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Abstract
Radiative transfer is at the heart of the mechanism to explain the greenhouse effect based
on the partial infrared opacity of carbon dioxide, methane and other greenhouse gases in the
atmosphere. In absence of thermal diffusion, the mathematical model consists of a first order
integro-differential equation coupled with an integral equation for the light intensity and the
temperature, in the atmosphere. We revisit this much studied system from a mathematical
and numerical point of view. Existence and uniqueness and implicit solutions of the Milne
problem for grey atmospheres are stated. Numerical simulations are given for grey and non-
grey atmospheres and applied to calculate the effect of greenhouse gases. In the context of
a transparent atmosphere for sunlight, it is found that by doubling the absorption coefficient
in the infrared absorption range of CO2 the temperature decreases by 2%. On the other
hand, the same changes but in the low infrared range of the sunlight leads to an increase of
temperature in the atmosphere. Several computer codes were written to cross-validate the
results. The authors conclude that the radiative transfer model without thermal diffusion for
an atmosphere transparent to the incident sunlight is not capable of explaining the greenhouse
effect due to the greenhouse gases. A decreasing temperature due to an increasing proportion
of CO2 has been observed in the high atmosphere (D.W.J. Thomson et al, nature11579). In
the lower atmosphere thermal diffusion and convection cannot be neglected and since the
absorption coefficient are highly dependent on the temperature, a full ocean–atmosphere–
biosphere climate model is required. Hence, driving conclusions from this study on climate
change should be cautiously avoided and a review of the hypothesis of the radiative transfer
argument commonly found in textbooks should be revisited.
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1 Introduction

The greenhouse effect is an important element of the current theory of climate change. Some
gases in the Earth atmosphere like carbon dioxide C02 and methane CH4 absorb infrared rays
and thus contribute to a global warming of our planet. As explained in [9,14,23,26] the Sun
radiates light with a heat flux Q = 1370Watt/m2, in the frequency range (0.5, 20)×1014 Hz
corresponding approximately to a black body at temperature of 5800 K; 74% of this light
intensity reaches the ground because the atmosphere is almost transparent to this spectrum
and about 36% is reflected back by the clouds or the ocean, snow, etc. (albedo).

The Earth behaves almost like a black body at temperature Te = 288 K and as such
radiates rays of frequencies ν in the infrared spectrum (0.03, 0.6) × 1014 Hz.

So both the Sun and the Earth are approximate black bodies. The Planck theory says that a
black body at temperature T radiates electromagnetic waves in the entire frequency spectrum
ν ∈ R

+ with intensities given by the Planck function:

ν �→ Bν(T ) = 2�ν3

c2[e�ν
kT − 1]

(1)

where � is the Planck constant, c is the speed of light in the medium and k is the Boltzmann
constant.

A major discrepancy between reality and the black body theory for Earth is shown on
Fig. 1. It is due to the partial transparency of the atmosphere and the absorbing power of
CO2, H2O, O3, CH4, etc., in the infrared range. Figure 2 gives the absorption coefficients κν

for some gas (a transparent gas has κν = 0, and 1 if it is opaque.) Consequently, the infrared
light emitted by Earth, seen from far, has a defect of radiance in its spectrumwhich is affected
by the proportion of Green-House Gases (GHG): it is the greenhouse effect.

In this article we propose a mathematical and numerical investigation to quantify this
phenomenon, using a popular assumption on the transparency of the atmosphere to the
incoming sunlight ([14], eq. (2.16), (2.18)).

Fig. 1 The thermal infrared emission spectrum of the Sahara, as recorded from deep space by the Mars Global
Surveyor (MGS) Spacecraft in November 1996, (reprinted from xylenepower.com). CO2, O3, CH4 are clearly
responsible for infrared absorption
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Fig. 2 Absorption coefficient κν of some gases of the atmosphere in the range of frequencies of interest, but
versus wave length c/ν. (reprinted from wikipedia). Adding more CO2 increases κν in the range (8,15)μm

Photons travel at the speed of light; energy balance can thus be assumed instantaneous.
The atmosphere is affected by wind, rain, chemistry, etc., but at a very different time-scale; it
is believed – and to some extend asserted, (see [14]) – that even if all these other phenomena
are ignored, still the greenhouse effect, is present in the equations, and sufficient to explain,
partially, global warming. Consequently, in the article, we restrict the analyses to the energy
conservation equations for the radiative intensity and the temperature, Eq. (3) below.

Radiative transfers have been studied by astronomers, nuclear physicists, combustion-
ists and many other. Their work is summarized in [8,28]. Mathematical analyses are also
numerous and we send the readers to [11,15,20].

More recently, for obvious reasons, there is a renewed interest in numerical simulations
of radiative transfers. Among others the reader is sent to [10,18,19,22,24]. However, we are
not aware of a simulation of the very specific greenhouse gases (GHG) effect, as presented
here, namely:

Compare an atmosphere in which the absorption coefficient is κ0 at all frequencies with an
atmosphere in which the absorption coefficient is κ0, except in an infrared frequency interval
[ν1, ν2], where it is 1

2κ0.
The results are unexpected: the temperature of the first case is 2% less than in the second
case. This means that, with this model, greenhouse gases cool the Earth atmosphere!

The authors are applied mathematicians, with a limited knowledge of atmosphere dynam-
ics, yet competence in fluid mechanics and nuclear engineering, two fields concerned with
radiative transfers. So climatologists were consulted. Apparently this cooling phenomenon is
observed in the stratosphere [13,17]; however the changes in 03 may to play a role, something
which is not taken into account here. In the lower atmosphere, neglecting thermal diffusion
is not allowed because any change in temperature has a strong effect on the density of the
gases and on the absorption coefficient, creating winds, clouds etc.

Consequently this study does not upset the body of knowledge for climate studies, but it
invalidates the simple heuristic explanations of the green house effect found many books like
[23] and on the internet like the Al Gore experiment www.climaterealityproject.org/video/
climate-101-bill-nye.
In Sect. 2, the paper begins with a recall of the radiative transfer equations as derived from
fundamental thermodynamic principles. Then, in Sect. 3, the various approximations are
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reviewed using isotropy and also the special case where the absorption and scattering coef-
ficients do not depend on the light frequencies: Milne’s problem for grey atmosphere. On
the way the Chandrasekhar approximation is recalled, to account for the Earth radius. The
Chandrasekhar correction is very small but the equations are less singular at the poles [20].
Being important in plasma physics Milne’s problem has received many mathematical devel-
opments; these are reviewed in Sect. 4 and 5, applied to the grey atmosphere and compared
with Fowler’s [14].
The numerical study begins in Sect. 6. A finite element method with SUPG correction is
proposed and compared with a semi-analytical method based on an integral representation of
the light intensities. The later is computationally more expensive but it allows the validation
of the first method and demonstrate that 1/ the effect of the Chandrasekhar correction can
neglected numerically also, 2/ the (needed) SUPG correction does not degrade the precision
of the result.
Section 7 deals with the greenhouse effect; as explained above two cases are compared: one
with a constant absorption coefficient κ = κ0, another with κ(ν) = κ0 − 1(ν1,ν2)δκ , δκ

constant positive and less than κ0. Figure 8 shows that the two computer codes and a calculus
of variation done on the first one, all give a decrease of temperature from case 2 to case 1:
T (case 2)> T (case 1) at all altitudes when (ν1, ν2) is in the infrared range and the opposite
when (ν1, ν2) is in the lower range of the sunlight. However the precision is poor.

To assert the results, in Sect. 7.2, an iterative method is proposed whereby the light
intensity is eliminated and the resulting system is a set of coupled integral equations for the
temperature, function of altitude. The numerical results confirm the previous ones and with
this last formulation the results are independent of the mesh and time steps: the method is
much more robust and does not require to compute singular integrals.

In Sect. 8, a brief asymptotic analysis shows that the thermal diffusion will not upset the
results, so the defect of the current model lies in that κ is not a function of the temperature.
The numerical methods can be extended to the temperature dependent case but in [27], the
complexity of a model with temperature and altitude dependent coefficients is shown to
require special numerical techniques in the family of level sets: the correlated-k methods.

2 The fundamental equations

Let Iν(x,ω) be the intensity of the radiation of frequency ν in the direction ω at point x of
the physical domain �. Let T (x) be the temperature. Energy balance (see [14,28]) yields,

ω · ∇ Iν + ρκνaν

[
Iν − 1

4π

∫
S2
p(ω,ω′)Iν(ω′)dω′

]
= ρκν(1 − aν)[Bν(T ) − Iν], (2)

κT	T = ∇ ·
∫ ∞

0

∫
S2
Iν(ω

′)ω′dω′dν. (3)

Here, S
2 is the unit sphere, ρ(x) is the density of the medium, κν is the mass-extinction

coefficient, aν is the single scattering albedo; 1
4π p(ω,ω′) is the probability that a ray in the

direction ω scatters in the direction ω′, (recall that 1
4π

∫
S2

p(ω,ω′)dω′ = 1); both κν and
aν usually depend on ν, and even x. The constant κT is the thermal diffusion. Note that aν

and ρκ are dimensionless; the later is the absorption coefficient, i.e. the percentage of light
absorbed per unit length.

As usual, boundary conditions have to be given. For the temperature we may prescribe its
normal derivative to be zero for all x ∈ ∂�. The equation for the intensity being a first order
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equation, Iν should be given on �− defined as

�− = {(x,ω) ∈ ∂� × S
2 : n(x) · ω < 0} , (4)

where n is the outer unit normal of ∂�. However, we will deal also with cases which use on
�− some of the information arriving on �+ = {(x,ω) ∈ ∂� × S

2 : n(x) · ω > 0}.

2.1 Vanishing thermal diffusion

Proposition 1

∇ ·
∫

S2
Iν(ω)ωdω = ρκν(1 − aν)

(
4πBν(T ) −

∫
S2

Iν(ω)dω

)
. (5)

Proof It is shown by averaging (2) on S
2.

Corollary 1 The temperature equation which is normally written with a flux of radiative
energy (3), can be recast as (6):

κT	T =
∫ ∞

0
ρκν(1 − aν)

(
4πBν(T ) −

∫
S2

Iν(ω)dω

)
dν. (6)

Corollary 2 If the thermal diffusion κT is neglected in (6), then∫ ∞

0
κν(1 − aν)Bνdν =

∫ ∞

0
κν(1 − aν)

1

4π

∫
S2
Iν(ω)dωdν. (7)

Remark 1 When κν and aν are constant, (7) leads to the Stefan-Boltzmann law

σbT
4 =

∫ ∞

0

1

4π

∫
S2
Iν(ω)dωdν, with σb = 2�

15c2

(
kπ

�

)4

. (8)

Note that the standard definition of the Stefan-Boltzmann constant has an extra π .

Some proofs concerning the existence, uniqueness and stability for solutions of simplified
versions of this problem appear below. The most general case is discussed in the conclusion
with relevant and updated references.

3 One dimensional approximations

Proposition 2 Consider (2), (7) in a vertical slab� = (0, H)×R
2. Assume that the boundary

conditions at x = (x, y, z) are independent of y, z, and assume isotropic scattering (p
independent of ω and ω′)). Let n be the outer unit normal at x = H. Then, the solution
depends only on x and μ = cosφ = ω · n and Iν(x,ω) = I ′

ν(x, μ) and T (x) are given by
(1) and

μ∂x I
′
ν + ρκνaν

(
I ′
ν − 1

2

∫ 1

−1
I ′
ν(x, μ)dμ

)

+ ρκν(1 − aν)[I ′
ν − Bν] = 0, for all x ∈ (0, H), μ ∈ (−1, 1), (9)∫ ∞

0
κν(1 − aν)Bνdν =

∫ ∞

0

(
κν(1 − aν)

1

2

∫ 1

−1
I ′
ν(x, μ)dμ

)
dν, for all x ∈ (0, H).

(10)
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Fig. 3 The Sun, in the far right, sends sunlight to point P on the Earth surface. A cross section of Earth and
its atmosphere is shown in the plane defined by the axis Ox and the point P . The projection of the Earth
rotation axis in that plane is shown (bold line) but plays no role. As the Earth radius R is large compared with
the atmosphere thickness H we focus on a rectangle tangent to the Earth surface at P. In the end the radiative
transfer equations are set on the line (P, r), function of the angle ω where the observer observes the radiation
intensity

Proof Assume that Bν is a given function of x only. Both problems (2) and (9) have one and
only one solution. Let us show that Iν(x, y, z, ω1, ω2, ω3) = I ′

ν(x, cosφ) is a solution of (2)
when I ′

ν is a solution of (9).
Let t be the direction of the projectionωt ofω on the plane P of the slab boundary (Fig. 3).

Iν is invariant in t. Hence ωt = {ω1, ω2}T = {cosφ, sin φ}T ,

ω · ∇ Iν = ω1∂x Iν + ω2∂t Iν = cosφ∂x I
′
ν + sin φ∂t I

′
ν = cosφ∂x I

′
ν + 0 = μ∂x I

′
ν .

1

4π

∫
S2

Iν(x, μ)dω = 1

4π

∫ 2π

0

∫ π

−π

I ′
ν(x, cosφ)(− sin φ)dφdψ = 1

2

∫ 1

−1
I ′
ν(x, μ)dμ.

Once Iν(x, μ) known, then Bν becomes a function of x only by (7). ��

3.1 Application to the Earth–Sun problem

Consider Fig. 3 and apply the invariance of Proposition 2 to the rectangle tangent to Earth
at point P on its surface. The rectangle has width H , the thickness of the atmosphere and
length L small compared to the Earth radius R.

Accordingly I ′
ν depends only on the radial distance r to P , r ∈ (0, H) and on μ, the

cosine angle of the ray from Pr to the observer. So I ′
ν(r , μ) is studied for r ∈ (0, H) and

μ ∈ (−1, 1).
If sunlight hits the tangent plane to Earth at P at a constant angle θ with a frequency

dependent intensity Qν and if the atmosphere is transparent at that frequency, then

I ′
ν(0, μ) = μQν cos θ,∀μ ∈ (0, 1), I ′

ν(H , μ) = 0,∀μ ∈ (−1, 0). (11)

The first condition applies only when μ > 0 because μ < 0 corresponds to the backside of
the tangent plane.
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The second condition says that at the top of the atmosphere no ray comes back into the
atmosphere.

Now I ′
ν is uniquely defined by (9), (10), (11).

As the equations are linear, I ′
ν is proportional to cos θ . Hence to compute T at all points

of planet Earth, one needs only to compute it at the point of intersection of the sphere and
the Sun-Earth line and then multiply by cos θ . Reality is definitely more complex because
this theory implies, in particular, that the Earth temperature at night is zero Kelvin!

Note In this article we focus on methods rather than numbers; for clarity we neglect the
scattering, i.e. aν = 0, however, much of what is derived below applies also when isotropic
scattering is present.

3.2 Spherical symmetry

Chandrasekhar showed in [8] that the one dimensionality argument of Proposition 2, using
a tangent plane to Earth, can be extended to planets by using an osculatory spherical cap
instead of a tangent plane, to take into account the radius of the planet.

For clarity, consider a spherical planet receiving parallel light rays from infinity. The
planet’s radius is R and its atmosphere thickness is H . Let the radial distance to the surface be
r = |x|−R. Invariancewith respect to the azimuthal and latitude angles, after suitable scalings
by the appropriate cosines, and a similar argument as above, lead to the Chandrasekhar
correction (see [8]):

μ
∂ Īν
∂r

+ 1 − μ2

R + r

∂ Īν
∂μ

+ κνρ
(
Īν − Bν(T )

) = 0, ∀r , μ, ν ∈ (0, H) × (−1, 1) × R
+. (12)

and if thermal diffusion is neglected:

∫ ∞

0
ρκν

(
Bν(T ) − 1

2

∫ 1

−1
Īνdμ

)
dν = 0, ∀r ∈ (0, H). (13)

Note that no additional boundary condition to (11) is needed because 1 − μ2 is zero at
μ = ±1.

3.3 Dimensionless variables

These “Chandrasekhar equations” can be de-dimentionalized by introducing a length scale
λ, scaling factors for B, ν and ρ and set: r = r̃λ, R = R̃λ and H = H̃λ, ρ = ρ0ρ̃, ν = ν0ν̃

and Bν(T ) = B0 B̃ν̃ (T̃ ). Then we may rewrite the above and its boundary conditions as :
∀(r̃ , μ, ν̃) ∈ (0, H̃) × (−1, 1) × R

+,

μ
∂ Ĩν̃
∂ r̃

+ 1 − μ2

R̃ + r̃

∂ Ĩν̃
∂μ

+ κ̃ν̃ ρ̃
(
Ĩν̃ − B̃ν̃ (T̃ )

)
= 0,

∫ ∞

0
κ̃ν̃

(
B̃ν̃ (T̃ ) − 1

2

∫ 1

−1
Ĩν̃dμ

)
dν̃ = 0,

Ĩν̃ (H̃ , μ) = 0,∀μ ∈ (−1, 0), Ĩν̃ (0, μ) = μB−1
0 Qν cos θ,∀μ ∈ (0, 1), (14)

with

κ̃ν̃ = λρ0κν, B̃ = B−1
0

2hν30

c2
ν̃3

e
ν̃

T̃ − 1
, T = �ν0

k
T̃ , Īν = B0 Ĩν̃ . (15)
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3.4 Evanescent atmosphere

When ρ̃(r̃) = ρ0e−r̃ , we make a last change of variable (analogous to the optical depth
introduced in physics) to cope with that exponentially rarefying atmosphere: (r̃ , μ) → (τ :=
1 − e−r̃ , μ). Then, with Z = 1 − e−H̃ , find Ĩν(τ, μ), T (τ )) such that, for all τ, μ, ν ∈
(0, Z) × (−1, 1) × R

+,

μ
∂ Ĩν
∂τ

+ γ (τ, μ)
∂ Ĩν
∂μ

+ ρ0κ̃ν

(
Ĩν − B̃ν(T )

)
= 0,

∫ ∞

0
ρ0κ̃ν

(
B̃ν(T ) − 1

2

∫ 1

−1
Ĩνdμ

)
dν = 0.

Ĩν(Z , μ)|μ<0 = 0, Ĩν(0, μ)|μ>0 = μQ̃ν, (16)

where Q̃ν = Qν cos θ/B0. The Chandrasekhar correction is

γ (τ, μ) = 1 − μ2

(1 − τ)(R̃ − log(1 − τ))
(17)

Remark 2 Note that Ĩν(r̃ , μ) = Ĩν(−log(1 − τ), μ) and T̃ (r̃)) = T (−log(1 − τ)).
For clarity, from now on, we drop the tildes and rename ρ0κ̃ν as κν or κ if it is constant.

3.5 Grey atmosphere

By definition, in a grey atmosphere (Fowler [14] p70), nothing depends on ν. If in addition
the thermal diffusion is neglected, i.e. κT = 0, then the total radiation, I = ∫ ∞

0 Iνdν, is
given by (11) integrated in ν, and

μ
∂ I

∂τ
+ γ ∂μ I = κ[B − I ] with B(τ ) =

∫ ∞

0
Bν(T )dν = 1

2

∫ 1

−1
Idμ. (18)

Temperature is recovered from B(τ ) = σbT 4(τ ).

3.6 Themulti-group problem

In numerical computations one replaces the continuous map ν �→ Iν by a finite set of
frequencies {νk, Ik}K1 , and writes the system

μ
∂ Ik
∂τ

+ γ (τ, μ)
∂ Ik
∂μ

+ κνk

(
Ik − Bνk (T )

) = 0,

∑
k

κνk

(
Bνk (T ) − 1

2

∫ 1

−1
Ikdμ

)
(νk − νk−1) = 0,

Ik(Z , μ)|μ<0 = 0, Ik(0, μ)|μ>0 = μQνk , k = 1, . . . , K . (19)

Recall that T , which is a function of τ only, couples all the {Ik}. This formulation will be
used in the numerical Sect. 7.
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3.7 TheMilne problem

When γ is neglected in (18), the problem is known as Milne’s problem in � = (0, Z) ×
(−1, 1):

μ
∂ I

∂τ
+ κ

(
I − 1

2

∫ 1

−1
Idμ

)
= 0, ∀τ, μ ∈ �, I (Z , μ)|μ<0 = 0, I (0, μ)|μ>0 = μ.

(20)

When κ = κνρ0, the integral with respect to ν of the solution of (16) is I times Q the integral
of Q̃ν with respect to ν.

4 More about theMilne problem

Emphasis on the Milne problem is motivated by the following facts:

• it corresponds to a local in space description of the atmosphere say of height Z because
for R large compared to Z the Chandrasekhar correction can be neglected;

• one can introduce the point of view of functional analysis (cf. [11] chapter 21 Vol 9)
without going into details but keeping things as explicit as possible;

• one can also use very explicit computations, derived at a time when computers were not
available, before the 1950.

We consider the abstract problem (22) in � = (0, Z) × (−1, 1).

Theorem 1 With

f ∈ L2(�) μ
1
2 g0 ∈ L2(0, 1) and |μ| 12 gZ ∈ L2(−1, 0) (21)

the problem

μ∂τ I + I − 1

2

∫ 1

−1
I (τ, μ′)dμ′ = f , I (0, μ)|μ>0 = g0(μ), I (Z , μ)|μ<0 = gZ (μ),

(22)

has a unique solution I ∈ L2(�) which satisfies the estimate:

‖I‖L2(�) ≤ C(Z)
{
‖ f ‖L2(�) + ‖μ 1

2 g0(μ)‖L2(0,1)) + ‖|μ| 12 gZ (μ)‖L2(−1,0))

}
(23a)

Moreover when the data f , g0, gZ are non negative , the same is true for I , the solution of
(22). With f = 0 one has:

sup I (τ, μ) ≤ max
(

sup
μ∈(0,1)

g0(μ), sup
μ∈(−1,0)

gZ (μ)
)
. (23b)

Proof The leading ideas are given below while details can be found in [11]. They are all
based on the estimate of physical quantities which are translated into “mathematical” norms.
When unambiguous, the symbol ‖.‖ will be used below to denote, the L2 norm in (L2(�),
L2

μ(−1, 1), L2
μ(0, 1) and L2

μ(−1, 0) ; the subscript μ indicates the variable of integration.
Observe that the formula,

I (τ, μ) = 1

2

∫ 1

−1
I (τ, μ)dμ +

(
I (τ, μ) − 1

2

∫ 1

−1
I (τ, μ)dμ

)
, (24)
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gives the decomposition of I ∈ L2
μ(−1, 1) in its orthogonal projection on the space of

μ-independent functions and on its orthogonal (i.e. function of 0 μ-average).
One introduces for ε ≥ 0 the regularized equation:

ε Iε + μ∂τ Iε + Iε − 1

2

∫ 1

−1
Iε(τ ;μ′)dμ′ = f (τ, μ)

Iε(0, μ)|μ>0 = g0(μ), Iε(Z , μ)|μ<0 = gZ (μ).

(25)

A priori estimate and uniqueness Let us multiply this equation by Iε and integrate with
respect to τ and μ :

ε

∫
�

I 2ε dτdμ +
∫ 1

−1

μ

2
I 2ε

∣∣∣Z
0
dμ +

∫
�

Iε

(
Iε − 1

2

∫ 1

−1
Iεdμ

)
dτdμ =

∫
�

Iε f dτdμ. (26)

Notice that
∫

�

Iε

(
Iε − 1

2

∫ 1

−1
Iεdμ

)
dτdμ =

∫
�

∣∣∣∣Iε − 1

2

∫ 1

−1
Iεdμ

∣∣∣∣
2

dτdμ. (27)

Hence

ε‖Iε‖2L2(�)
+ ‖Iε − 1

2

∫ 1

−1
Iε(τ, μ)dμ‖2L2(�)

+
∫

�+

|μ|
2

I 2ε dμ =
∫

�−

|μ|
2

I 2ε dμ

+
∫

�

Iε f dτdμ; (28)

using the Cauchy Schwarz inequality:

ε‖Iε‖2L2(�)
+ ‖Iε − 1

2

∫ 1

−1
Iε(τ, μ)dμ‖2L2(�)

≤ ‖Iε‖L2(�)‖ f ‖L2(�) + ‖|μ| 12 Iε‖L2(�−)‖|μ| 12 g(τ, μ)‖L2(�−) . (29)

Since the problem is linear, denoting by I 1ε − I 2ε the difference of two solutions with the same
boundary data g0 and gZ and same external density f , one deduces from (29) the uniqueness
because

ε‖I 1ε − I 2ε ‖2L2(�)
+ ‖I 1ε − I 2ε − 1

2

∫ 1

−1
(I 1ε − I 2ε )dμ‖2L2(�)

≤ 0. (30)

To extend this observation to the case ε = 0 one observes that in such case (30) gives:

‖I 1ε − I 2ε − 1

2

∫ 1

−1
(I 1ε − I 2ε )dμ‖2L2(�)

= 0 (31)

which gives the relation

μ∂τ (I
1 − I 2) = 0 , with I j (0, μ)|μ>0 = 0, I j (Z , μ)|μ<0 = 0, j = 1, 2 (32)

which implies I 1 = I 2. ��
Existence of solutions for ε > 0

For clarity the proof of the estimate (29) and of the existence of a solution Iε are done
in the absence of boundary source. Then, using the linearity of the problem it can be easily

123



The radiative transfer model for the greenhouse effect 499

adapted to more general situations. First with ε > 0 for (29) one obtains a trivial stability
estimate

‖ Ĩε‖2L2(�)
≤ 1

ε
‖ f ‖2L2(�)

(33)

To prove the existence of the solution one considers with ε > 0 the Milne problem (25)
in an iterative form,

(1 + ε)I n+1
ε + μ∂τ I

n+1
ε = 1

2

∫ 1

−1
I nε (τ ;μ)dμ + f (τ, μ), (34)

leading to the estimate

‖I n+1
ε ‖ ≤ 1

1 + ε
(‖I nε ‖ + ‖ f ‖), (35)

which shows that the mapping I nε �→ I n+1
ε is a strict contraction.

Then the same type of proof works also for the case f = 0 with non zero incoming data
on �− with the estimate:

‖I n+1
ε ‖2 ≤ 1

1 + ε
(‖I nε ‖2 +

∫ 1

0
μ|g0(μ)|2dμ +

∫ 0

−1
|μ|gZ (μ)|2dμ) (36)

and the solution of the general problem with ε > 0 non zero, f and non zero (g0 and
gZ ), follows by linearity. The above construction will be used to prove convergence of the
numerical method in the second part of the paper.

Existence of a solution for ε = 0
To let ε → 0, one proceeds with the following contradiction argument. If there would be

no finite constant C for which holds the relation:

‖Iε‖2L2(�)
≤ C‖ f ‖2L2(�)

(37)

that would imply the existence of a family of functions fε of L2(�) with norm equal to
1 while the corresponding solution of Iε would go to infinity in the same norm. Then it
generates a solution to the problem:

f̃ε = fε
‖Iε‖ → 0 Ĩε = ‖ Iε

‖Iε‖‖ = 1,

μ∂t
Iε

‖Iε‖ + (
Iε

‖Iε‖ − 1

2

∫ 1

−1

Iε
‖Iε‖dμ) = fε

‖Iε‖ → 0.

(38)

Now Ĩε converge weakly to a limit solution of the Milne problem with zero data, hence to 0
by the uniqueness of the solution. To complete (by contradiction) the proof one has to show
the strong convergence of Ĩε which is of norm 1. This follows from the so called averaging
lemma (cf [11,16]) using the estimate.

‖μ∂t Ĩε‖ ≤ ‖( Iε
‖Iε‖ − 1

2

∫ 1

−1

Iε
‖Iε‖dμ)‖ + O(ε) (39)

Proof of the non negativity Positivity can be shown by the following standard intuitive argu-
ments.
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Denote by (τ+, μ+) (resp. (τ−, μ−)) the point where Iε achieves its maximum (resp
minimum). Then whenever the maximum (resp. minimum) is reached inside the open set
(0, Z) × (−1, 1) one has:

μ∂τ Iε = 0, Iε(τ+, μ+) − 1

2

∫ 1

−1
Iε(τ+, μ)dμ ≥ 0,

resp. Iε(τ−, μ−) − 1

2

∫ 1

−1
Iε(τ−, μ)dμ < 0 (40)

And if it is reached on the boundary (τ+, μ+) ∈ �+ and/or (τ−, μ−) ∈ �− one has:

(μ∂τ Iε)(τ+, μ+) ≥ 0, and/or (μ∂τ Iε)(τ−, μ−) ≤ 0 . (41)

Consequently, the equation:

ε Iε + μ∂τ Iε + Iε − 1

2

∫ 1

−1
Iε(τ, μ)dμ = f (τ, μ) (42)

implies that if the data f , g0 and gZ are non negative and if the minimum is reached inside
the domain it cannot be negative and if reached on �+ by (41) it cannot be negative either.
The only remaining case is the situation where this minimum is reached on �− but then it
coincides with g0 or gZ which both are non negative. Hence in all cases one has

Iε(τ, μ) ≥ Iε(τ−, μ−) ≥ 0 (43)

In the same way for the solutions of the problem

ε Iε + μ∂τ Iε + Iε − 1

2

∫ 1

−1
Iε(τ, μ)dμ = 0, (44)

with g0(μ) ≥ 0 and gZ (μ) ≥ 0, (45)

a positive maximum cannot be reached inside the domain because with (40) it should be
negative which contradicts (45) , and it cannot be reached on�+ by the same argument since
Iε coincides with g0(μ) or gZ (μ) . Since the above properties are independent of ε the proof
of the positivity and of the estimate (23b) follow by letting ε → 0. ��
Remark 3 For the above problem L∞ estimates and positivity for I or Iε are even more
natural than L2 estimates. However, to produce a complete mathematical proof one proceeds
as follow:

1. Observe that the above estimates are fully valid for C1 solutions.
2. Use the fact that smooth solutions with smooth data are dense in the set of solutions and

that the above estimates remain valid under weak limit.

This approach is documented with details and used in [1].

To conclude this section it is convenient to recall the implicit formula for the solution of the
problem:

Proposition 3 Let J (τ ) = 1

2

∫ 1

−1
I (τ, μ)dμ. The solution of (22) with (21) satisfies

I (τ, μ) = 1μ>0
( 1
μ
e− τ

μ g0(μ) +
∫ τ

0
e− τ−t

μ (J (t) + f (t, μ))
dt

μ

)

+ 1μ<0
( 1

|μ|e
− Z−τ

|μ| gZ (μ) −
∫ Z

τ

e− Z−t
|μ| (J (t) + f (t, μ))

dt

|μ|
)
. (46)
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This formula under different variants will be used below.

4.1 Milne Problem and“non explicit formula” for the temperature in terms of the
albedo of the Earth

The fraction of the incoming solar energy scattered by Earth back to space is referred to as the
planetary albedo and is an essential component of the Earth energy balance; cf. for instance
[30]. In particular it can be combined with Milne problem to determine the temperature of
the Earth as described below.

Hence in (0, Z)×(−1, 1) one considers an intensity of radiation which evolves according
to the equation:

μ∂τ I + I − 1

2

∫ 1

−1
I (τ, μ′)dμ′ = 0 (47)

Then on the upper atmosphere τ = Z an incoming boundary condition is given, for instance:

I (Z , μ)|μ<0 = |μ|I∞ (48)

with I∞ representing the intensity of the radiation coming from the Sun.
On the surface of the Earth, i.e. for τ = 0, the amount of radiation scattered back in

the atmosphere I (0, μ)|μ>0 depends on the incoming radiation I (0, μ)|μ<0. Therefore one
assumes that it is given by the albedo operator A:

I (Z , μ)|μ>0 = A(
I (0, μ)|μ>0

)
(49)

Such operator may depend on many parameters in a very complex fashion (cf. the discus-
sion in Sect. 2.2 of [30]). However, in the present setting of the Milne problem we assume

thatA – which is a data of the problem– is a linear contraction operator in the |μ| 12 weighted
Sobolev spaces:

A : L2(|μ| 12 , (−1, 0)) �→ L2(μ
1
2 , (0, 1)), ‖A(I )‖ ≤ ‖I‖ . (50)

Then one has the following:

Theorem 2 1. In � = (0, Z) × (−1, 1) the problem

μ∂τ I + I − 1

2

∫ 1

−1
I (τ, μ′)dμ′ = 0 (51)

with the incoming data

I (Z , μ)|μ<0 = |μ|I∞ (52)

and the albedo data

I (0, μ)|μ>0 = A(I (0, μ)|μ<0) (53)

has a unique solution IA ∈ L2((0, Z) × (−1, 1)) .

2. According to the Stefan Boltzmann law the temperature on the Earth is given by the
formula:

T = (
C(Z ,A)

σ
)
1
4 I

1
4∞ (54)

with C(Z ,A) denoting a constant depending on the depth of the atmosphere Z and the
albedo operator A .
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Proof Existence follows by the same ε regularization as above as a consequence of the
linearity of the boundary value problem and of the albedo operator.

Uniqueness can be show by studying I = I1 − I2 where I1, I2 are two distinct solutions.
The operator I �→ I− 1

2

∫ 1
−1 I (τ, μ

′)dμ′ is the L2(−1, 1)-projection operator on the subspace
of zero average functions and

∫ Z

0

∫ 1

−1

(
I (τ, μ − 1

2

∫ 1

−1
I (τ, μ′)dμ′

)2

dμ =
∫ Z

0

∫ 1

−1

(
I − 1

2

∫ 1

−1
I (τ, μ′)dμ′

)
I (τ, μ)dμ

= −
∫ Z

0

∫ 1

−1
μ′∂τ I (τ, μ

′)dμ′ I (τ, μ)dμ =
∫ 1

−1

μ

2
I (0, μ)2dμ −

∫ 1

−1

μ

2
I (Z , μ)2dμ. (55)

As I (Z , μ)|μ<0 = I1(Z , μ)|μ<0 − I2(Z , μ)|μ<0 = 0, the above leads to

∫ Z

0

∫ 1

−1

(
I (τ, μ − 1

2

∫ 1

−1
I (τ, μ′)dμ′

)2

dμ =
∫ 1

−1

μ

2
I (0, μ)2dμ. (56)

However the albedo operator is a contraction, so

∫ 1

−1

μ

2
I (0, μ)2dμ = −

∫ 0

−1

|μ|
2

I (0, μ)2dμ +
∫ 1

0

μ

2
[A(I (0, μ))]2dμ ≤ 0. (57)

Consequently (56) implies that I = 0. ��

Remark 4 • Observe that the above analysis can be applied with almost no modification to
the case where the hypothesis (52) for the incoming radiation is replaced by

I (0, μ)|μ>0 = φ(μ)I∞ whereφis given in L2(μ
1
2 , (0, 1)) . (58)

However, C(Z ,A) is replaced by a coefficient C(Z , φ,A) which may depend on φ in a
less explicit and more subtle way.

• The casewhere no radiation is reemitted (in otherworldwhere all the radiation is absorbed
by the Earth) fits simply in the above discussion with A = 0 .

• The case where the Earth acts like a mirror reemitting all the incoming radiation fits also
simply in the above discussion with

I (0, μ)|μ>0 = I (0,−μ)|μ>0 = A(I (0, μ)|μ<0). (59)

• To describe a situation where a certain fraction α (Maxwell accommodation coefficient)
of the radiation is reemitted while the rest is homogenized, maintaining the total intensity
equal to 0 , one introduces the albedo operator.

I (0, μ)|μ>0 = A(I (0, μ)|μ<0) = α I (0,−μ) + (1 − α)

∫ 1

0
I (0,−μ)dμ (60)

which satisfies the hypothesis of the theorem 2 and leads to a constant C(Z , α) . In
particular this accommodation coefficient may depend on the Earth temperature T and
that would lead, for the atmosphere temperature to an even more implicit equation of the
form (54) with a temperature dependent operator A(T ).

σT 4 =
∫ 0

−1
I (0, μ)dμ +

∫ 1

0
A(α(T ), I (0, μ)μ<0)(μ)dμ (61)
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5 The half-spaceMilne problem

Let us study the case Z = +∞, the so-called half-space Milne problem. For the Milne
equation (47), define the flux by �I (τ ) := ∫1−1 μI (τ, μ)dμ. Then one has

d

dτ
�I (τ ) = 0 and

d

dτ

∫ 1

−1
μ2 I (τ ;μ)dμ + �I (τ ) = 0 (62)

As a consequence to remain uniformly bounded with respect to τ for Z → ∞ any solution
of (63) has to have �I = 0. This justifies the following (cf.([6] and [5])

Theorem 3 For any incoming data g0(μ) defined for τ = 0 and μ ∈ (0, 1) with g0(μ) ∈
L2(μ

1
2 , (0, 1)), there exists a unique uniformly bounded in τ solution of the half space Milne

problem:

μ∂τ I + I − 1

2

∫ 1

−1
I (τ, μ′)dμ′ = 0, ∀τ ∈ R

+, I (0, μ)|μ>0 = g0(μ) . (63)

This solution has zero flux and satisfies the estimates:

sup
τ≥0,μ∈(−1,1)

|I (τ, μ)| ≤ sup
μ∈(0,1)

|g0(μ)| and
∫ ∞

0
eατ

∫ 1

−1
(I − 1

2

∫ 1

−1
I )2dμ′

≤ 1

1 − α

∫ 1

0
μ|g(0, μ)|2|dμ, ∀α ∈ [0, 1). (64)

This solution converges exponentially fast to a constant C(g0); moreover the mapping g �→
C(g) is linear continuous from L2(|μ| 12 , (0, 1)) into R.

Proof Once again the proof is only sketched below; for details see [5]. First one considers the
solution on a double domain (0, 2Z)×(−1, 1)with incoming boundary data I (2Z , μ)|μ<0 =
g0(−μ). This makes the solution of (47) unique, well defined and symmetric with respect to
Z × (−1, 1) in the sense

∀{|z| < Z , μ ∈ (−1, 1)} I (Z − z, μ) = I (Z + z,−μ) .

Hence, �I (Z) = ∫ 1
−1 μI (Z , μ)dμ = 0. Since �I (τ ) is independent of τ , it is equal to 0

everywhere.
Then the decomposition of I into its average Ia(τ ) = 1

2

∫ 1
−1 I (τ, μ

′)dμ′ and the orthog-

onal complement Iort = I − 1
2

∫ 1
−1 I (τ, μ

′)dμ′ gives, with the 0-flux property, the relation:
∫ 1

−1
μI 2(τ, μ)dμ =

∫ 1

−1
μ

(
I (τ, μ) − 1

2

∫ 1

−1
I (τ, μ′)dμ′

)2

dμ (65)

Multiplying the equation by eατ I with 0 < α < 1 and integrating on (0, Z) × (0, 1) with
the relation:

eατ

∫ 1

−1
(μ∂τ I )Idμ = ∂τ (e

ατ 1

2

∫ 1

−1
μI 2dμ)) − αeατ 1

2

∫ 1

−1
μI 2dμ. (66)

Thus, one obtains the estimate:

(1 − α)

∫ Z

0
eατ

∫ 1

−1
μ(I (τ, μ) − 1

2

∫ 1

−1
I (τ, μ′)dμ′)2dμ)dτ ≤

∫ 1

0
μ|g0(μ)|2dμ. (67)
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With (47) one can show that it gives the exponential convergence to a constant C(g) for
Z → ∞.

The uniqueness of the solution is based on the same type of estimates. ��
Remark 5 The determination of g �→ C(g) and in the quest for an explicit or semi explicit
formula has been in the last century the object of intensive activities involving in particular the
Wiener-Hopf calculus (cf. [7]). However, the most explicit form is based on the introduction
of the Chandrasekhar function H , defined by the implicit formula:

H(μ) = 1 + 1

2
μH(μ)

∫ 1

0

H(μ′)
μ + μ′ dμ

′, (68)

which gives the constant C(g) by the relation

C(g) =
√
3

2

∫ 1

0
μ′H(μ′)g(μ′)dμ′ . (69)

In particular for g(μ) = μ one has ω1 := C(μ) = 0.7014.

5.1 Approximate determination of the temperature on Earth

We present an approximation which yields a temperature on Earth based on the asymptotic
behaviour of the half-space Milne problem.

5.1.1 Using Theorem 3

We return to climate dynamics where r ∈ (0, H) is the altitude but not in an evanescent
atmosphere, i.e. with (14) without the Chandrasekhar correction. We make the following
change of variable

y(r) =
∫ r

0
κρ(r ′)dr ′,

and assume that r �→ ρ(r) does not decrease too fast so that y(+∞) = +∞. Then we focus
on the case H >> 1. If the atmosphere is grey, one observes that I (y, μ) = y−μ is solution
of the Milne equation (63) for y ∈ R

+, μ ∈ (−1, 1). Assume constant flux given by

�̃ =
∫ 1

−1
μ(y − μ)dμ = −2

3
. (70)

Hence one introduces the solution e(y, μ) of the half space problem with 0 flux and equal
to μ at y = 0 for μ > 0. As was proved in theorem 3 such solution exists, is unique,
and converges exponentially fast to a constant ω1 as y goes to ∞. As such, for some small
function rem,

I = c[y − μ + rem(y, μ)] (71)

provides a boundary layer approximation (i.e. for y > 0, y << 1) of the solution of the
Milne problem with a flux given equal to 2

3c and no incoming radiation for y = 0 and
rem(y, μ) going exponentially fast to ω1 when y → ∞. Hence for y large enough one has

I (y, μ)|μ<0 = c[y − μ + ω1] + o(e−αy) (72)
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Table 1 The physical constants

c � k ρ0 R H σb

2.998 × 108 6.6261 × 10−34 1.381 × 10−23 1.225 × 10−3 4 × 107 12 × 103 1.801 × 10−8

Now let us use the linearity of the solution with respect to the data and consider the same
problem with incoming intensity without the term o(e−αZ ). As this is a small perturbation,
we expect the solution at y = 0 to be

I (0, μ) ≈ c[−μ + ω1]. (73)

Consequently,
∫ 1

−1
I (0, μ)dμ � c

∫ 0

−1
((−μ) + ω1)dμ = c

2
+ cω1 (74)

For a solar flux equal to� the intensity IEarth is obtained after multiplication by 3
2� (see 70).

This gives:
∫ 1

−1
IEarth(μ)dμ � 3

4
�(1 + 2ω1) (75)

and with the Stefan-Boltzmann law one obtains:

TEarth �
(

3

8σ
�(1 + 2ω1)

) 1
4

(76)

Formula (76) with � = Q(1 − a)/4 as in [14] eq. (2.2), p.66, gives T = 282K.

6 Numerical analysis

Consider (16), dedimentionalized andwithout the Chandrasekhar correction. Given the phys-
ical constants ofTable 1 and following (14),(15),we set ν0 = 1014 so that for the computations

ν ∈ (0.01, 20) is enough; we choose B0 = 2�ν30
c2

= 1.47× 10−8 and T0 = �ν0
k = 4798; then

the physical quantities (noted with a breve) are recovered by T̆ = T0T , B̆ν(T ) = B0Bν(T ),
Ĭν = B0 Iν . Similarly we choose λ = 103 and set κν = λρ0κ̆ν = 1.225κ̆ν . Thus an altitude
of 12km gives Z = 1 − e−12.

The energy of sunlight is 1370Wm−2; in Paris, cos θ = 1/
√
2, so with a = 0.36, Q =

1370(1 − a)/
√
2 = 620. Furthermore TSun = 5.8/4.798 = 1.209.

If κν is independent of ν then Ī = ∫ ∞
0 Iνdν may be computed by (20) with gZ = 0 and

T be given by

T (τ ) =
(

Q

2σb

∫ 1

−1
I (τ, μ)dμ

) 1
4

, σb = B0ν0

15

(
π

T0

)4

(77)

Without dimensional scaling, with κν = κ constant, the total light intensity, is given by

μ∂τ Ī + κ( Ī − 1

2

∫ 1

−1
Ī ) = 0, Ī (0, μ)|μ>0 = μQ, Ī (Z , μ)|μ<0 = 0 (78)
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This comes from an integration in ν of

μ∂τ Ĭν + κν( Ĭν − B̆ν) = 0,
∫ ∞

0
κν(B̆ν − 1

2

∫ 1

−1
Ĭν)dν = 0, Ĭ (0, μ)|μ>0 = μQ0 B̆ν(T̆Sun),

with Ĭ (Z , μ)|μ<0 = 0. Indeed, an integration with respect to ν yields

μ∂τ Ī + κ( Ī − B̄) = 0, κ(B̄ − 1

2

∫ 1

−1
Ī ) = 0, Ī (0, μ)|μ>0 = μQ0

∫ ∞

0
B̆ν(T̆Sun)dν.

Hence we must have

Q0

∫ ∞

0
B̆ν(T̆Sun)dν = Q0σbT̆

4
Sun = Q, ⇒ Q0 = Q

σbT̆ 4
Sun

= 3.042 × 10−5.

De-dimensionalization requires to sets Iν = Ĭν/B0, so the system becomes (79):

6.1 The dimensionless problem

μ∂τ Iν + κν (Iν − Bν(T (τ ))) = 0, ∀{τ, μ} ∈ (0, Z) × (−1, 1),∀ν ∈ R
+,

Bν(T ) = ν3

e
ν
T − 1

,

∫ ∞

0
κν

(
Bν(T (τ )) − 1

2

∫ 1

−1
Iνdμ

)
dν = 0, ∀τ ∈ (0, Z),

(79)

with Iν(Z , μ)|μ<0 = 0, I (0, μ)|μ>0 = μQν := Q0μBν(TSun), Z = 1 − e−12 and TSun =
1.209, Q0 = 3.042 × 10−5.

6.2 Numerical scheme

For (79), two numerical schemes are used. Both need the following fixed-point iterations:

μ∂τ I
n+1
ν + κν(I

n+1
ν − Bν(T

n(τ )) = 0,∫ ∞

0
κνBν(T

n+1(τ ))dν =
∫ ∞

0

κν

2

∫ 1

−1
I n+1
ν dμdν. (80)

The first, referred below as “implicit”, is based on a discretization of the exact solution of
the first equation:

I n+1
ν (τ, μ) = 1μ>0

[
μQνe

−κν
τ
μ +

∫ τ

0

eκν
t−τ
μ

μ
κνBν(T

n(t))dt

]

+ 1μ<0

∫ Z

τ

eκν
τ−t
μ

μ
κνBν(T

n(t))dt . (81)

Programming is straightforward; it needs only to be evaluated at all vertices of a triangulation
of the rectangle�. The integrals are approximated by a second order quadrature (trapezoidal
rule) on a non uniform discretization of (0, Z) to account for the fast variations in the tiny
interval where infrared radiations occur. Updating T with the second Eq. of (80) is hard in

general but simple in the grey case, κ constant, because the left side is κπ4T n+14/15.
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Table 2 Numerical error versus mesh size h on Example 1: the error is O(h)

Number of Vertices 1107 4008 9856

L2-error by FEM 20. × 10−4 7.7 × 10−4 3.7 × 10−4

L2-error by (81) 14. × 10−4 0.45 × 10−4 0.12 × 10−4

In the grey case, Table 2 shows the error versus the mesh size for Ex. 6.2.1, below. Note
however that the precision is weak: O(h), probably because the integrands are singular at
μ = 0, τ = 0.

The second method is based on a finite element discretization of the PDE as in [19].
It uses a weak formulation of (80) discretized in Vh , the space of Lagrangian-P1 triangular
elements. For stability a least square upwinding term (SUPG) is added, namely hSUPG(μ∂τ I+
κ I )(μ∂τ Î +κ Î ) for a small hSUPG, where Î is the test function of the variational formulation.
This means that at each iteration n of a fixed-point loop one must solve

∫
�

(
κ I n+1 Î + μ∂τ I

n+1 Î + hSUPG (μ∂τ I
n+1 + κ I )(μ∂τ Î

n+1 + κ Î )
)

=
∫

�

κBn Î , (82)

with I n+1 ∈ Vh satisfying the boundary conditions and for all Î ∈ Vh with Î (0)|μ>0 =
I (Z)|μ<0 = 0 . The method has been implemented using FreeFem++ [21], which uses
the library UMFPACK [12] to solve the linear systems. We found that the method works best
when the triangulation is build first in the physical variables r , φ and then mapped to the
rectangle of τ, μ. The automatic mesh refinement of FreeFem++, which is based on the
Hessian of I n here, is also convenient to improve precision.

6.2.1 Example

Bν(t) = t, κν = 1, Qν = 1 ⇒ Iν = 1μ>0

[
2μe− τ

μ − μ
]

− 1μ<0

[
μ(1 − e

(Z−τ)
μ )

]
.

The performance of both methods are reported in Table 2. The Finite element method (82)
appears to be less precise than (81), but much faster. Adjustment of hSUPB is done once and
for all proportionally to the number of points on ∂�.

6.3 Convergence of the iterative scheme

For clarity let κ = 1. Scheme (80) is modified slightly with a parameter ε

μ∂τ I
n+1 + (1 + ε)I n+1 = 1

2

∫ 1

−1
I ndμ

As observed in [1,2] solutions of scalar kinetic equation with 0 incoming data are 0 viscosity
limit of elliptic equations; therefore it is natural to introduce such regularization.

Adding the terms with ε makes also the convergence proof simple. Indeed, as for the
derivation of (35)

μ∂τ (I
n+1 − I n) + (1 + ε)(I n+1 − I n) = 1

2

∫ 1

−1
(I n − I n−1)dμ

123



508 C. Bardos, O. Pironneau

Table 3 Convergence of the fixed-point algorithm with κν = 1

Iteration 1 2 3 4 5

‖I n+1 − I n‖20 0.524721 0.0315412 0.00777077 0.00188975 0.000457752

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Fig. 4 Light intensity level map in the physical domain, i.e. for all φ and r . Even though the circle has radius
R = 3H , this is not a plot on a cross section of the planet. It shows I (r , φ) for r ∈ (0, H) and φ ∈ (−π, π)

Consequently,
∫

�

μ

2
∂τ (I

n+1 − I n)2 + (1 + ε)

∫
�

(I n+1 − I n)2 =
∫

�

(I n+1 − I n)(I n − I n−1)

⇒
∫ 1

−1
μ|I n+1 − I n |2dμ

∣∣∣Z
0

+ (1 + ε)‖I n+1 − I n‖20,� ≤ ‖I n+1 − I n‖0,�‖I n − I n−1‖0,�

⇒ ‖I n+1 − I n‖0,� ≤ 1

(1 + ε)
‖I n − I n−1‖0,� ≤ 1

(1 + ε)n
‖I 1 − I 0‖0,�

6.3.1 Results

In practice the convergence is much faster than predicted above, even with ε = 0, as shown
by Table 3. A typical result is also shown, in the physical coordinates, on Fig. 4 for (78)
with Q = 1. It shows the solution of the Milne problem computed on a grid 40 × 20. The
temperature on Earth, given by (77), is T = 298 K.

6.4 The Chandrasekhar equation

For a grey atmosphere the model with the Chandrasekhar correction reduces to

μ∂τ I + κ I + γ ∂μ I = κ

2

∫ 1

−1
Idμ, ∀τ, μ ∈ � := (0, Z) × (−1, 1) (83)
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Fig. 5 Temperature computed
with the Milne and
Chandrasekhar equations. In the
later case the Earth radius is 2 or
10 times the atmosphere
thickness
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and (11). The two schemes above are easilymodified to accommodate γ . For the FEMscheme
one just adds to (82) γ (τ, μ) Î∂y I under the left integral of (82) plus an upwinding term like
(85) below.

The implicit scheme is modified as follows:

[1] Bn(τ ) = 1

2

∫ 1

−1
I n(τ, μ)dμ,

[2] I n+ 1
2 = 1¯>0

[
μe−κ τ

μ +
∫ τ

0

eκ t−τ
μ

μ
κBn

ν (t)dt

]
− 1¯<0

∫ Z

τ

eκ t−τ
μ

μ
κBn

ν (t)dt,

[3]
∫

�

(I n+1 + γ ∂μ I
n+1) Î =

∫
�

I n+ 1
2 Î , ∀ Î ∈ Vh, with boundary conditions (11).

(84)

This scheme is consistent because I n+ 1
2 satisfies μ

κ
∂τ I n+ 1

2 + I n+ 1
2 = Bn and adding this to

the last equation above gives I n+1 + γ
κ
∂μ I n+1 + μ

κ
∂τ I n+ 1

2 = Bn .
In practice some additional artificial viscosity of amplitude δ should be added on the left

in (84) ∫
�

δ

2

(
|μ|∂τ I∂τ Î + |γ |∂μ I∂μ Î

)
(85)

When the above is discretized by a P1 Finite Element Method, the convergence of the fixed-
point algorithm is equally fast; results are shown on Fig. 5 and illustrate the convergence
of the solution of Chandrasekhar equations to the solution of the Milne equation when R
increases.

7 Numerical simulation of the greenhouse effect

So much for the grey case. Our aim here is to compare the Earth surface temperature for two
different functions ν → κ i

ν(ν), i = 1, 2 and observe the relative change of temperature.
The problem is defined in (79); the Chandrasekhar correction is not needed because

R >> H . The values of κν are as follows.
The atmosphere is fairly, but not fully, opaque except in a region (ν1, ν2) = (0.2, 0.3)

where it is much less opaque. If a change in GHG proportion makes the atmosphere more
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Fig. 6 Plot of Bν(T ) = Bν3

e
ν
T −1

representing the Light intensities
versus ν. The Boltzmann
functions plotted, 30000Bν(0.06)
and 5Bν(1.18) corresponds, to
(scaled) emissions from Earth
and Sun. The infrared range
ν ∈ (0.1, 0.4) may be affected by
the GHG

0 2 4 6 8 10

0

5

10

Frequency ν in 1014 units

B
ν

T=0.06, B1=30000
T=1.18, B1=5

opaque in this range then we may set

κ1
ν = κ0 − δκ 1ν∈(ν1,ν2), κ2

ν = κ0, ⇒ δκν := κ2
ν − κ1

ν = δκ 1ν∈(ν1,ν2) (86)

We chose κ0 = 1.225 because of the numerical value of the density of air (see (15)). We
chose arbitrarily δκ = 0.5. The values for ν1 and ν2 are on the left side of the Boltzmann
curve for Earth, shown in Fig. 6. In one computation the infrared clear window is narrow:
(ν1, ν2) = (0.2, 0.3). In another it is wider (ν1, ν2) = (0.1, 0.4).

The computer programs produce 4 temperatures τ �→ T j (τ ), j = 0, . . . , 3.

1. T 0 is the solution of the Milne equation with κ = κ0 = 1.225.
2. T 1 is the solution of the multi-group problem with κν = κ1 = 1.225 − 0.5 1ν∈(0.2,0.3).
3. T 2 is the solution of the multi-group problem with κν = κ2 = 1.225, ideally equal to

T 0.
4. T 3 is the solution of the multi-group problem with κ0 − δκ 1ν∈(0.1,0.4).

According to Figs. 1 and 2, Green House gases increase κ and makes the window which is
transparent to infrared radiations narrower. This will be measured by T 2 − T 1 and T 1 − T 3.

The problem needs to be discretized in ν by choosing a grid in (νm, νM ), which means
that we need to solve the multi-group problem introduced above with (16).

The following numerical scheme is used:

. Set KI
0 = 0, choose (νm, νM ) to approximate (0,∞)

for(n = 0, 1 . . .){
. Compute τ �→T n(τ ) by solving

∫ νM

νm

κνBν(T
n)dν = 1

2

∫ 1

−1
Kn

I dμ; then set Kn+1
I =0.

. for(ν = νm; ν < νM ; ν+ = δν){

. Set Bn
ν (τ ) = ν3

e
ν

Tn (τ ) − 1
,

. Solve μ∂τ I
n+1 + κν I

n+1 = κνB
n
ν (τ ),

I n+1(0, μ)|μ>0 = μQ0Bν(TSun), I n+1(H , μ)|μ<0 = 0.

. Update KI
n+1 by KI

n+1 = KI
n+1 + κν I

n+1
ν δν.

}
} (87)
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Fig. 7 Temperature profile of T 2

computed by solving the
multi-group problem (79)
compared with the solution of the
Milne problem (78) T 0
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Fig. 8 In red and black: relative
temperature changes T 2 − T 1

versus altitude, when
κ1ν = 1.225 − 0.5 1ν∈(0.2,0.3) is

changed to κ2ν = 1.225, to
account for the GHG opacity. The
results using the calculus of
variations (see (93)) are
compared to a direct simulation
of T 1 and T 2. In blue: same but
T 3 is computed with κ1ν changed
to κ3ν = 1.225 − 0.5 1ν∈(0.1,0.4)
to account for a narrower
frequency range of infrared
absorption (Color figure online) 0 2 4 6 8 10 12
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Finding T n by inverting the Planck function can be challenging. However, when κν =
κ − δκ 1(ν1,ν2) finding T n , solution of the first equation in (87) can be done by a fixed-point
k-loop as follows:

∫ ∞

0
κBν(T

n) −
∫ ν2

ν1

δκBν(T
n) =

∫ ∞

0

κν

2

∫ 1

−1
I nν dμdν ⇒ κπ4T n

k+1
4

15

= 1

2

∫ 1

−1
Kn

I dμ + δκ

∫ ν2

ν1

Bν(T
n
k ). (88)

To assert the method we ask algorithm (87) to recover the solution of the Milne problem
(κν constant). The results are shown on Fig. 7: a precision of 1% is obtained, but refining the
mesh and the integration intervals did not improve the precision. This riddle will be solved
in Sect. 7.2

Then we computed the relative change of temperature when κν is changed from κ1
ν to κ2

ν .
The change is of the order of 10−2 and negative (see Fig. 8). In view of the small magnitude
of the change, for a verification we turned to a calculus of variations.
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7.1 Solution by calculus of variations

Even though both the FEM-based code and the implicit one give the same results, evidently
we are trying to observe a temperature variation which is at the limit of the precision of the
computer codes (see remark 8 below). So let us try another method.

Let (86) be written as κν = κ + δκν with δkν = −δk 1ν∈(ν1,ν2) and let κ be constant. With
the obvious notations of a calculus of variations:

μ∂τ δ Iν + κδ Iν = κδBν + δκν(Bν − Iν), δ Iν(0, μ)|μ>0 = δ Iν(Z , μ)|μ<0 = 0,∫ ∞

0
(δBν − 1

2

∫ 1

−1
δ Iνdμ)κdν = −

∫ ∞

0
(Bν − 1

2

∫ 1

−1
Iνdμ)δκνdν. (89)

Let δ Ī = ∫ ∞
0 δ Iνdν and similarly for δ B̄. Integrating the equations with respect to ν leads

to

μ∂τ δ Ī + κδ Ī − κδ B̄ =
∫ ν2

ν1

δκν(Bν − Iν)dν, δ Ī (0, μ)|μ>0 = δ Ī (Z , μ)|μ<0 = 0,

(90)

κ

(
δ B̄ − 1

2

∫ 1

−1
δ Īdμ

)
= −

∫ ν2

ν1

(
Bν − 1

2

∫ 1

−1
Iνdμ

)
δκνdν. (91)

Adding both gives

μ∂τ δ Ī + κδ Ī − κ

2

∫ 1

−1
δ Īdμ = −

∫ ν2

ν1

(
Iν − 1

2

∫ 1

−1
Iνdμ

)
δκνdν. (92)

and, knowing that δB = δ(π4T 4

15 ) = 4π4T 3

15 δT , the change in temperature is computed by
(91) divided by κ:

4π4T 3

15
δT = 1

2

∫ 1

−1
δ Īdμ + δκ

κ

∫ ν2

ν1

(
Bν − 1

2

∫ 1

−1
Iνdμ

)
dν. (93)

The numerical solution of (92) can be obtained both with FEM and the implicit method;
results for δT agree roughly only as shown on Fig. 8. Yet here too we obtain a decrease of
Earth temperature when κν increases in the infrared interval (ν1, ν2) and the numerical values
of the change obtained are of the same magnitude as those obtained by a direct simulation
with κ1

ν and κ2
ν , as seen on Fig. 8.

7.2 A Formulation to compute only the temperature

These unexpected conclusions forced us to think again and track all potential precision
losses. In doing so we turned to exponential integrals (see en.wikipedia.org/wiki/
Exponential_integral) to evaluate (81), an idea on which is based the computation
of an analytic solution of the Milne problem in [14]-Appendix B. Function E1 is not hard to
program; it is also part of the Gnu Scientific Library gsl. One has:

∫ 1

0
μe− κτ

μ dμ =
∫ ∞

1
x−3e−κτ xdx = E3(κτ) = e−κτ

2
(1 − κτ) + (κτ)2

2
E1(κτ).

∫ 1

0

1

μ
e− κ(τ−t)

μ dμ =
∫ ∞

1
y−1e−κ(τ−t)ydy = E1(κ(τ − t)), t < τ,
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∫ 0

−1

1

μ
e

κ(t−τ)
μ dμ = −

∫ 1

0

1

μ′ e
−κ(t−τ)

μ′ dμ′ = −E1(κ(t − τ)), t > τ. (94)

Hence ∫ 1

−1
Iνdμ = QνE3(κντ ) + κν

∫ τ

0
E1(κν(τ − t))Bν(T (t))dt − κν

∫ Z

τ

−E1(κν(t − τ))Bν(T (t))dt

= QνE3(κντ ) + κν

∫ Z

0
E1(κν |τ − t |)Bν(T (t))dt . (95)

Observe that (81) can be integrated in μ so as to write everything in terms of

F(τ ) :=
∫ ∞

0
κν

∫ 1

−1
Iνdμdν =

∫ ∞

0
κν

[
QνE3(κντ )+κν

∫ Z

0
E1(κν |τ − t |)Bν(T (t))dt

]
dν.

(96)

We note also that to compute τ �→ T (τ ) when κν = κ0 − δκ 1(ν1,ν2) by∫ ∞

0
κνBν(T )dν = 1

2
F(τ ),

amounts to solve

κ0
π4T 4

15
= δκ

∫ ν2

ν1

Bν(T ) + 1

2
F(τ ). (97)

These give the following fixed-point iterative scheme to solve (97):

. Set F0(τ ) =
∫ ∞

0
κνQνE3(κντ )dν.

for(n = 0, 1, . . . ){
. Compute τ �→ T n(τ ) from (97) with Bν(T

n) and Fn(τ ) on the right.

. Then compute Fn+1 by

. Fn+1(τ ) =
∫ ∞

0
κν

[
QνE3(κντ ) + κν

∫ Z

0
E1(κν |τ − t |)Bν(T

n(t))dt

]
dν

with Bν(T ) = ν3

e
ν
T − 1

.

} (98)

This turns out to be a very fast and easily programmable method, and so far, the least prone
to precision difficulties because the only singular integrand is E1(|t |)|t∼0 ∼ − log(|t |); but
as it appears under an integral, a dedicated quadrature rule can be used with

∫ t log t ′dt ′ =
t log t − t , which is not singular in R

+.

Remark 6 Note that the scheme is a non-linear solver for the functional integral equation for
τ �→ T (τ ):
∫ ∞

0
κνBν(T (τ ))dν − 1

2

∫ ∞

0

[
QνE3(κντ ) + κν

∫ Z

0
E1(κν |τ − t |)Bν(T (t))dt

]
κνdν = 0

∀τ > 0. (99)
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Discrete Fourier Transform could be used to convert the integral equations into a linear system
for κνBν , (still nonlinear in T ) but the fixed-point iteration process is so fast that it is not
worth it.

Remark 7 Note that the method extends to constant isotropic scattering a . Consider

μ∂τ Iν + κν Iν = κν

a

2

∫ 1

−1
Idμ + κν(1 − a)Bν(T (τ )),

∫ ∞

0
κνBν(T (τ ))dν =

∫ ∞

0

κν

2

∫ 1

−1
Iνdμdν. (100)

It leads to a formulation involving a frequency dependent integral,Gν(τ ) := ∫ 1
−1 Iν(τ, μ)dμ:

Gn+1
ν (τ ) = QνE3(κντ ) + κν

∫ Z

0
E1(κν |τ − t |)(a

2
Gn

ν(t) + (1 − a)Bν(T
n(t)))dt,

κ0
(πT n+1)4

15
= δκ

∫ ν2

ν1

Bν(T
n) + 1

2

∫ ∞

0
κνG

n+1
ν (τ )dν. (101)

The method was tested with a = 0.3. It gives a temperature at ground level 10% higher and
10% less cooling effect due to the same changes in κν . It requires 15 iterations,instead of 10,
to converge to 3 digits accuracy.

7.2.1 A new set of tests

All numerical tests where re-run using (98), (automatic differentiation included), and the
same results were obtained (Figs. 9 and 10): at all altitudes, temperatures decrease by 1 or
2 percents with a narrowed infrared absorption interval, or when κν is multiplied by 2 in an
infrared interval!

An added set of frequencies were tested:

ν ∈ (1.0, 1.2) and ν ∈ (1.0, 1.4). (102)

These numbers correspond to absorption rays of the GHG in the lower frequency range of
sunlight (see Figs. 1 and 6).

With the new set (102), the temperatures increase when κ increases and/or when the
partially transparent window decreases in size, yet the numbers are an order of magnitude
smaller, about 0.17% near the ground level, i.e. 0.5C.

We note also (Fig. 9) that we can obtain agreement to at least 3 digits between a direct
solution of the Milne problem with constant κ and the same solved by the multi-group
formulation (98) even though κ is constant.

Figures 8 and 10 are comparable, but notice Calculus of Variations and Automatic Dif-
ferentiation could differ by a factor of 2 from the direct simulations of the temperature
differences; this is probably because Calculus of Variations linearizes the problem while the
finite differences don’t. It could be also an indication of a precision issue due to a very sharp
variation of the derivative of T with respect to κ .

On the convergence and stability of scheme (99)

Schemme (98) cannot jam and cannot explode either . Indeed, although E1 has a log singu-
larity at 0, its integral is bounded; Bn

ν (T ) is bounded too, therefore Fn+1 in (98) is always
bounded and positive.
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Fig. 9 Temperature versus
altitude. T 0 (in red) is the
solution of Milne’s problem with
κν = 1.225 computed with
(95),(97). T 1 (in black) is with
κν = 1.225 − 0.5 1ν∈(0.2,0.3)

computed with (98). T 2 is
computed with (98) with
κ = 1.225 as if it was a
non-constant function of ν (in
blue) (Color figure online)
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T 1: κ − δκ by (98)
T 2: Milne by (98)

Fig. 10 Relative temperature
changes versus altitude ,
computed with (98) and
Automatic Differentiation
(black), when κν = 1.225 and
δκ = −0.5 1ν∈(0.2,0.3). In red

the same is computed from T 1

and T 2, where T 1 is with
κ1ν = 1.225 − 0.5 1ν∈(0.2,0.3),

and T 2 is with κ2ν = 1.225. In
blue 2(T 1 − T 3)/(T 1 + T 3) is
displayed with T 3 computed with
κ3ν = 1.225 − 0.5 1ν∈(0.1,0.4).
The dashed curves with colors as
above are the same but with the
change of κ in the low spectrum
of sunlight: ν ∈ (1., 1.2) and
ν ∈ (1., 1.4) (Color figure online)
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2 T̃ 2−T̃ 1

T̃ 2+T̃ 1

2 T̃ 1−T̃ 3

T̃ 1T̃ 3

Table 4 Convergence of the first n ≤ 10 iterations of scheme (98) showing a speed O(n−s ), s ∈ [2, 3], on
the max norm of T n(τ ) − T n−1(τ ). On the second line a precision O(m− 3

2 ) is achieved for the temperature
T∗ at τ∗ = 1

30 , where m controls the discretization of (0, Z) into 30 × m points

n or m 2 3 4 5 6 7 8 9 10

104 × |T n+1 − T n |∞ 19 5.3 1.3 0.33 0.12 0.054 0.028 0.016 0.010

103

T 10∗
(Tm∗ − T 10∗ ) 1.146 0.752 0.479 0.389 0.331 0.203 0.101 0.084 0

Hence the scheme will always generate finite numbers. Although we may not concluded
that it converges, we can conclude that if |T n+1 − T n |∞ → 0, then any accumulation point
of T n is a solution of (99), i.e. a solution to the radiative transfer equations (79), for some
appropriate function Iν(τ, μ), not given by the formulation but computable after convergence
by (81).

A typical convergence behavior is reported in Table 4. The precision at one point near the
Earth surface is also reported. Three digits are guaranteed after 6 to 10 iterations and 200
discretization points for the altitude and an integration step for the integrals equal to 0.005.
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Fig. 11 Relative temperature
changes versus altitude,
computed with
κν = 1. + 0.5 1ν∈(1,1.5) A direct
computation (in red) of the
relative change is compared with
the result using the calculus of
variations (in black). This
computation shows that increased
opacity in the sunlight range
increases the temperature on
Earth (Color figure online)
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7.3 Discussion on the reliability of the numerical results

Greenhouse gases leading to a cooling of the atmosphere is counter intuitive. To check the
codes we made a similar change of κν but in a bigger range: κ = 1 + 0.5 1(1,1.5) where the
precision should not be a problem. Results are shown on Fig. 11: increasing κ in the range
of sunlight leads to 0.5% increase on Earth temperature. The direct simulation of the change
agrees with the calculus of variations. So the computer program is probably correct.

The change of κν in a small frequency interval (0.2,0.3) could be beyond the numerical
precision of the method and indeed Fig. 7 shows that the precisions may not be sufficient.

We make another remark relevant to precision:

Remark 8 It is because the intersection of the Boltzmann curve for black body Earth with
the Boltzmann curve for black body Sun is non zero (see Fig. 6) that there is an infrared
re-emission due to sunlight on Earth.

Proof If the atmosphere is transparent to sunlight, κν = 0, ∀ν > 0.6. As Iν |τ=0,μ>0 =
μBν(TSun), ∀ν > 0.6 and Iν |τ=Z ,μ<0 = 0, model (79) implies that Iν |μ>0 =
max 0, μBν(TSun), ∀ν > 0.6, ∀τ . For lower frequencies,

μ∂τ Iν + κν(Iν − Bν) = 0, Iν |τ=0,μ>0 = μBν(TSun), Iν |τ=Z ,μ<0 = 0,∀ν < .6,∫ 0.6

0
κν

(
Bν(T ) − 1

2

∫ 1

−1
Iν

)
dν = 0.

But if Bν(TSun), ν < 0.6 is neglected, then there is nothing to drive the above system, so
Iν = 0, ν < 0.6. ��

With ν2 = 0.3, Bν2(TEarth)|τ=0 = 3.768× 10−4 and Bν2(TSun)|τ=0 = 3.569× 10−6; so
the interaction is very small. Is it why the problem is difficult?

As a final check of the results of Figs. 8 and 10wewrote an entirely different computer pro-
gram to implement (87), in C++, linked to an Automatic Differentiation library: a technique
based on operator overloading which gives the exact values of derivatives of any variable in
the program with respect to another variable, here the value of δκ in the frequency range of
GHG absorption. The program uses a uniform grid in τ, μ, by opposition to the FreeFem++
program which uses a fairly uniform grid in the physical domain refined and adapted during
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computation to the Hessian of Ī . It also produces a decrease of Earth temperature of the same
magnitude!

All the numerical methods, implicit, finite element, uniform mesh (C++) and direct com-
putation of the temperature difference or calculus of variations or automatic differentiation,
give correct values for the temperatures versus altitude, but imprecise values to their deriva-
tive with respect to κν ; nevertheless all of them predict a decrease of temperature due to GHG
when the absorption κν increases in an infrared range (ν1, ν2) and when the range (ν1, ν2) is
decreased.

While the precisions of the finite element method and of the implicit method can be
doubted because I has singularities at the poles and because of singular exponentials, there
is no reason to doubt the precision of the last method based on (99) for the temperature.
The temperature known, the light intensity can be recovered from (81) but it has singular
integrals.

8 Boundary layer near the Earth surface

Consider the Chandrasekhar equations with thermal diffusion: ∀r , μ, η ∈ (0, H)×(−1, 1)2,

μ
∂ Īν
∂r

+ 1 − μ2

R + r

∂ Īν
∂μ

+ κνρ
(
Īν − Bν(T )

) = 0, (103)

− κT

(R + r)2

(
∂r ((R + r)2∂r T ) + 1

1 − η2
∂2ηT

)

+
∫ ∞

0

(
ρκν(Bν(T ) − 1

2

∫ 1

−1
Īνdμ

)
dν = 0 (104)

Iν(Z , μ)|μ<0 = 0, Iν(0, μ) = μQν,
∂T

∂r
|0,Z = 0 (105)

where η = cos θ and assume that κT = εκ0, ε << 1. Then it is likely that

T = T0 + εT1(
r√
ε
, μ), Īν = I0 + ε I1, (106)

with T1(r , μ) << 1 when r → ∞. This leads to the following cascade of equations

μ
∂ I0
∂r

+ 1 − μ2

R + r

∂ I0
∂μ

+ κνρ (I0 − Bν(T0)) = 0, Bν(T0) − 1

2

∫ 1

−1
I0 = 0,

μ
∂ I1
∂r

+ 1 − μ2

R + r

∂ I1
∂μ

+ κνρ (I1 − ∂T Bν(T0)T1) = 0,

−κ0∂
2
r ′T1 +

∫ ∞

0

(
ρκν(∂T Bν(T0)T1 − 1

2

∫ 1

−1
I1dμ

)
= κ0

(R + r)2

(
∂r ((R + r)2∂r T0) + ∂2ηT0

1 − η2

)
,

with r ′ =
√

r
ε
. For clarity and without losing generality we assume R is large so as to reduce

the above to

μ
∂ I0
∂r

+ κνρ (I0 − Bν(T0)) = 0, Bν(T0) − 1

4π

∫
S2

I0 = 0,

μ
∂ I1
∂r

+ κνρ (I1 − ∂T Bν(T0)T1) = 0,
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−κ0∂
2
r ′T1(r

′) + T1(r
′)

∫ ∞

0
ρκν∂T Bν(T0)dν = κ0∂

2
r T0 +

∫ ∞

0
ρκν

1

2

∫ 1

−1
I1dμdν.

The last line is also −∂2r ′T1 + bT1 = c, with b = 1

κ0

∫ ∞

0
ρκν∂T Bν(T0)dν and c = ∂2r T0 +

∫ ∞

0

ρκν

2κ0

∫ 1

−1
I1dμdν Therefore

T (r) = T0(r) + ε
(
c + be−√

b r
ε

)
. (107)

The conclusion is that there is no strong variation of the temperature r �→ T (r) near the
surface (r=0) due to thermal diffusion, but there is a strong variation of the gradient.

To connect with the next section we notice that (107) can be rewritten as:

ε
∂(T − T0)

∂r
+ √

b(T − T0) = 0.

8.1 Boundary layer and Robin boundary condition

The temperature is a solution of an elliptic equation which requires a boundary condition on
the entire boundary ∂� while the boundary condition for I needs to be given only on the
incoming part of �−.

Observe that (107) involves two temperatures T0(r) which could be expressed in terms
of I by the Stefan-Boltzmann law and a temperature T (r) which represents the “observed
temperature” near the boundary (which is unknown ) and determined in terms of non explicit
constants. Such fact was already observed in nuclear reactor technology, where it leads for
the diffusion approximation to a Robin boundary condition and is explained in [31] p. 199,
eq. (8.13).

Below, following [5,11] we propose a self contained derivation of this type of formula
based on scaling analysis. Moreover for the sake of simplicity we consider the solutions Iε
of a ε dependent half space 0-flux (cf. Sect. 5) Milne problem; one has the following

Proposition 4 The family Iε of solutions of the half space Milne Problem

ε Iε + √
εμ∂r Iε + Iε − 1

2

∫ 1

−1
Iε(r , μ

′)dμ′ = 0 , I (0, μ)|μ>0 = I (0), (108)

I (0) independent of μ, converges to the μ independent solution of the diffusion equation

I 0 − 1

3
∂2r I 0 = 0 in R

+
r (109)

with theDirichlet boundary data I (0) = I (0), with a rate of convergence O(
√

ε) in L2(R+×
(−1, 1)). However, the expression

I0(r) − √
εμ∂r I0(r) + ω1

√
ε∂r I0(0) (110)

provides an approximation of order ε in L∞(R+ × (−1, 1)).

One observes that Iε is uniformly bounded in L∞(R+×(−1, 1)) hence by standard estimates
related to the diffusion approximation , it converges to aμ-independent function I0(r) solution
of (110) with I0(0) = I (0). Then one observes also that

Ĩε(r , μ) = I0(r) − √
εμ∂r I0(r) (111)
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is a solution with an error of the order of
√

ε of the equation (108). This construction can be
iterated giving a solution of any finite order of this equation. However, at r = 0 and μ > 0
one has:

I (0, μ) − Ĩε(0, μ) = √
εμ∂r I0(r) (112)

and this estimation concerns a boundary layer of size
√

ε which can be only analyzed by the
use of the zero flux solution e(τ, μ) of the half space problem:

μ∂r e + e − 1

2

∫ 1

−1
e(r , μ′)dμ′ , forμ > 0 e(0, μ) = μ . (113)

Therefore one introduces the functions:

Irem(r , μ) = (√
ε∂r I0(r)(e(

r√
ε
, μ) − ω1

) + √
εω1∂r I0(r)

Ic(r , μ) = (I0(r) − √
εμ∂r I0(r , μ)) − Irem(r , μ).

(114)

Constructed in such a way, Ic(r , μ) enjoys the following properties.

• It is a solution of (108) with a remainder of order ε.
• For r = 0 and μ > 0 one has Ic(r , μ) = I0(0).
• Irem is the sum of two terms

√
εω1∂r I0(r) and the boundary layer term:

BLε(r , μ) = (√
ε∂r I0(r)(e(

r√
ε
, μ) − ω1

)
. (115)

According to the theorem 3 one has: sup
μ

|BLε(r , μ)| ≤ C−α r
ε .

As a consequence of these observations one has

Iε = (I0(r) − √
εμ∂r I0(r)) + ω1

√
ε∂r I0(0) + O(ε) (116)

In an informal way the following can be derived:

Corollary 3 Assume that the intensity of radiation Iε of the above half-space Milne problem
is coupled with the solution of a diffusion equation at the boundary of the domain by the
Stefan-Boltzmann law; then the introduction of a Robin boundary condition of the type

Tε(0) − 4ω1
√

ε∂r Tε(0) = T0(0)
T0
Tε

(117)

in the diffusion approximation will improve it by an order of
√

ε to ε .

Proof Starting from the relations

σT 4
c (r) = 1

2

∫ 1

−1
(Ic)dμ σT 4

0 (r) = 1

2

∫ 1

−1
(I0)dμ (118)

one deduces from (116) that

T 4(0) = T 4
0 + 4T 3

0 ω1
√

ε∂r T0 + O(ε) (119)

From which

Tε(0) − 4ω1
√

ε∂r Tε(0) = T0(0)
T0
Tε

(120)

��
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9 Conclusion

To summarize, we recall that radiative transfer is an old topic, studied by astronomers and
nuclear scientists and more recently for Earth science. Much of the ancient material can be
discarded in view of the more powerful computer solutions. However, it turns out that for the
simulation of the effect of sunlight on the atmosphere, the problem is numerically difficult,
so that any mathematical and analytical properties gathered in the past are welcome.

Over the last 50 years the mathematical approach enjoyed stimulus from a huge range
of applications, and the introduction of functional analysis and computing. However, one
observes that there is still room for progress on the full model, in particular to make the
hypotheses needed for proofs much more in agreement with the case considered in any kind
of physics. As underlined above, the Eqs. (2), (3) lead to the following comments

• Concerning the time dependent equations, for sufficiently regular coefficients (κ, ρ and
regular initial and boundary data), as it is expected, the problem has a unique well defined
(for a finite time) solution, which can be extended on [0,∞) when the volumic sources
f = 0 (cf. [29] for instance, for proofs and recent references).Oneof themain observation
used in this contribution is the fact that an estimate of the type 0 < m(0) ≤ T (τ, 0) <

M(0) remains valid for later time with 0 < m(t) < T < M(t) .

• In ([29]) independent boundary conditions are assumed for I and T . It may be more
realistic to include in the description some relation on the boundary. This would make
use of the boundary layer analysis briefly described in the Sect. 8.

• A more serious difficulty comes from the non-constant opacity κν(τ, T ), possibly not
regular (cf. [27,28]) and very often only vaguely known. At least two directions have
been proposed to deal with this issue. In one of the first contributions on the subject (cf
[25]) it was assumed that with no other hypothesis on the dependance with respect to
the frequency ν that the function T �→ κν(T ) was non increasing , while the function
T �→ κν(T )Bν(T )wasnondecreasing.Then some L1 stability estimates lead to existence
and uniqueness for the system.
On the other hand a popular grey model, which also leads to a Milne problem, is based
on the assumption that the opacity depends on the temperature T , yet independent of the
frequency ν. With such hypothesis several stability results have been obtained with no
constraint on the regularity of the mapping T �→ κ(T ) (see [1,3,4,15]).

• Under some convenient scaling hypothesis, in particular large opacity with respect to
the size of the media one may approximate the dynamics by a diffusion equation known
as the Rosseland approximation. Once again mathematical results are well advanced
for the grey model and some of its variants and more sparse in the general case. Such
approximation is very well adapted to describe “interior problems” like fusion by laser
confinement. It does not seem (to our knowledge) present in climatology. As a matter of
fact, the height of the atmosphere being small with respect to the Earth radius it is by itself
a boundary layer, except for the fact that the equations are considered only in the vertical
direction. As sketched in the Sect. 8.1 this issue is closely related to the improvement of
the accuracy of the Rosseland approximation and also well developed for grey model. It
is worth mentioning that mathematically the problem is easier with the Chandrasekhar
correction (12),[20,32].

Numerically, it is a mixed integro-differential problem for which a fixed-point approach
works quite well, and for which a convergence proof is available for grey atmospheres.

Four methods of discretization have been tried. A finite element method with upwinding,
an implicit method based on the integral form of the solution of the equation for the light
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intensity at given temperature, a finite difference implementation of the implicit method on
a uniform mesh, with automatic differentiation, and finally an integral formulation for the
temperature only. The second one is more precise but slower; the third is just for checking
that the programs have no bugs, and the fourth one is the most trustworthy. So we may use
it for validation . Convergence with respect to grid refinement is fairly fast.

The present computations validate a decrease of Earth temperature due to CO2 and other
greenhouse gases responsible for a substantial change in the transmission coefficient κν in
the lower part of the infrared frequency range emitted by Earth seen as a black body at
temperature ∼ 300 K. Narrowing the infrared transparent window has also the same cooling
effect. On the other hand, it gives a heating effect when the same changes on κν occur in the
lower frequency range of sunlight!

Consequently, the radiative transfer equations, used with sunlight supposedly unaffected
by the atmosphere and without scattering, should not be presented as an explanation of the
greenhouse effect using the infrared frequency range. In [13,17] the greenhouse effect is
explained by radiative transfer principles but assuming that κ and Bν depend on T and air
pressure. It may require non-isotropic scattering in the atmosphere to justify numerically
their results.

Finally, recall that radiative transfer alone gives a very crude model for the Earth tem-
perature: 76 C at noon, –273 C at midnight and 19 C on the average in Paris, computed by
assuming that sunlight power is Q=620/2). Climate change is indeed much more complex
than just radiative transfer! In a forthcoming publication a full treatment of nu-dependent
scattering and earth albedo will be presented. These terms dramatically alter the conclusion
reached here.
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10 Appendix

// Written in simple C++ by O. Pironneau
#include <iostream>
#include <fstream>
#include <cmath>
using namespace std;
#define sqr(x) (x*x)
const int n=6, MM=n*30; // nb points in tau
const int kmax=6+n; // nb fixed point iterations
const double Z=1-exp(-12.); // max tau after change of var
const double SBsun = 3.042e-5; // scaled sunlight power
const double Tsun = 1.209; // scaled sun temperature
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const double numax=20; // max frenquency
const int jmax=150; // nb of points for integration in nu range
const double dnu0=numax/sqr(jmax); // frequency minimal increment
const double dtt = 0.005; // integration step size in analytical formula
const int nt = 5; // min nb of integration step in anal formula
const double knu0=1.225; // absorption coeff and its GHS variation dknu
const double dknu=-0.5; // means knu0 and knu0+dknu0 are computed
const double nu01=0.2, nu02=0.3, nu03=0.1, nu04=0.4; // frequencies for
GHS absorption

const double pi = 4*atan(1.);

double Inut[MM], F[MM], // mu integral of I_nu and mu+nu integral of
I_nu

T[MM], // Milne with knu0
T1[MM], // T for knu0 + dknu*(nu1<nu<nu2)
T2[MM], // Milne with knu0 by multi-group
T3[MM], // // T for knu0 + dknu*(nu3<nu<nu4)
Aaux[MM]; // auxiliary array

double expint_E1(const double t, const double B=1){
// if your compiler has it or if you can link to gsl you may adapt

this function
// it computes E1(t)*B
const int K=8; // precision in the exponential integral function E1
const double epst=1e-5, gamma =0.577215664901533; // special

integration for log(t)
if(t==0) return -1e12*B;
double abst=fabs(t);
if(abst<epst) return -abst*(gamma + log(abst)-1)*B;
double ak=abst, somme=-gamma - log(abst)+ak;
for(int k=2;k<K;k++){

ak *= -abst*(k-1)/sqr(k);
somme += ak;

}
return somme*B;

}

double Bsun(const double nu){ return SBsun*sqr(nu)*nu/(exp(nu/Tsun) -1);}
// Boltzmann

double BB(const double nu, const double T){ return sqr(nu)*nu
/(exp(nu/T) -1);} // Boltzmann

double intB(const double kappa, const double nu,const double tau,
const double tmin,const double tmax)

{
// returns the convolution t-integral of E1*B from t=tmin to tmax
double aux=0;
const double dt=fmin(dtt,nt/(tmax-tmin));
for(double t=tmin;t<tmax;t+=dt){

double baux = BB(nu,T[int((MM-1)*t/Z)]);
if(kappa*(t-tau)!=0) aux += dt*kappa*expint_E1(kappa*fabs

(tau-t),baux);
}
return aux;

}

int getT(const double nu1, const double nu2, const double dknu){ //
Kirchhof law + corr

for(int i=0;i<MM;i++){
double Bik=F[i]/2; // add dknu correction
if(dknu!=0)

for(double nu=nu1; nu<nu2; nu+=dnu0) Bik -= BB(nu,T[i])
*dknu*dnu0;

T[i]=sqrt(sqrt(15*Bik/knu0))/pi;
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}
return 0;

}

int getInu(const double kappa, const double nu){ //
returns light intensity I_nu

for(int i=0;i<MM;i++){
double x=i*Z/(MM-1);
Inut[i] = intB(kappa,nu,x,0,Z) + Bsun(nu)*(exp(-kappa*x)*(1-kappa*x)

+ expint_E1(kappa*x,sqr(kappa*x)))/2;
}
return 0;

}

int multiBlock(const double nu1, const double nu2, const double dknu)
{

for(int i=0;i<MM;i++) T[i]=0.07; // initialize
for(int k=0;k<kmax; k++){ // fixed point loop: first update F

for(int i=0;i<MM;i++){ F[i]=0; Inut[i]=0;}
double nu=0;
for(int j=1; j<=jmax;j++){

double dnu=(2*j-1)*dnu0; // variable integral increment
nu+=dnu;
double kappa=knu0+dknu*(nu>nu1)*(nu<nu2); //kappa_nu
for(int i=0;i<MM;i++) F[i]+=kappa*Inut[i]*dnu/2;
getInu(kappa,nu); // trapezoidal integration rule
for(int i=0;i<MM;i++) F[i]+=kappa*Inut[i]*dnu/2;

}
getT(nu1,nu2,dknu); // Then update T

cout << "k= "<<k <<" "<<T[n]<<" "<<T[MM-n]<<endl;
}
return 0;

}

int main(int argc, const char * argv[]) {
// computation with kappa constant

cout<<"\n kappa constant \n iterations \t [T] near Earth and far near Z\n";
multiBlock(nu01,nu02, 0.);
for(int i=0;i<MM;i++) T1[i]=T[i]; // store results in T2

// computation with kappa variable and nu1,nu2
cout<<"kappa variable\n iterations \t [T] near Earth and far near Z\n";
multiBlock(nu01,nu02, dknu);
for(int i=0;i<MM;i++) T2[i]=T[i]; // store results in T1

// computation with kappa variable and nu3,nu4
cout<<"kappa variable\n iterations \t [T] near Earth and far near Z\n";
multiBlock(nu03,nu04,dknu); // results in T
for(int i=0;i<MM;i++) T3[i]=T[i]; // store results in T1

// print and store results
cout<<"\n tau\t \t [T1]:Milne [T2]:narrow [T3]:wide [T1-T2]/T [T2-T3]/T \n ";
ofstream myfile = ofstream("<your folder>/milneAD2.txt");
for(int i=1;i<MM;i++){

cout << -log(1-i*Z/(MM-1))<<"\t"<<T1[i]<<"\t"<<T2[i]<<"\t"
<<T3[i]<<"\t"<<2*(T1[i]-T2[i])/(T2[i]+T1[i])
<<"\t"<<2*(T2[i]-T3[i])/(T2[i]+T3[i]) <<endl;

myfile << -log(1-i*Z/(MM-1))<<"\t" // altitude
<<T1[i]<<"\t" // T(kappa) Milne by multigroup
<<T2[i]<<"\t" // T(kappa+dknu) narrow frequency window
<<T3[i]<<"\t" // T(kappa+dknu) wide frequency window
<<2.*((T1[i]-T2[i]))/((T2[i]+T1[i]))<<"\t" // (T(kappa)-T(kappa+dknu))/T
<<2.*((T2[i]-T3[i]))/((T3[i]+T2[i]))<<"\t"<< endl;

}
return 0;

}
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