for small p. We therefore present alternative con-
structions for ENO interpolation of orders p = 3, 4.

Algorithm 1 for p = 3 can be exactly represented by the following ReLU network with
a single hidden layer, whose input is given by X = (�0−2,�

0−1,�
0
0,�

0
1)

�. The first hidden
layer is identical to the one described in the original proof of Theorem 4.1 for p = 4, with a
null bias vector and W 1 ∈ R

4×4,

W 1 =

⎛
⎜⎜⎝

0 1 −2 1
1 −2 1 0
0 −1 2 −1

−1 2 −1 0

⎞
⎟⎟⎠ , b1 =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ . (4.3)

The weights and biases of the output layer are

W 2 =
(−1 1 −1 1

1 −1 1 −1

)
, b2 =

(
0
0

)
. (4.4)

The resulting network output is

Ŷ =
(|�2−1| − |�2

0|
|�2

0| − |�2−1|
)

,

from which the ENO stencil shift can then be determined using (4.2).
For p = 4, Algorithm 1 can be represented by following ReLU network with 3 hidden

layers, whose input is given by X = (�0−3,�
0−2,�

0−1,�
0
0,�

0
1,�

0
2)

�. The first hidden layer
is identical to the one described in the original proof of Theorem 4.1 for p = 4, with a null
bias vector and W 1 ∈ R

10×6,

W 1 =
(

W̃ 1

−W̃ 1

)
∈ R

10×6 where W̃ 1 =

⎛
⎜⎜⎜⎜⎝

0 0 1 −2 1 0
0 1 −2 1 0 0
0 0 −1 3 −3 1
0 −1 3 −3 1 0

−1 3 −3 1 0 0

⎞
⎟⎟⎟⎟⎠ . (4.5)

The second hidden layer has a null bias vector and the weight matrix

W 2 =
(

W̃ 2

−W̃ 2

)
∈ R

6×10 where W̃ 2 = (1 1
)⊗

⎛
⎝−1 1 0 0 0

0 0 −1 1 0
0 0 0 −1 1

⎞
⎠ . (4.6)

Note that W̃ 2 ∈ R
3×10 is as in the original proof of Theorem 4.1 for p = 4. The third hidden

layer and the output layer both have a null bias vector and their weights are respectively given
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by,

W 3 =

⎛
⎜⎜⎝

1 1 1 0 0 1
1 0 1 0 1 1

−1 1 0 1 0 −1
0 1 0 1 1 1

⎞
⎟⎟⎠ and W 4 =

⎛
⎝1 0 0 0
0 1 1 0
0 0 0 1

⎞
⎠ . (4.7)

After an elementary, yet tedious case study, one can show that the shift can again bedetermined
using (4.2).

Remark 4.3 Similarly, one can show that the stencil selection algorithm for ENO reconstruc-
tion (Algorithm 2 in Appendix A) for p = 2 can be exactly represented by a ReLU DNN
with one hidden layer of width 4. The input and output dimension are 3 and 2, respectively.
For p = 3, Algorithm 2 can be shown to correspond to a ReLU DNN with three hidden
layers of dimensions (10, 6, 4). Input and output dimension are 5 and 4, respectively.

Remark 4.4 After having successfully recast the ENO stencil selection as a ReLU neural
network, it is natural to investigate whether there exists a pure ReLU neural network (i.e.
without additional output function) input f k and output (Ihk f )k+1, as in the setting of (3.2)
in Sect. 3.1. Since ENO is a discontinuous procedure and a pure ReLU neural network is
a continuous function, a network with such an output does not exist. It remains however
interesting to investigate to which extent we can approximate ENO using ReLU neural
networks. This is the topic of Section 4.4 of the thesis [10], where it is shown that there
exists a pure ReLU DNN that mimics ENO to some extent such that some of the desirable
properties of ENO are preserved.

5 ENO-SR as a ReLU DNN

The goal of this section is to recast the second-order ENO-SR procedure from Sect. 3.2
as a ReLU DNN, similar to what we did for ENO in Sect. 4. Just like ENO, the crucial
step of ENO-SR is the stencil selection, allowing us to interpret ENO-SR as a classification
problem. In this context, we prove the equivalent of Theorem 4.1 for ENO-SR-2. Afterwards,
we interpret ENO-SR as a regression problem (cfr. Remark 4.4) and investigate whether we
can cast ENO-SR-2 as a pure ReLU DNN, i.e. without additional output function. In the
following, we assume f to be a continuous function that is two times differentiable except
at a single point z where the first derivative has a jump of size [ f ′] = f ′(z+) − f ′(z−).

5.1 ENO-SR-2 stencil selection as ReLU DNN

Wewill now prove that a second-order accurate prediction of f k+1 can be obtained given f k

using a ReLUDNN, where we use notation as in Sect. 3.1. Equation (3.2) shows that we only
need to calculate Ihk

i f (xk+1
2i−1) for every 1 ≤ i ≤ Nk . The proof we present can be directly

generalized to interpolation at points other than the midpoints of the cells, e.g. retrieving cell
boundary values for reconstruction purposes. From the ENO-SR interpolation procedure it
is clear that for every i there exists rki ∈ {−2, 0, 2} such that Ihk

i f (xk+1
2i−1) = pk

i+rki
(xk+1

2i−1).

Analogously to what was described in Sect. 4, this gives rise to a classification problem.
Instead of considering the stencil shifts as the output classes of the network, one can also
treat the different cases that are implicitly described in the ENO-SR interpolation procedure
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in Sect. 3.2 as classes. This enables us to construct a ReLU neural network such that the
stencil shift rki can be obtained from the network output by using the default output function
for classification problems (cf. Sect. 3.1 and Remark 2.1).

Theorem 5.1 There exists a ReLU neural network with input f k that leads to output
(rk1 , . . . , rkNk

) as defined above.

Proof Instead of explicitly constructing a ReLU DNN, we will prove that we can write the
output vector as a composition of functions that can bewritten as pureReLUDNNswith linear
output functions. Such functions include the rectifier function, absolute value, maximum and
the identity function. The network architecture of a possible realisation of the network of
this proof can be found after the proof. Furthermore we will assume that the discontinuity
is not located in the first four or last four intervals. This can be achieved by taking k large
enough, or by introducing suitably prescribed ghost values. We also assume without loss of
generality that xki = i for 0 ≤ i ≤ Nk .

The input of the DNN will be the vector X0 ∈ R
Nk+1 with X0

i+1 = f (xki ) for all
0 ≤ i ≤ Nk . Using a simple affine transformation, we can obtain X1 ∈ R

Nk−1 such that
X1
i = �2

hk
f (xki ) for all 1 ≤ i ≤ Nk − 1. We now define the following quantities,

Mi = max
n=1,2,3

|�2
hk

f (xki±n)| = max
n=1,2,3

|X1
i±n |, N±

i = max
n=1,2

|�2
hk

f (xki±n)| = max
n=1,2

|X1
i±n |, (5.1)

where 4 ≤ i ≤ Nk − 4. Next, we construct a vector X2 ∈ R
Nk such that every entry

corresponds to an interval. For 1 ≤ i ≤ Nk , we want X2
i > 0 if and only if the interval I ki is

labelled as B by the adapted ENO-SR detection mechanism. We can achieve this by defining

X2
i = (min{|X1

i | − N+
i , |X1

i−1| − N−
i−1})+ + (|X1

i | − Mi )+ + (|X1
i−1| − Mi−1)+ (5.2)

for 5 ≤ i ≤ Nk − 4. Furthermore we set X2
1 = X2

2 = X2
3 = X2

4 = X2
Nk−3 = X2

Nk−2 =
X2
Nk−1 = X2

Nk
= 0. Note that the first term of the sumwill be strictly positive if I ki is labelled

bad by the second rule of the detection mechanism and one of the other terms will be strictly
positive if I ki is labelled bad by the first rule. Good intervals I ki have X2

i = 0.
Now define ni,l = l+4(i −1) for 1 ≤ i ≤ Nk and 1 ≤ l ≤ 4. Using this notation, i refers

to the interval I ki . We denote by pki : [c, d] → R : x �→ ai x + bi the linear interpolation of
the endpoints of I ki , where we write ai and bi instead of aki and bki to simplify notation.
Define X3 ∈ R

4Nk in the following manner:

X3
ni,1 = X2

i , X3
ni,3 =

(
|bi−2 − bi+2| − xk+1

2i−1|ai−2 − ai+2|
)

+ ,

X3
ni,2 = |ai−2 − ai+2|, X3

ni,4 =
(
−|bi−2 − bi+2| + xk+1

2i−1|ai−2 − ai+2|
)

+ ,
(5.3)

for 5 ≤ i ≤ Nk − 4. We set X3
ni,l = 0 for 1 ≤ l ≤ 4 and 1 ≤ i ≤ 4 or Nk − 3 ≤ i ≤ Nk . We

can now define the output Ŷ ∈ R
Nk of the ReLU neural network by

Ŷi = min argmin1≤l≤4X
3
ni,l . (5.4)

where we used the notation Ŷi for the predicted class instead of the network output to simplify
notation. It remains to prove that rki can be obtained from Ŷi . Note that Ŷi = 1 if and only if

I ki was labelled G. Therefore Ŷi = 1 corresponds to rki = 0. If Ŷi = 2, then I ki was labelled
B and the interpolants pki−2 and pki+2 do not intersect, leading to rki = 0 according to the

interpolation procedure. Next, Ŷi = 3, 4 corresponds to the case where I ki was labelled B and
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the interpolants pki−2 and pki+2 do intersect. This intersection point is seen to be y = bi+2−bi−2
ai−2−ai+2

.

If Ŷi = 3, then xk+1
2i−1 is right of y and therefore r

k
i = 2. Analogously, Ŷi = 4 corresponds to

rki = −2, which concludes the proof. �
Now that we have established that our adaptation of the second-order ENO-SR algorithm

can be written as a ReLU DNN augmented with a discontinuous output function, we can
present a possible architecture of a DNN that calculates the output Ŷi from f k . The network
we present has five hidden layers, of which the widths vary from 6 to 20, and an output layer
of 4 neurons. The network is visualized in Fig. 5.

We now give some more explanation about how each layer in Fig. 5 can be calculated
from the previous layer, where we use the same notation as in the proof of Theorem 4.1. In
addition, we define and note that

γi−2,i+2(z) = |bi−2 − bi+2| − z|ai−2 − ai+2|, (5.5a)

max{x, y} = x + (y − x)+. (5.5b)

A.B. It is easy to see that all quantities of the first layer are linear combinations of the input
neurons. C.Application of |x | = (x)+ + (−x)+ and definition (5.5a) on ±(bi−2 −bi+2) and
±(ai−2−ai+2).D. Straightforward application of the identity |x | = (x)+ + (−x)+ on±�q ,
followed by taking linear combinations. E.G.I. Passing by values. F. The first six quantities
were passed by from the previous layer. The other ones are applications of Eq. (5.5b), where
the order of the arguments of the maximums is carefully chosen. H. Equation (5.5b) was
used, where we use that min{x, y} = −max{−x,−y}. J. Application of Eq. (5.1). K. The
result follows from combining definitions (5.2) and (5.3). L. As can be seen in definition
(5.4), Ŷi is obtained by applying the output function min argmin on the output layer.

Remark 5.2 The second-order ENO-SR method as proposed in [1] can also be written as a
ReLUDNN, but it leads to a neural network that is considerably larger than the one presented
above.

5.2 ENO-SR-2 regression as ReLU DNN

After having successfully recast the ENO-SR stencil selection as a ReLU neural network, it is
natural to investigate whether there exists a ReLU neural network with output (Ihk f )k+1, as
in the setting of (3.2) in Sect. 3.1. Since ENO-SR interpolation is a discontinuous procedure
and a ReLU neural network is a continuous function, a network with such an output does not
exist. It is however interesting to investigate to which extent we can approximate ENO-SR
using ReLU neural networks. In what follows, we design an approximate ENO-SR method,
based on the adapted ENO-SR-2 method of Sect. 3.2, and investigate its accuracy.

We first introduce for ε ≥ 0 the function Hε : R → R, defined by

Hε(x) =

⎧⎪⎨
⎪⎩
0 x ≤ 0

x/ε 0 < x ≤ ε

1 x > ε.

(5.6)

Note that H0 is nothingmore than theHeaviside function. Using this function and the notation
of the proof of Theorem 5.1, we can write down a single formula for Ihk

i f (xk+1
2i−1),

Ihk
i f (xk+1

2i−1) = (1 − α)pki (x
k+1
2i−1) + α

(
(1 − β)pki+2(x

k+1
2i−1) + β pki−2(x

k+1
2i−1)

)
,

where α = H0(min{X3
ni,1 , X

3
ni,2}), β = H0(X

3
ni,3),

(5.7)
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Fig. 5 Flowchart of a ReLU DNN to calculate Ŷi from f k
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Fig. 6 Plot of x�y and x · y for
fixed x ∈ [0, 1] and λ > 0

for 1 ≤ i ≤ Nk . Observe that this formula cannot be calculated using a pure ReLU DNN.
Nevertheless, we will base ourselves on this formula to introduce an approximate ENO-SR
algorithm that can be exactly written as a ReLU DNN.

The first step is to replace H0 by Hε with ε > 0, since

Hε(x) = 1

ε
(x)+ − 1

ε
(x − ε)+, (5.8)

which clearly can be calculated using a ReLU neural network. The now remaining issue is
that the multiplication of two numbers cannot be exactly represented using a ReLU neural
network. Moreover, as we aim for a network architecture that is independent of the accuracy
of the final network that approximates ENO-SR-2, we cannot use the approximate multipli-
cation networks in the sense of [26]. We therefore introduce an operation that resembles the
multiplication of bounded numbers in another way. For λ > 0, we denote by � the operation
on [0, 1] × [−λ, λ] defined by

x�y := (y + λx − λ)+ − (−y + λx − λ)+. (5.9)

Like Hε , this operation can be cast as a simple ReLU DNN. We compare x�y with x · y for
fixed x ∈ [0, 1] and λ > 0 in Fig. 6. Next, we list some properties of � that are of great
importance for the construction of our approximation.

Lemma 5.3 For λ > 0, the operation � satisfies the following properties:

(1) For all x ∈ {0, 1} and y ∈ [−λ, λ] it holds true that x�y = xy.
(2) For all x ∈ [0, 1] and y ∈ [0, λ] we have 0 ≤ x�y ≤ xy.
(3) For all x ∈ [0, 1] and y ∈ [−λ, 0] we have xy ≤ x�y ≤ 0.
(4) There exist x ∈ [0, 1] and y1, y2 ∈ [−λ, λ] such that

min{y1, y2} ≤ (1 − x)�y1 + x�y2 ≤ max{y1, y2}
does not hold.

(5) For all x ∈ [0, 1] and y1, y2 ∈ [−λ, λ] it holds true that
min{y1, y2} ≤ y1 + x�(y2 − y1) ≤ max{y1, y2}.
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Proof Properties 1,2 and 3 follow immediately from the definition and can also be verified on
Fig. 6. For property 4, note that (1/2)�(λ/2)+ (1/2)�(λ/2) = 0. Property 5 is an application
of properties 2 and 3. �

For the moment, we assume that there exists λ > 0 such that all quantities that we will
need to multiply, lie in the interval [−λ, λ]. This assumption will be verified in the proof of
Theorem5.5. In view of the third property in Lemma5.3, directly replacing allmultiplications
in (5.7) by the operation � will lead to a quantity that is no longer a convex combination of
pki−2(x

k+1
2i−1), p

k
i (x

k+1
2i−1) and pki+2(x

k+1
2i−1). We therefore introduce the approximate ENO-SR

prediction f̂ k+1
i,ε of f (xk+1

i ) by setting f̂ k+1
2i,ε = f k+1

2i for 0 ≤ i ≤ Nk and

f̂ k+1
2i−1,ε = pki (xk+1

2i−1) + α�
(
pki+2(x

k+1
2i−1) − pki (xk+1

2i−1) + β�
(
pki−2(x

k+1
2i−1) − pki+2(x

k+1
2i−1)

))
,

where α = Hε(min{X3
ni,1 , X

3
ni,2 }), β = Hε(X

3
ni,3 ), (5.10)

for 1 ≤ i ≤ Nk . The fourth property of Lemma 5.3 ensures that the two convex combinations
in (5.7) are replaced by convex combinations (with possibly different weights). The theorem
below quantifies the accuracy of the approximate ENO-SR predictions for ε > 0.

Theorem 5.4 Let f : [c, d] → [−1, 1] be a globally continuous function with a bounded
second derivative on R\{z} and a discontinuity in the first derivative at a point z. For every
k, the approximate ENO-SR predictions f̂ k+1

i,ε satisfy for every 0 ≤ i ≤ Nk+1 and ε ≥ 0 that

|Ihk
i f (xk+1

2i−1) − f̂ k+1
i,ε | ≤ Ch2k sup

[c,d]\{z}
| f ′′| + 3

2
ε, (5.11)

where Ihk
i f (xk+1

2i−1) is the ENO-SR-2 prediction.

Proof The proof can be found in Appendix E. �
We see that our approximation is second-order accurate up to an additional constant error,

which can bemade arbitrarily small. Finally, the following theorem states that the constructed
approximation can indeed be represented by aReLUDNN, i.e. there exists a pure ReLUDNN
that satisfies bound (5.11).

Theorem 5.5 Let F denote the class of functions f : [c, d] → [−1, 1] that are globally con-
tinuous with a bounded second derivative on R\{z} and a discontinuity in the first derivative
at a point z. For every ε > 0, there exists a pure ReLU neural network that takes for every
f ∈ F as input the vector { f ki+q}4q=−5 and returns the value f̂ k+1

2i−1,ε for every 1 ≤ i ≤ Nk,
0 ≤ k ≤ K.

Proof Most of the work was already done in Theorem 5.1 and the discussion pre-
ceding Theorem 5.4. Indeed, we have already established that pki−2(x

k+1
2i−1), p

k
i (x

k+1
2i−1),

pki+2(x
k+1
2i−1), X

3
1, X

3
2 and X3

3, as well as the operation � can be represented using pure ReLU
networks. It only remains to find a bound for all second arguments of the operation � in
(5.10). Since the codomain of f is [−1, 1], one can calculate that pki−2(x

k+1
2i−1), p

k
i (x

k+1
2i−1)

and pki+2(x
k+1
2i−1) lie in [−4, 4]. Using Lemma 5.3, we then find that

pki+2(x
k+1
2i−1) − pki (x

k+1
2i−1) + β�

(
pki−2(x

k+1
2i−1) − pki+2(x

k+1
2i−1)

)
∈ [−16, 16]

for all β ∈ [0, 1]. We can thus use the operation � with λ = 16 in (5.9). �
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Fig. 7 Flowchart of a ReLU DNN to calculate f̂ k+1
2i−1,ε from f k

We now present the network architecture of a ReLU neural network that computes the
approximate ENO-SR prediction (5.10). The network we propose is visualized in Fig. 7 and
consists of eight hidden layers with widths 23, 13, 14, 12, 8, 7, 6 and 3.

In the figure, the following notation was used,

mi = min{X3
ni ,1, X

3
ni ,2},

Pk
m,n = pkm(xk+1

2i−1) − pkn(x
k+1
2i−1),

(5.12)

for 1 ≤ i,m, n ≤ Nk . We now give some more explanation about how all the layers can be
calculated from the previous layer in Fig. 7. A.B. All quantities of the first layer are linear
combinations of the input neurons, where we also refer to Fig. 5. From the proof of Theorem
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5.5, it follows that we can take λ = 16. C.D. Linear combinations. E.We refer to (5.10) and
(5.12) for the definitions of β and mi , respectively. F. We refer to (5.9) and (5.10) for the
definitions of � and α, respectively. G. From (5.10) it follows that the value of the output
layer is indeed equal to the approximate second-order ENO-SR prediction f̂ k+1

2i−1,ε .

6 Numerical results

From Sects. 4 and 5, we know that there exist deep ReLU neural networks, of a specific
architecture, that will mimic the ENO-p and the second-order ENO-SR-2 algorithms for
interpolating rough functions. In this section, we investigate whether we can train such
networks in practice and we also investigate their performance on a variety of tasks for
which the ENOprocedure is heavily used.Wewill refer to these trained networks asDeLENO
(Deep Learning ENO) and DeLENO-SR networks. More details on the training procedure
can be found in Sect. 6.1, the performance is discussed in Sect. 6.2 and illustrated by various
applications at the end of this section.

6.1 Training

The training of these networks involves finding a parameter vector θ (the weights and biases
of the network) that approximately minimizes a certain loss function J which measures
the error in the network’s predictions. To achieve this, we have access to a finite data set
S = {(Xi ,L(Xi ))}i ⊂ D × L(D), where L : D ⊂ R

m → R
n is the unknown function we

try to approximate using a neural network Lθ .
For classification problems, each Y i = L(Xi ) is an n-tuple that indicates to which of the

n classes Xi belongs. The output of the network Ŷ i = Lθ (Xi ) is an approximation of Y i in
the sense that Ŷ i

j can be interpreted as the probability that Xi belongs to class j . A suitable
loss function in this setting is the cross-entropy function with regularization term

J (θ;S, λ) = − 1

#S

∑
(Xi ,Y i )∈S

n∑
j=1

Y i
j log(Ŷ

i
j ) + λR(θ). (6.1)

The cross-entropy termmeasures the discrepancy between the probability distributions of the
true outputs and the predictions. It is common to add a regularization term λR(θ) to prevent
overfitting of the data and thus improve the generalization capabilities of the network [14].
The network hyperparameter λ > 0 controls the extent of regularization. Popular choices
of R(θ) include the sum of some norm of all the weights of the network. To monitor the
generalization capability of the network, it is useful to split S into a training set T and a
validation set V and minimize J (θ;T, λ) instead of J (θ;S, λ). The validation set V is used
to evaluate the generalization error. The accuracy of network Lθ on T is measured as

Tacc = #

{
(X , Y ) ∈ T | Ŷ = Lθ , arg max

1≤ j≤n
Ŷ j = arg max

1≤ j≤n
Y j

}
/#T, (6.2)

with a similar expression for Vacc.
For regression problems, Ŷ i is a direct approximation of Y i , making the mean squared

error with regularization term

J (θ;S, λ) = 1

#S

∑
(Xi ,Y i )∈S

∥∥∥Y i − Ŷ i
∥∥∥2 + λR(θ), (6.3)
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an appropriate loss function. As before, the data set S can be split into a training set T and
a validation set V, in order to minimize J (θ;T, λ) and estimate the MSE of the trained
network by J (θ;V, λ).

The loss functions areminimized eitherwith amini-batch version of the stochastic gradient
descent algorithm with an adaptive learning rate or with the popular ADAM optimizer [19].
We use batch sizes of 1024, unless otherwise specified.

6.1.1 Training DeLENO-p

We want to construct a suitable training data set S to train DeLENO-p for interpolation
purposes. Thanks to the results of Sect. 4, we are guaranteed that for certain architectures it
is theoretically possible to achieve an accuracy of 100%. For any order, this architecture is
given by Theorem 4.1 and its proof. For small orders p = 3, 4 we use the alternative network
architectures described at the end of Sect. 4, as they are of smaller size. The network will
take an input from R

m , m = 2p − 2, and predicts the stencil shift r . We generate a data set
S of size 460,200-200m using Algorithm 1 with inputs given by,

• A total of 400,000 samples X ∈ R
m , with each component X j randomly drawn from the

uniform distribution on the interval [−1, 1].
• The set

{(ul , . . . , ul+m)�| 0 ≤ l ≤ N − m, 0 ≤ q ≤ 39, N = {100, 200, 300, 400, 500}}
where ul is defined as

ul := sin

(
(q + 1)π

l

N

)
, 0 ≤ l ≤ N .

The input data needs to be appropriately scaled before being fed into the network, to
ensure faster convergence during training. We use the following scaling for each input X ,

Scale(X) =
{

2X−(b+a)
b−a if X �= 0

(1, . . . , 1)� ∈ R
m otherwise

, a = min
j

(X j ), b = max
j

(X j ), (6.4)

which scales the input to lie in the box [−1, 1]m .
Remark 6.1 When the input data is scaled using formula (6.4), then Newton’s undivided
differences are scaled by a factor 2(b − a)−1 as well. Therefore scaling does not alter the
stencil shift obtained using Algorithm 1 or 2.

The loss function J is chosen as (6.1), with an L2 penalization of the network weights
and λ = 7.8 · 10−6. The network is retrained using 5 times, with the weights and biases
initialized using a random normal distribution for each of the retrainings. The last 20% of
S is set aside to be used as the validation set V. For each p, we denote by DeLENO-p the
networkwith the highest accuracyVacc at the end of the training. The training of theDeLENO
reconstruction networks was performed entirely analogously, with the only difference that
now we set m = 2p − 1.

6.1.2 Training DeLENO-SR

Next, we construct a suitable training data set S to train second-order DeLENO-SR for use
as an interpolation algorithm. Recall that ENO-SR is designed to interpolate continuous
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functions f that are two times differentiable, except at isolated points, z ∈ R where the first
derivative has a jump of size [ f ′]. Locally, these functions can be viewed as piecewise linear
functions. Based on this observation, we create a data set using functions of the form

f (x) = a(x − z)− + b(x − z)+, (6.5)

where a, b, z ∈ R. For notational simplicity we assume that the x-values of the stencil that
serves as input for the ENO-SR algorithm (Sect. 3.2) are 0, 1, . . . , 9. The interval of interest
is then [4, 5] and the goal of ENO-SR is to find an approximation of f at x = 4.5. We
generate 100,000 samples, where we choose a, b, z in the following manner,

• The parameters a and b are drawn from the uniform distribution on the interval [−1, 1].
Note that any interval that is symmetric around 0 could have been used, since the data
will be scaled afterwards.

• For 25,000 samples, z is drawn from the uniform distribution on the interval [4, 5]. This
simulates the case where the discontinuity is inside the interval of interest.

• For 75,000 samples, z is drawn from the uniform distribution on the interval [−9, 9],
which also includes the case in which f is smooth on the stencil.

The network architecture is described in Sect. 5. The network will take an input from R
10

and predicts the stencil shift r . The training of DeLENO-SR was performed in a very similar
fashion to the training of DeLENO-p (Sect. 6.1.1), only this time we retrained the DeLENO-
SR network 5 times for 5000 epochs each. Furthermore we used 8-fold cross-validation on
a data set of 20,000 samples to select the optimal regularization parameter, resulting in the
choice λ = 1 · 10−8.

Remark 6.2 Note that the detection mechanism of the ENO-SR interpolation method
(Sect. 3.2) labels an interval as bad when α − β > 0 for some numbers α, β ∈ R. This
approach causes poor approximations in practice due to numerical errors. When for example
α = β, rounding can have as a consequence that round(α − β) > 0, leading to an incorrect
label. This deteriorates the accuracy of the method and is very problematic for the training.
Therefore we used in our code the alternative detection criterion α − β > ε, where for
example ε = 10−10.

6.2 Performance

In the previous sections, we have proven the existence of ReLU neural networks that approx-
imate ENO(-SR) well, or can even exactly reproduce its output. However, it might be
challenging to obtain these networks by training on a finite set of samples. Fortunately,
Table 1 demonstrates that this is not the case for the DeLENO(-SR) stencil selection net-
works. For both interpolation and reconstruction, the classification accuracy (6.2) is nearly
100%, where we used the network architecture from our theoretical results. A comparison
between the trained weights and biases in Appendix F and their theoretical counterparts
of (4.3–4.7) reveals that there are multiple DNNs that can represent ENO. Moreover, this
indicates that the weights of two DNNs (i.e. the theoretical and trained DNNs) can be very
different even though the output is approximately the same (Table 1). This is in agreement
with the result from [21] that the function that maps a family of weights to the function
computed by the associated network is not inverse stable.
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Table 1 Shape of DeLENO-p
and DeLENO-SR networks with
their accuracies for the
interpolation and reconstruction
problem

p Hidden layer sizes Tacc(%) Vacc(%)

(a) DeLENO interpolation

3 4 99.36 99.32

4 10,6,4 99.22 99.14

SR 20, 11, 12, 10, 6 99.74 99.81

(b) DeLENO reconstruction

2 4 99.96 99.97

3 10, 6, 4 99.65 99.65

Fig. 8 Plots of the approximation error of the DeLENO-SR-2 regression network for the piecewise smooth
function f1 and the smooth sine function f2. The approximation errors of ENO-SR-2 and (DeL)ENO-3 are
shown for comparison

Next, we investigate the order of accuracy of the DeLENO-SR regression network, for
the functions

f1(x) = −2
(
x − π

6

)
1[0, π

6 )(x) +
(
x − π

6

)2
1[ π

6 ,1](x), (6.6)

f2(x) = sin(x). (6.7)

Note that the first derivative of f1 has a jump at π
6 . In Fig. 8, the order of accuracy of second-

order ENO-SR-2 and DeLENO-SR-2 is compared with those of ENO-3 and DeLENO-3 for
both the piecewise smooth function f1 and the smooth function f2.

In both cases, ENO-3 and DeLENO-3 completely agree, which is not surprising given the
high classification accuracies listed in Table 1. (DeL)ENO-3 is third-order accurate for the
smooth function and only first-order accurate for a more rough function, in agreement with
expectations. For both f1 and f2, DeLENO-SR-2 is second-order accurate on coarse grids,
but a deterioration to first-order accuracy is seen on very fine grids. This deterioration is an
unavoidable consequence of the error that the trained network makes and the linear rescaling
of the input stencils (6.4). A more detailed discussion of this issue can be found in Section
6.2 of [10]. Furthermore, although the DeLENO-SR regression network is initially second-
order accurate for the smooth function, the approximation error does not agree with that of
ENO-SR. This is in line with Theorem 5.4, where we proved that there exists a network that
is a second-order accurate approximation of ENO-SR-2 except for an error term that can be
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arbitrarily small, yet is fixed. A second factor that might contribute is the fact that DeLENO-
SR-2 was trained on piecewise linear functions, which can be thought of as a second-order
accurate approximation of a smooth function, therefore leading to a higher error.

6.3 Applications

Next, we apply the DeLENO algorithms in the following examples.

6.3.1 Function approximation

We first demonstrate the approximating ability of the DeLENO interpolation method using
the function

q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x if x < 0.5,

3 sin(10πx) if 0.5 < x < 1.5,

−20(x − 2)2 if 1.5 < x < 2.5,

3 if 2.5 < x,

(6.8)

which consists of jump discontinuities and smooth high-frequency oscillations.We discretize
the domain [0, 3] and generate a sequence of nested grids of the form (3.1) by setting N0 = 16
and K = 4. We use the data on the grid T k , and interpolate it onto the grid T k+1 for
0 ≤ k < K . As shown in Fig. 9, the interpolation with ENO-4 and DeLENO-4 is identical
on all grids, for this particular function.

6.3.2 Data compression

We now apply the multi-resolution representation framework of Appendix C to use DeLENO
to compress the function (6.8). We construct a nested sequence of meshes on [0, 3] by
choosing N0 = 9 and K = 5 in (C.1). We use Algorithm 3 to obtain the multi-resolution
representation of the form (C.5) and decode the solution using Algorithm 4 to obtain the
approximation q̂ K . The compression thresholds needed for the encoding procedure are set
using (C.6).

Figure 10 provides a comparison of the results obtained using different values for the
threshold parameters ε, and shows the non-zero coefficients d̂k for eachmesh level k. A higher
value of ε can truncate a larger number of d̂k components, as is evident for p = 3. However,
there is no qualitative difference between q̂ K obtained for the two ε values considered. Thus,
it is beneficial to use the larger ε, as it leads to a sparser multi-resolution representation
without deteriorating the overall features. The solutions obtained with ENO and DeLENO
are indistinguishable. We refer to Table 2 for the errors of the two methods.

The compression ideas used for one-dimensional problems can be easily extended to
handle functions defined on two-dimensional tensorized grids. We consider a sequence of
grids T k with (Nx

k + 1) × (N y
k + 1) nodes, where Nx

k = 2k N x
0 and N y

k = 2k N x
0 , for

0 ≤ k ≤ K . Let qk be the data on grid T k and denote by q̂k+1 the compressed interpolation
on grid T k+1. To obtain q̂k+1, we first interpolate along the x-coordinate direction to obtain
an intermediate approximation q̃k+1 of size (Nx

k+1 + 1) × (N y
k + 1). Then we use q̃k+1 to

interpolate along the y-coordinate direction to obtain the final approximation q̂k+1.
Next, we use ENO and DeLENO to compress an image with 705 × 929 pixels, shown

in Fig. 11a. We set K = 5, ε = 1, t = 0.2 in Eq. (C.6). Once again, ENO and DeLENO
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9 Interpolating the function (6.8) using ENO and DeLENO
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10 Data compression of (6.8) using ENO and DeLENO with N0, L = 5 and t = 0.5. Comparison of
thresholded decompressed data with the actual data on the finest level (left); Non-zero coefficients d̂k at each
level (right)
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Table 2 1D compression errors for (6.8)

p ε ‖qK − q̂ K ‖1 ‖qK − q̂ K ‖2 ‖qK − q̂ K ‖∞
ENO DeLENO ENO DeLENO ENO DeLENO

3 0.5 5.125e−2 5.125e−2 8.701e−2 8.701e−2 3.281e−1 3.281e−1

1.0 2.072e−1 2.072e−1 2.421e−1 2.421e−1 4.102e−1 4.102e−1

4 0.5 1.032e−1 1.038e−1 1.268e−1 1.274e−1 3.027e−1 3.027e−1

1.0 1.122e−1 1.122e−1 1.356e−1 1.356e−1 3.947e−1 3.947e−1

(a) (b) (c) (d) (e)

Fig. 11 Image compression

Table 3 Image compression
errors p Scheme Rel. L1 Rel. L2 Rel. L∞ cr

3 ENO 5.346e−2 8.368e−2 5.194e−1 0.996

DeLENO 5.343e−3 8.365e−2 5.194e−1 0.996

4 ENO 5.422e−2 8.485e−2 5.581e−1 0.996

DeLENO 5.422e−2 8.492e−2 5.581e−1 0.996

give similar results, as can be seen from the decompressed images in Fig. 11 and the relative
errors in Table 3. In this table we additionally listed the compression rate

cr = 1 −
#
{
dki, j |dki, j > εk, 1 ≤ k ≤ K

}
(Nx

L + 1)(N y
L + 1) − (Nx

0 + 1)(N y
0 + 1)

, (6.9)

which represents the fraction of coefficients set to null.
As an additional example of two-dimensional data compression, we consider the function

q(x, y) =

⎧⎪⎨
⎪⎩

−10 if (x − 0.5)2 + (y − 0.5)2 < 0.0225

30 if |x − 0.5| > 0.8 or |y − 0.5| > 0.8

40 otherwise

, (6.10)

where (x, y) ∈ [0, 1] × [0, 1], and generate a sequence of meshes by setting K = 4,
Nx
0 = 16 and N y

0 = 16. The threshold for data compression is chosen according to (C.6),
with ε = 10 and t = 0.5. The non-zero d̂k coefficients are plotted in Fig. 12, while the errors
and compression rate (6.9) are listed in Table 4. Overall, ENO and DeLENO perform equally
well, with DeLENO giving marginally smaller errors.
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Table 4 2D compression errors
for (6.10) p Scheme Rel. L1 Rel. L2 Rel. L∞ cr

3 ENO 3.341e−3 2.442e−2 4.302e−1 0.989

DeLENO 3.246e−3 2.367e−2 4.302e−1 0.989

4 ENO 3.816e−3 3.237e−2 5.876e−1 0.989

DeLENO 3.681e−3 3.130e−2 5.876e−1 0.989

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 12 Non-zero coefficients d̂k for data compression of (6.10) using ENO and DeLENO for mesh level
1 ≤ k ≤ 4

6.3.3 Conservation laws

We compare the performance of ENO and DeLENO reconstruction, when used to approxi-
mate solutions of conservation laws.Wework in the framework of high-order finite difference
schemes with flux-splitting and we use a fourth-order Runge-Kutta scheme for the time inte-
gration.
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Solution for Euler shock-entropy problem with ENO-p and DeLENO-p on a mesh with N = 200
cells

As an example, we consider the system of conservation laws governing compressible
flows given by

∂t

⎛
⎝ρ

v

p

⎞
⎠+ ∂x

⎛
⎝ ρv

ρv2 + p
(E + p)v

⎞
⎠ = 0, E = 1

2
ρv2 + p

γ − 1
,

where ρ, v and p denote the fluid density, velocity and pressure, respectively. The quantity
E represents the total energy per unit volume where γ = cp/cv is the ratio of specific heats,
chosen as γ = 1.4 for our simulations. We consider the shock-entropy problem [23], which
describes the interaction of a right moving shock with smooth oscillatory waves. The initial
conditions for this test case are prescribed as

(ρ, v, p) =
{

(3.857143, 2.629369, 10.33333) if x < −4

(1 + 0.2 sin(5x), 0, 1) if x > −4
,

on the domain [−5, 5]. Due to the generation of high frequency physical waves, we solve the
problem on a fine mesh with N = 200 cells up to T f = 1.8 with CFL = 0.5. A reference
solution is obtained with ENO-4 on a mesh with N = 2000 cells. As can be seen in Fig. 13,
ENO-p and DeLENO-p perform equally well depending on the order p.

Next we solve the Sod shock tube problem [25], whose initial conditions are given by

(ρ, v, p) =
{

(1, 0, 1) if x < 0

(0.125, 0, 0.1) if x > 0
,

on the domain [−5, 5]. The solution consists of a shock wave, a contact discontinuity and a
rarefaction. The mesh is discretized with N = 50 cells and the problem is solved till T f = 2
with a CFL = 0.5. The solutions obtained with ENO-p and DeLENO-p are identical, as
depicted in Fig. 14.
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Solution for Euler Sod shock tube problem with ENO-p and DeLENO-p on a mesh with N = 50
cells

7 Discussion

In this paper, we considered efficient interpolation of rough or piecewise smooth functions.
A priori, both deep neural networks (on account of universality) and the well-known data
dependent ENO (and ENO-SR) interpolation procedure are able to interpolate rough func-
tions accurately. We proved here that the ENO interpolation (and the ENO reconstruction)
procedure as well as a variant of the second-order ENO-SR procedure can be cast as deep
ReLU neural networks, at least for univariate functions. This equivalence provides a different
perspective on the ability of neural networks in approximating functions and reveals their
enormous expressive power as even a highly non-linear, data-dependent procedure such as
ENO can be written as a ReLU neural network.

On the other hand, the impressive function approximation results, for instance of [26, 27],
might have limited utility for functions in low dimensions, as the neural network needs to be
trained for every function that has to be interpolated. By interpreting ENO (and ENO-SR) as
a neural network, we provide a natural framework for recasting the problem of interpolation
in terms of pre-trained neural networks such as DeLENO, where the input vector of sample
values are transformed by the network into the output vector of interpolated values. Thus,
these networks are trained once and do not need to retrained for every new underlying
function. This interpretation of ENO as a neural network allows us to possibly extend ENO
type interpolations into several space dimensions on unstructured grids.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich. This study was
funded by H2020 European Research Council (No. 770880).
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Appendix A: ENO reconstruction

In this section we present ENO reconstruction, which is very similar to ENO interpolation as
presented in Sect. 3.1. Let V be a function on [c, d]. For the sake of completeness, we repeat
the main steps of the algorithm for reconstruction purposes.

We define a uniform mesh T on [c, d] with N cells,

T = {Ii }Ni=1, Ii = [xi− 1
2
, xi+ 1

2
],
{
xi = c + (2i − 1)

h

2

}N
i=0

, h = (d − c)

N
, (A.1)

where xi and xi± 1
2
denote the cell center and cell interfaces of the cell Ii , respectively. We

are given the cell averages

V i = 1

h

∫ x
i+ 1

2

x
i− 1

2

V (ξ)dξ, 1 ≤ i ≤ N

and we define V−p+2, . . . , V 0 and V N+1, . . . , V N+p−1 to be ghost values that need to be
suitably prescribed. The goal is to find a local interpolation operator Ih

i such that∥∥∥Ih
i V − V

∥∥∥∞,Ii
= O(h p) for h → 0.

For this purpose, let V̂ be the primitive function of V and note that we have access to the
value of V̂ at the cell interfaces,

V̂ (xi+ 1
2
) = h

i∑
j=0

V j where V̂ (x) =
∫ x

c
V (ξ)dξ.

Next let Pi be the unique polynomial of degree p that agrees with V̂ on a chosen set of p+1
cell interfaces that includes xi− 1

2
and xi+ 1

2
. The ENO reconstruction procedure considers the

stencil sets

Sr
i = {xi− 1

2−r+ j }pj=0, 0 ≤ r ≤ p − 1,

where r is called the (left) stencil shift. The smoothest stencil is then selected based on the
local smoothness of f using Newton’s undivided differences. Algorithm 2 describes how the
stencil shift ri corresponding to this stencil can be obtained. Note that ri uniquely defines the
polynomial Pi . We then define Ih

i V to be the first derivative of Pi , one can check that this
polynomial is indeed a p-th order accurate approximation. Note that the interpolants on two
adjacent intervals do not need to agree on the mutual cell interface.

In order to implement an ENO scheme, one only needs the values of Ih
i V at the cell inter-

faces xi− 1
2
and xi+ 1

2
. Analogously to Eq. (3.2), these can be directly obtained by calculating

Ih
i V (xi+ 1

2
) =

p−1∑
j=0

C̃ p
ri , j

V i−ri+ j and Ih
i V (xi− 1

2
) =

p−1∑
j=0

C̃ p
ri−1, j V i−ri+ j , (A.2)
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Algorithm 2: ENO reconstruction stencil selection

Input: ENO order p, input array �0 = {V i+ j }p−1
j=−p+1, for any 1 ≤ i ≤ N .

Output: Stencil shift r .
Evaluate Newton undivided differences:
for j = 1 to p − 1 do

�j = �j−1[2 : end] − �j−1[1 : end − 1]
Find shift:
r = 0
for j = 1 to p − 1 do

if |�j[p − 1 − r ]| < |�j[p − r ]| then
r = r + 1

return r

Table 5 Coefficients for ENO
interpolation for p > 2 used in
(3.2)

r s j = 0 j = 1 j = 2 j = 3

3 0 3/8 3/4 −1/8 -

1 −1/8 3/4 3/8 -

4 0 5/16 15/16 −5/16 1/16

1 −1/16 9/16 9/16 −1/16

2 1/16 −5/16 15/16 5/16

Table 6 Coefficients for ENO
reconstruction used in (A.2)

p s j = 0 j = 1 j = 2 j = 3

2 −1 3/2 −1/2 – –

0 1/2 1/2 – –

1 −1/2 3/2 – –

3 −1 11/6 −7/6 1/3 –

0 1/3 5/6 −1/6 –

1 −1/6 5/6 1/3 –

2 1/3 −7/6 11/6 –

4 −1 25/12 −23/12 13/12 −1/4

0 −1/4 13/12 −5/12 1/12

1 −1/12 7/12 7/12 −1/12

2 1/12 −5/12 13/12 −1/4

3 −1/4 13/12 −23/12 25/12

where ri is stencil shift corresponding to the smoothest stencil for interval Ii and with the
coefficients C̃ p

r , j listed in Table 6 in Appendix B.

Appendix B: ENO coefficients

Tables 5 and6 respectively list theENOcoefficients used forENO interpolation (Sect. 3.1) and
ENO reconstruction (Appendix A). More information on the calculation of these coefficients
can be found in [7].
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Appendix C: Multi-resolution representation of functions for data com-
pression

To describe the multi-resolution representation of functions, we use notations and operators
similar to those introduced in [3]. We define a sequence of nested uniform meshes {T k}Kk=0
on � = [c, d], where

T k = {I ki }Nk
i=1, I ki = [xki−1, x

k
i ], {xki = c + ihk }Nk

i=0, hk = (d − c)

Nk
, Nk = 2k N0, (C.1)

for 0 ≤ k ≤ K and where N0 is some positive integer. We call {xki }Nk
i=0 the nodes of the

mesh T k . Let B� be the set of bounded functions on � and Vn the space of real-valued finite
sequences of length n. We define the following operators associated with the various meshes:

• The discretizer Dk : B� �→ VNk+1 defined by

Dk f = qk := {qki }Nk
i=0 = {q(xki )}Nk

i=0, ∀ q ∈ B�.

• The reconstructor Rk : VNk+1 �→ B� satisfying Dk Rkqk = qk for qk ∈ VNk+1. Thus,
(Rkqk)(x) interpolates the members of qk at the nodes of T k .

• The decimator Dk−1
k : VNk+1 �→ VNk−1+1 defined by Dk−1

k := Dk−1Rk . For q ∈ B�,
we have

qk−1
i = (Dk−1

k qk)i = qk2i , 0 ≤ i ≤ Nk−1. (C.2)

In other words, the decimator helps in extracting the function values on a given mesh
from a finer one.

• The predictor Pk
k−1 : VNk−1+1 �→ VNk+1 defined by Pk

k−1 := Dk Rk−1. The predictor
tries to recover the function values qk from the coarser data qk−1, for q ∈ B�.

The prediction error is given by

eki = qki − (Pk
k−1q

k−1)i , 0 ≤ i ≤ Nk .

Clearly ek2i = 0 for 0 ≤ i ≤ Nk−1 = Nk/2. Thus, the interpolation error is essentially
evaluated at the nodes in T k \ T k−1, which we denote as

dki = ek2i−1 = qk2i−1 − (Pk
k−1q

k−1)2i−1, 1 ≤ i ≤ Nk−1. (C.3)

Given qk−1 and dk , we can recover qk using (C.2) and (C.3). By iteratively applying this
procedure, the data qk on the finest mesh can be fully encoded using the multi-resolution
representation

{q0, d1, d2, . . . , dK }. (C.4)

This multiresolution representation (C.4) for a function f ∈ B� is convenient to perform data
compression. The easiest compression strategy [3] corresponds to setting the coefficients dki
in (C.3) to zero based on a suitable threshold εk ≥ 0:

d̂ki = G(dki ; εk) =
{
0 if |dki | ≤ εk

dki otherwise.

The compressed representation is then given by

{ f 0, d̂1, d̂2, . . . , d̂ K }. (C.5)
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Algorithm 3: Compressed encoding [3]

Input: Highest resolution data f K , number of levels K , number of points N0 on coarsest mesh, ENO
order p, threshold parameters ε and t .

Output: Multi-resolution representation { f 0, d̂1, . . . , d̂ K }.
for k = K to 1 do

f k−1 = Dk−1
k f k

f̂ 0 = f 0

for k = 1 to K do
f̂ k0 = f K0
Construct Pk

k−1 using Algorithm 1 and Eq. (3.2)

f̃ k = Pk
k−1 f̂

k−1

N = N02k−1

for i = 1 to N do
dki = f k2i−1 − f̃ k2i−1
εk = εt K−k

d̂ki = G(dki ; εk )

f̂ k2i−1 = f̃ k2i−1 + d̂ki
f̂ k2i = f̂ k−1

i

return { f 0, d̂1, . . . , d̂ K }

Algorithm 4: Decoding multi-resolution data [3]

Input: Multi-resolution representation { f 0, d̂1, . . . , d̂ K }, number of levels K , number of cells N0 on
coarsest mesh, ENO order p.

Output: Decoded function f̂ K .
f̂ 0 = f 0

for k = 1 to K do
Construct Pk

k−1 using Algorithm 1 and Eq. (3.2)

f̂ k = Pk
k−1 f̂

k−1 + d̂k

return f̂ K

The procedures for compressed encoding and decoding are listed in Algorithms 3 and 4.
The following result is known on the error bounds for the compressed encoding in the

form (C.5), the proof can be found in [3].

Proposition C.1 Let {�k}Kl=0 be a sequence of nested uniformmeshes discretizing the interval
[c, d] generated according to (C.1) for some positive integer N0 > 1. Assume that some
f ∈ B[c, d] is encoded using thresholds

εk = εt K−k, 0 < t < 1. (C.6)

to give rise to the multi-resolution representation of the form (C.5). If f̂ K is the decoded
data, then

‖ f K − f̂ K ‖n ≤ Cnε for n = ∞, 1, 2, (C.7)

where C∞ = (1− t)−1, C1 = (b−a)(1− t)−1 and C2 = √(b − a)(1 − t2)−1. This estimate
is independent of the interpolation procedure used to encode and decode the data.

123



On the approximation of rough functions with... 433

Appendix D: Proof of Theorem 3.3

Wepresent some properties of our adaptation of the ENO-SR algorithm. To prove the second-
order accuracy, we state some results due to [1] in a slightly adapted form.

Lemma D.1 The groups of adjacent B intervals are at most of size 2. They are separated by
groups of adjacent G intervals that are at least of size 2.

Proof Note that our detection algorithm is the same as the one in [1] for m = 3. The result
then follows from their Lemma 1. �
Lemma D.2 Let f be a globally continuous function with a bounded second derivative on
R\{z} and a discontinuity in the first derivative at a point z. Define the critical scale

hc := |[ f ′]|
4 supx∈R\{z}| f ′′(x)| , (D.1)

where [ f ′] is the jump of the first derivative f ′ at the point z. Then for h < hc, the interval
that contains z is labelled B.

Proof See Lemma 2 in [1]. �
Lemma D.3 There exist constants C > 0 and 0 < K < 1 such that for all continuous f
with uniformly bounded second derivative on R\{z} and for h < Khc with hc defined by
Eq. (D.1), the following holds:

(1) The singularity z is contained in an isolated B interval I ki or in a B-pair (I ki , I ki+1).

(2) The two polynomials pki−2 and pki+2 (or p
k
i−1 and pki+3) have only one intersection point

y inside I ki or I ki ∪ I ki+1, respectively.
(3) The distance between z and y is bounded by

|z − y| ≤ C supx∈R\{z}| f ′′(x)|h2
|[ f ′]| . (D.2)

Proof This is a light adaptation of Lemma 3 in [1]. The proof remains the same, after one
minor change. We take I = [b, c] to be equal to I−1 ∪ I0 ∪ I1, which does not affect equation
(38) in the proof. In fact, all other steps of their proof remain valid. It only must be noted that
the constant C in Eq. (D.2) of this paper and equation (37) in [1] do not necessarily agree. �

We now prove Theorem 3.3 of Sect. 5, based on the proof of Theorem 1 in [1]. Let hc be
as in Lemma D.2 and let K be as in Lemma D.3. Note that we can write

f = f−1(−∞,z] + f+1(z,+∞)

where f−, f+ are C2 on R such that

sup
R\{z}

| f ′′±| ≤ sup
R\{z}

| f ′′|.

Let us consider some interval I0 = [b, c] = [b, b + h]. First consider the case 0 < h <

Khc. Suppose it was labelled as good. Lemma D.2 then guarantees that I0 does not contain
z. It then follows directly from the theory of Lagrange interpolation that

| f (x) − Ih f (x)| ≤ Ch2 sup
R\{z}

| f ′′| (D.3)
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for all x ∈ I0. Now suppose that I0 was labelled bad. As a consequence of Lemma D.1,
I−2 and I2 are good intervals and therefore do not contain the discontinuity. If in addition
z /∈ I−1 ∪ I0 ∪ I1, then Eq. (D.3) holds again for all x ∈ I0 since Ih f (x) is either equal to
p−2(x), p0(x) or p2(x). On the other hand, if z ∈ I−1 ∪ I0 ∪ I1 then Lemma D.3 guarantees
the existence of a single intersection point y ∈ I−1 ∪ I0 ∪ I1 of p−2 and p2. Assume now
without loss of generality that z ≤ y. In this case, Eq. (D.3) holds for all x ∈ [b, z] ∪ [y, c].
It thus remains to treat the case z < x < y. For such x , we have

| f (x) − Ih f (x)| = | f+(x) − p−2(x)| ≤ | f+(x) − f−(x)| + | f−(x) − p−2(x)|
where the second term is again bounded by Ch2 supR\{z}| f ′′|. We can use a second-order
Taylor expansion for the first term to derive

| f+(x) − f−(x)| ≤ (y − z)([ f ′] + 2h sup
R\{z}

| f ′′|) ≤ 3

2
|[ f ′]|(y − z)

where in the last inequality we used that h < hc. By invoking the third part of Lemma D.3,
we find indeed that Eq. (D.3) holds again. This concludes the proof for the case h < Khc.

Now suppose that h ≥ Khc. First define

f2(x) = f (x) − [ f ′](x − z)+
for x ∈ R. Furthermore, by the definition of hc in Lemma D.2, we find that for h ≥ Khc,

[ f ′] = 4hc sup
R\{z}

| f ′′| ≤ C0h sup
R\{z}

| f ′′|, (D.4)

where C0 > 0 does not depend on f . We distinguish two cases.
Case 1 Ih(x) = p0(x) for all x ∈ I0. If z /∈ I0, second-order accuracy as in Eq. (D.3) is

immediate. If not, more work is needed. Define

g1(x) = [ f ′](x0 − z)+
h

(x − x−1)

and note that p0 − g1 is the linear interpolation between (x−1, f2(x−1)) and (x0, f2(x0)).
Since f2 is C2 we know that p0 − g1 is a second-order accurate approximation of f2 on I0,
such that Eq. (D.3) holds. We then calculate for x ∈ I0,

| f (x) − p0(x)| ≤ | f2(x) − (p0(x) − g1(x))| + |[ f ′](x − z)+ − g1(x)|
≤ C1h

2 sup
R\{z}

| f ′′| + [ f ′]
(

|(x − z)+| + (x0 − z)+
h

|x − x−1|
)

≤ C1h
2 sup
R\{z}

| f ′′| + C0h sup
R\{z}

| f ′′|(h + h)

= Ch2 sup
R\{z}

| f ′′|,

where we used inequality (D.4).
Case 2 Ih(x) = p−2(x)1(−∞,y](x) + p2(x)1(y,+∞)(x) for x ∈ I0, where y is the

intersection point of p−2 and p2. If z /∈ ∪2
q=−2 Iq , then inequality (D.3) follows immediately

for x ∈ I0. Consider now the case that z ∈ ∪2
q=−2 Iq and assume without loss of generality

z ≤ y. Let x ∈ I0 be arbitrary. It follows that Eq. (D.3) also holds immediately for this x if
y ≤ x or x ≤ z. It suffices to find a bound for when x−3 ≤ z ≤ x ≤ y. Define

g2(x) = [ f ′](x−2 − z)+
h

(x − x−3).
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Fig. 15 Overview of the case study done in the proof of Theorem 5.4

Note that p−2−g2 is an affine function through (x−3, f2(x−3)) and (x−2, f2(x−2)). It follows
that

| f (x) − p−2(x)| ≤ | f2(x) − (p−2 − g2(x))| + |[ f ′](x − z)+ − g2(x)|
≤ C1h

2 sup
R\{z}

| f ′′| + [ f ′]
(

|(x − z)+| + (x−2 − z)+
h

|x − x−3|
)

≤ C1h
2 sup
R\{z}

| f ′′| + C0h sup
R\{z}

| f ′′|(3h + 3h)

= Ch2 sup
R\{z}

| f ′′|,

where we used again inequality (D.4) and the bounds |x − x−3| ≤ 3h and x−3 ≤ z. This
concludes the proof of Theorem 3.3.

Appendix E: Proof of Theorem 5.4

In what follows, we let x∗ = xk+1
2i−1, f ∗ = Ihk

i f (xk+1
2i−1), f̂ε = f̂ k+1

2i−1,ε and X3
l = X3

ni,l

for 1 ≤ l ≤ 4 (where X3
ni,l is as in the proof of Theorem 5.1). We assume without loss

of generality that [c, d] ⊂ [0,∞). Furthermore we simplify the notation by dropping the
index k and setting i = 0. It follows from the proof of Theorem 3.3 that the results holds for
h ≥ Khc, since f̂ε is a convex combination of p−2(x∗), p0(x∗) and p2(x∗) for any value of
X3. We therefore assume in the following that h < Khc. The proof consists of an extensive
case study, visualized in Fig. 15.

Case 1 In this case α = 1 and β = 1, therefore f̂ε = p−2(x∗) = f ∗.
Case 2We have that α = 1 and 0 < X3

3 < ε, therefore f̂ε = (1− β)p2(x∗) + β p−2(x∗)
where β can take any value in (0, 1). From (5.3), it follows that the condition 0 < X3

3 < ε

corresponds to

0 < |b−2 − b2| − x∗|a−2 − a2| < ε, (E.1)

wherea−2 anda2 are the slopes of p−2 and p2, respectively.Recall that in (5.3) the assumption
that xki = i was made. It can however be seen that X3

3 is invariant to grid translations and
scaling. Indeed, when the grid size is scaled by h one needs to replace x∗ by hx∗ and a±2

by a±2/h; this leaves X3
3 unchanged. If we now observe that from α = 1 follows that

|a−2 − a2| �= 0, then we can define y as the unique intersection point of p−2 and p2, and
obtain

0 < y − x∗ <
ε

|a−2 − a2| . (E.2)
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Furthermore note that we can write p±2(x) = a±2(x − y) + p±2(y) where by definition
p−2(y) = p2(y). This leads to the estimate

|p−2(x
∗) − p2(x

∗)| = |a−2 − a2|(y − x∗) < ε. (E.3)

Case 3 In this case α = 1 and β = 0, therefore f̂ε = p2(x∗) = f ∗.
Case 4 By looking at the definition of X3

2 in (5.3), we see that 0 < h|(a−2 − a2)| < ε

(where the factor h was added to remove the assumption that xki = i). Furthermore we have

that X3
1 > 0. If z /∈ I−1 ∪ I0 ∪ I1 then Lemma D.1 and Lemma D.3 guarantee that f̂ε is a

second-order accurate approximation of f ∗. If z ∈ I±1, then p0 is a second-order accurate
approximation of p∓2 on I0. In addition, this leads to the bound

|p±2(x
∗) − p0(x

∗)| ≤ |p±2(x
∗) − p∓2(x

∗)| + |p∓2(x
∗) − p0(x

∗)|
= |(a2 − a−2)(x

∗ − y)| + |p∓2(x
∗) − p0(x

∗)|
≤ 3

2
ε + Ch2 sup| f ′′|. (E.4)

Finally we treat the case where z ∈ I0. Define p∗
0 as the affine function through

(x−1, p−2(x−1)) and (x0, p2(x0)). It then follows fromh|(a−2−a2)| < ε thath|(a±2−a∗
0 )| <

ε where a∗
0 is the slope of p

∗
0 . We also have that p∗

0 is a second-order accurate approximation
of p0 on the interval I0. This then leads to

|p±2(x
∗) − p0(x

∗)| ≤ |p±2(x
∗) − p∗

0(x
∗)| + |p∗

0(x
∗) − p0(x

∗)|
≤ |(a±2 − a∗

0 )
h

2
| + |p∗

0(x
∗) − p0(x

∗)|
≤ ε

2
+ Ch2 sup| f ′′|. (E.5)

Case 5 In this case α = 0 and therefore f̂ε = p0(x∗) = f ∗.
Case 6 In this case we only know that I0 is a bad interval, since X3

1 > 0. It may or may not
contain the discontinuity. If z /∈ I−1 ∪ I0 ∪ I1 then Lemma D.1 and Lemma D.3 guarantee
that f̂ε is a second-order accurate approximation of f ∗. We therefore assume in the following
that z ∈ I−1 ∪ I0 ∪ I1.

In the proof of Theorem 5.1, we introduced the quantity X2
q as a smoothness indicator

for the interval Iq . We first investigate how the quantities X2
q for f are related to the same

quantities for the piecewise linear function defined by g(x) = f (z) + f ′(z−)(x − z) +
[ f ′](x − z)+, which we will denote by X̂2

q . Let �q = �2
h f (xq) and �̂q = �2

hg(xq), as
defined in (3.3), and define�q = �q −�̂q . Since g is a second-order accurate approximation
of f , we obtain that

|�q | ≤ Cqh
2 sup| f ′′|, (E.6)

where the constantCq is independent of f and h. Using the triangle inequality and its reverse,
we find that for m, n ∈ N0,

|�̂m | − |�̂n | ≤ |�̂m + �m | − |�̂n + �n | + |�m | + |�n |
≤ |�m | − |�n | + (Cm + Cn)h

2 sup| f ′′|. (E.7)

Now assume that 0 < X2
q < ε for some index q . We can then conclude that

0 ≤ X̂2
q ≤ X2

q + Ch2 sup| f ′′| < ε + Ch2 sup| f ′′|. (E.8)
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Table 7 Calculation of X̂2
s−1, X̂

2
s , and X̂2

s+1

xq xs−2 xs−1 xs xs+1

|�̂q | 0 [ f ′](xs − z) [ f ′](z − xs−1) 0

(|�̂q | − Mq )+ 0 2[ f ′](x − z)+ 2[ f ′](z − x)+ 0

(|�̂q | − N+
q )+ 0 2[ f ′](x − z)+ [ f ′](z − xs−1) 0

(|�̂q | − N−
q )+ 0 [ f ′](xs − z) 2[ f ′](z − x)+ 0

X̂2
s−1, X̂

2
s , X̂

2
s+1 2[ f ′](x − z)+ [ f ′](2|x − z| + min{xs − z, z − xs−1}) 2[ f ′](z − x)+

This allows us to restrict our further calculations to the piecewise linear function g. We
assume that z ∈ Is for some index s, and that [ f ′] > 0. Furthermore we denote by x the
midpoint of Is . In Table 7 we calculate X̂2

s−1, X̂
2
s and X̂2

s+1. Note that for s /∈ {−1, 0, 1},
second-order accuracy is immediate.

First assume that s = 0, in this case x∗ = x . From the table, it follows that X̂2
0 ≥

[ f ′]h/2. Combining this with (E.8) leads to the bound [ f ′]h/2 < ε + Ch2 sup| f ′′|. We
define again p∗

0 as the affine function through (x−1, p−2(x−1)) and (x0, p2(x0)), which
is a second-order accurate approximation of p0. We also introduce two new second-order
accurate approximations of p0 on I0,

p−
0 (x) = p−2(x) + [ f ′] (x0 − z)+

h
(x − x−1),

p+
0 (x) = p2(x) + [ f ′] (z − x−1)+

h
(x − x0). (E.9)

Indeed, p−
0 (x−1) = p∗

0(x−1) = p−2(x−1) and p−
0 (x0) = p−2(x0) + [ f ′](x0 − z)+ are both

second-order accurate on I0, therefore p−
0 is a second-order accurate approximation on I0 of

p∗
0 and hence of p0. A similar reasoning holds for p+

0 . This then leads to

|p±2(x
∗) − p0(x

∗)| ≤ |p±2(x
∗) − p±

0 (x∗)| + |p±
0 (x∗) − p0(x

∗)|
≤ [ f ′]h/2 + |p±

0 (x∗) − p0(x
∗)|

≤ ε + Ch2 sup| f ′′|. (E.10)

Next we assume that s = 1. Since X3
1 > 0, we have that x0 ≤ z < x . We distinguish two

subcases. First, if x0 ≤ z ≤ x/2 then X3
1 = 2[ f ′](x − z)+ ≥ [ f ′]h/2. Equation (E.8) is still

valid and a calculation as in (E.10) leads to the bound

|p±2(x
∗) − p0(x

∗)| ≤ 5

4
ε + Ch2 sup| f ′′| (E.11)

where we used that (z − x−1)+ ≤ 5h/4. Second, if x/2 < z < x then the intersection point
y of p−2 and p2 will be located in I1. This result can be deduced from the proof of Lemma
3 in [1], by taking I = Is in the beginning of the proof. The second-order accuracy then
follows from Case 1 or Case 2, depending on the value of X3

3. The case s = −1 is completely
analogous.

Case 7 In this case α = 0 and therefore f̂ε = p0(x∗) = f ∗.
We can now summarize all seven cases by the error bound

| f̂ε − f ∗| ≤ Ch2 sup| f ′′| + 3

2
ε, (E.12)

which concludes the proof.
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Appendix F: Weights of trained DeLENO networks

We can now compare the weights and biases of the trained networks to the theoretical ones
from Sect. 4. As the networks do not have an accuracy of 100%, it comes as no surprise
that these do not agree. We list the obtained weights and biases for the trained third-order
DeLENO interpolation network.

W 1 =

⎛
⎜⎜⎝

1.1951 2.0433 −11.7410 5.6383
2.9216 −2.8703 −2.5077 2.4624

−2.2775 7.6890 −7.2667 2.4914
3.2909 −5.8431 −5.6085 3.4171

⎞
⎟⎟⎠ , b1 =

⎛
⎜⎜⎝

−0.1069
−0.3615
0.0389
0.0605

⎞
⎟⎟⎠ ,

W 2 =
(−11.6122 4.2986 10.7356 8.1240

11.5929 −4.2767 −10.7357 −8.1316

)
, b2 =

(−2.5193
2.4493

)
.

(F.1)

The theoretical counterparts can be found in Eqs. (4.3) and (4.4). Below we list the obtained
weights and biases for the trained fourth-order DeLENO interpolation network.

W 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0559 −1.0026 1.1115 1.001 1 − 1.0569 −0.0001
−0.3547 0.3557 −0.8777 2.0707 −1.1983 −0.0051
−0.0060 −0.6155 1.6342 −1.4526 0.4599 −0.0370

0 0 0 0 0 0
0.0011 −0.1965 0.7964 −1.1817 0.7805 −0.1913

−0.3324 1.2088 −1.6946 1.0632 −0.2479 −0.0043
0.1432 −0.6459 0.9448 −0.5434 0.1271 −0.0154

−0.0076 −0.4239 0.8604 −0.0248 −0.8755 0.4517
0.0196 −0.1527 0.6286 −0.9194 0.6069 −0.1619

−0.0088 −0.2571 1.0627 −1.6288 1.0899 −0.2714

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0005
0.0029

−0.0005
−0.1217
0.0012
0.0007

−0.0010
0.0010
0.0027

−0.0005

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1.6803 0.2910 −3.1738 0 1.5946
0 −1.9935 −0.7975 3.2015 0 −1.9124
0 −0.3125 2.7085 0.7264 0 −0.2819
0 0 0 0 0 0
0 −1.3886 0.6976 0.6071 0 −1.3514
0 2.1097 0.8511 −3.6655 0 2.0568
0 0.6645 0.1485 −1.2784 0 0.5052
0 −0.0061 −1.4376 −0.0073 0 −0.0082
0 0.4580 −1.0432 0.0474 0 0.4542
0 0.6597 −2.6379 −0.4588 0 0.7357

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, b2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.0349
0.0993
0.0463
0.0284

−0.0570
0.0438

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(F.2)

W 3 =

⎛
⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 8.0933 0.6463 −5.7734 0 8.3502
0 2.0780 −10.0148 −0.3565 0 1.8241

⎞
⎟⎟⎠ , b2 =

⎛
⎜⎜⎝

−0.0316
−0.0432
−0.3800
0.4131

⎞
⎟⎟⎠ ,

W 4 =
⎛
⎝0 0 2.3377 −11.5452
0 0 2.2965 11.1520
0 0 −12.6485 −0.8555

⎞
⎠ , b4 =

⎛
⎝ 1.6841

−7.5807
8.2575

⎞
⎠ .

(F.3)

Note that these matrices and vectors again differ significantly from the theoretical weights
and biases from Eqs. (4.5–4.7). This shows that there are multiple neural networks which
can approximate the ENO interpolation procedure very well.
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