
SeMA Journal (2022) 79:321–332
https://doi.org/10.1007/s40324-021-00261-2

Fixed point theorems via GeneralizedWF-Contractions with
applications

Rosana Rodríguez-López1 · Rakesh Tiwari2

Received: 19 July 2020 / Accepted: 22 July 2021 / Published online: 21 August 2021
© The Author(s) 2021

Abstract
The aim of this paper is to introduce a new class of mixed contractions which allow to revise
and generalize some results obtained in [6] by R. Gubran, W. M. Alfaqih and M. Imdad. We
also provide an example corresponding to this class of mappings and show how the new fixed
point result relates to the above-mentioned result in [6]. Further, we present an application to
the solvability of a two-point boundary value problem for second order differential equations.
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1 Introduction

Fixed point theory is a relevant area of research, mainly due to its applicability to various
fields, specially in the study of the properties of the solutions to differential equations. Banach
Contraction Principle is the most celebrated result, and it provides not only the existence, but
also the uniqueness and an iterative process to approximate the fixed point. This theorem has
been generalized in various ways, including its extension to partially ordered sets [9,10,14].
Another relevant extension was given by Alber and Guerre-Delabriere for weakly contractive
maps in Hilbert Spaces, see [1]. Rhoades [15] continued the study on the topic and also Dutta
and Chaudhury [5] provided a generalization. The starting point in our study will be the result
by Gubran, Alfaqih and Imdad included in [6], where the following terminology was used.
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Similar to [6], we denote by � the set of all continuous and monotonic nondecreasing
functions ψ : [0,∞) → [0,∞) such that

ψ(t) = 0 if and only if t = 0.

They recall the following uniqueness result from [5], where a weak contractivity condition
is considered by using functions in the set �.

Theorem 1 [5] Let (X , d) be a complete metric space and f : X → X be a weak contractive
mapping, that is, a mapping satisfying

ψ(d( f x, f y)) ≤ ψ(d(x, y)) − ϕ(d(x, y)), for all x, y ∈ X ,

where ψ, ϕ ∈ �. Then f has a unique fixed point.

Some other interesting concepts to deal with weak contractions are, for instance, the notion
of implicit contractive function given in 1997 by Popa [12], which was later discussed and
considered by other authors, as we can see, for instance, in the research works [2,3,7,8,13].
Recently, Tiwari and Gupta [16] proved some new common fixed point theorems in metric
spaces for weakly compatible mappings satisfying an implicit relation involving quadratic
terms. Another interesting work is that by Wardowski [17], who gave in 2012 an extension
of Contraction Mapping Principle for the case of the new concept of F -contractions, notion
that fits adequately in the sense that the corresponding mappings exhibit uniqueness of fixed
point in the context of complete metric spaces.

2 Preliminaries

We begin by introducing some concepts needed, where we denote R+ = [0,∞). The notion
of F -contraction introduced byWardowski is presented inDefinition 1. For this definition, the
author considered the class of functions F consisting of all functions F : R+ → R satisfying
the conditions (F1)–(F3) specified below:

(F1): F is strictly increasing.
(F2): For every sequence {sn} of positive real numbers, we have

lim
n→∞ sn = 0 ⇐⇒ lim

n→∞F(sn) = −∞.

(F3): There exists k ∈ (0, 1) such that lims→0+ skF(s) = 0.

As mentioned in [6], the functions F given, respectively, by F(s) = ln(s), F(s) = s+ ln(s),
and F(s) = −1√

s
, belong to the family F.

Definition 1 ([17])We say that a self-mapping f on ametric space (X , d) is an F-contraction
if there exists τ ≥ 0 such that, for all x, y ∈ X with d( f x, f y) > 0, we have

τ + F(d( f x, f y)) ≤ F(d(x, y)), (1)

where F : R+ → R is a mapping satisfying conditions (F1)–(F3).

More recently, in [6], Gubran et al. introduced a new class of contractions, called WF-
contractions, presented as a mixed type of weak and F-contractions, but different from both
concepts, and defined as explained in Definition 2.

For this concept, they considered two families of functions:
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G The family G given by all functions G : [0,∞) → [0,∞) satisfying the following
two properties:

(G1): G is strictly increasing.
(G2)∗: There exists k ∈ (0, 1) such that lims→0+ skG(s) = 0.

� The family � given by all functions δ : [0,∞) → [0,∞) satisfying the property:

(G3)∗: δ(t) > 0 for all t > 0 and, for every strictly decreasing sequence {sn} of
positive real numbers, we have

lim
n→∞ δ(sn) = 0 ⇒ lim

n→∞ sn = 0.

Definition 2 [6] A self-mapping f on a metric space (X , d) is said to be a WF-contraction
if there exist two functions G, δ : [0,∞) → [0,∞) such that, for all x, y ∈ X with
d( f x, f y) > 0, we have

δ(d(x, y)) + G(d( f x, f y)) ≤ G(d(x, y)), (2)

where G ∈ G and δ ∈ �.

The authors of [6] proved some fixed point results for this class of mappings, as we recall
below.

Lemma 1 [6, Lemma 2.1] AWF-contraction has at most one fixed point.

Lemma 2 [6, Lemma 2.2] Let (X , d) be a metric space and {tn} be a sequence of positive
real numbers such that

δ(tn) + G(tn+1) ≤ G(tn), (3)

for all n, where G ∈ G and δ ∈ �. Then, the sequence {tn} is strictly decreasing and

∞∑

i=1

δ(ti ) < ∞.

Theorem 2 [6, Theorem2.1]Let (X , d) be a completemetric space and consider f : X → X
a WF-contraction for some G ∈ G and δ ∈ �. Then, f has a unique fixed point.

The authors in [6] also justified that the concept of WF-contraction is different from the
notion of weak contraction, and that each WF-contraction f satisfies d( f x, f y) < d(x, y),
for x, y different, so that the continuity of the mapping is guaranteed.

However, in the proof of [6, Theorem 2.1], some confusing points have been detected in
the following sense. To prove that a particular sequence {xn}, which is understood to converge
to a fixed point of the mapping, is a Cauchy sequence, it is considered M := min0≤i≤n δ(ti )
and then deduced that

lim
n→∞(n + 1)tkn+1M = 0,

where tn = d(xn, xn+1) → 0 as n → 0, and hence argued that it is possible to find N ∈ N

such that n tkn ≤ 1 for all n ≥ N . However, M should be a sequence instead, that is,

Mn := min
0≤i≤n

δ(ti )
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satisfying limn→∞(n + 1)tkn+1Mn = 0, and Mn could tend to zero, so it is not possible to
deduce that n tkn ≤ 1 for n large enough.

The purpose of this paper is to revise some of these aspects and to introduce a new class of
mixed contractions in order to generalize this result by Gubran et al. proved in [6], giving a
more general class of mappings which allow to deduce the existence of a unique fixed point.
We also show an example of a mapping in this class. Further, we show an application to the
solvability of a two-point boundary value problem for second-order differential equations.

3 Main result

In this section, we introduce the concept of a generalized WF-contraction, and establish a
fixed point theorem valid for complete metric spaces.

We consider two families of functions:

G̃ The family G̃ given by all functions G : [0,∞) → [0,∞) satisfying the following
property:

(G1): G is strictly increasing.

�̃ The family �̃ given by all functions δ : [0,∞) → [0,∞) satisfying the following
two properties:

(G2): δ(t) > 0 for all t > 0 and, for every strictly decreasing sequence {sn} of
positive real numbers, we have

lim
n→∞ δ(sn) = 0 ⇒ lim

n→∞ sn = 0.

(G3): For every strictly decreasing and convergent to zero sequence {sn} of positive
real numbers, we have

∞∑

n=0

δ(sn) < ∞ ⇒
∞∑

n=0

sn < ∞.

Definition 3 We say that a self-mapping f on a metric space (X , d) is a Generalized WF-
contraction if there exist two functions G, δ : [0,∞) → [0,∞) such that, for all x, y ∈ X
with d( f x, f y) > 0, we have

δ(d(x, y)) + G(d( f x, f y)) ≤ G(max{d(x, y), d(x, f x), d(y, f y)}), (4)

whereG satisfies condition (G1), and δ satisfies the conditions (G2) and (G3), that is,G ∈ G̃

and δ ∈ �̃.

Next, we give an example of mapping satisfying condition (4), which is similar to the one
proposed in [6].

Example 1 We consider the base space of nonnegative real numbers X = [0,∞) and define
a self mapping f on X by

f (x) =

{
x+6
3 , if x ≤ 3,

3, if x ≥ 3.
Then the mapping f satisfies (4), taking the func-

tions G(s) = s + 1
3(s+1) and δ(t) = t

9 , for which it is obvious the validity of conditions
(G1)–(G3).
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Indeed, we distinguish three cases:

Case I. If 3 ≥ y ≥ x , then the inequality (4) is written as:

y − x

9
+ y − x

3
+ 1

3( y−x
3 + 1)

≤ G

(
max

{
y − x,

x + 6

3
− x,

y + 6

3
− y

})

= G

(
max

{
y − x,

2

3
(3 − x),

2

3
(3 − y)

})

= G

(
max

{
y − x,

2

3
(3 − x)

})
.

If 2
3 (3 − x) ≤ y − x , we have

y − x

9
+ y − x

3
+ 1

3( y−x
3 + 1)

≤ G
(
y − x

)
,

which yields

4(y − x)

9
+ 1

3( y−x
3 + 1)

≤ (y − x) + 1

3(y − x + 1)
.

This can be written as

0 ≤ 5z

9
+ 1

3(z + 1)
− 1

z + 3
, (5)

by defining z := y − x ≥ 0. The right-hand side in (5) represents a mapping of the variable
z which is increasing on [0, 3] and vanishing at z = 0.

On the other hand, if 2
3 (3 − x) > y − x , we have

y − x

9
+ y − x

3
+ 1

3( y−x
3 + 1)

≤ G

(
2

3
(3 − x)

)
,

that is,

4(y − x)

9
+ 1

3( y−x
3 + 1)

≤ 2

3
(3 − x) + 1

3
( 2
3 (3 − x) + 1

) .

This can be written as

4y

9
+ 1

y − x + 3
≤ 2 − 2

9
x + 1

9 − 2x
.

Note that, since y − x ≥ 0 and y < 2 + 1
3 x ,

4y

9
+ 1

y − x + 3
≤ 4

9

(
2 + 1

3
x

)
+ 1

3
= 11

9
+ 4

27
x ≤ 2 − 2

9
x + 1

9 − 2x
.

The last inequality is valid on the region considered since

γ (x) := 2 − 2

9
x + 1

9 − 2x
− 11

9
− 4

27
x = 7

9
− 10

27
x + 1

9 − 2x

has derivative

γ ′(x) = −10

27
+ 2

(9 − 2x)2
,
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which is negative on [0, 3], and γ (3) := 7
9 − 310

27 + 1
3 = 0.

Case II. If y ≥ 3 ≥ x , then (4) is expressed as:

y − x

9
+ G

(
3 − x + 6

3

)
≤ G

(
max

{
y − x,

x + 6

3
− x, y − 3

})
.

Since y − x ≥ y − 3, and x+6
3 ≤ 3+6

3 = 3 ≤ y, we have

y − x

9
+ G

(
3 − x

3

)
≤ G

(
y − x

)
,

or

y − x

9
+ 3 − x

3
+ 1

3( 3−x
3 + 1)

≤ (y − x) + 1

3(y − x + 1)
,

that is,

3 − x

3
+ 1

6 − x
≤ 8

9
(y − x) + 1

3(y − x + 1)
.

Similar to the Example in [6], we denote a := 3 − x and b := y − 3. Thus, the previous
inequality is written as:

a

3
+ 1

3 + a
≤ 8

9
(a + b) + 1

3(a + b + 1)
,

or, equivalently,

2a + 3b

3(3 + a)(a + b + 1)
≤ 5a + 8b

9
,

which is obviously true.

Case III. If 3 ≤ x ≤ y, then nothing has to be checked since

d( f x, f y) = |3 − 3| = 0.

In any case, the inequality in (4) would be valid since it reduces to:

y − x

9
+ 1

3
≤ G

(
max{y − x, x − 3, y − 3}) = G(y − 3),

or

y − x

9
+ 1

3
≤ (y − 3) + 1

3(y − 3 + 1)
,

which can be expressed as:

− x

9
+ 1

3
≤ 8

9
y − 3 + 1

3(y − 2)
.

Since x ≥ 3,

− x

9
+ 1

3
≤ 0 ≤ 8

9
y − 3 + 1

3(y − 2)
,

and the last inequality holds becauseγ (y) = 8
9 y−3+ 1

3(y−2) is such thatγ (3) = 8
3−3+ 1

3 = 0

and γ ′(y) = 8
9 + −1

9(y−2)2
> 0 on [3,+∞).
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Similar to the result for WF-contractions, we deduce the uniqueness of fixed point (pro-
vided it exists).

Lemma 3 A Generalized WF-contraction has at most one fixed point.

Proof Let x, y ∈ X be two different fixed points of f , then, from (4), we have

δ(d(x, y)) + G(d(x, y)) ≤ G(max{d(x, y), d(x, x), d(y, y)}), (6)

which gives δ(d(x, y)) ≤ 0, a contradiction due to the fact that δ(t) > 0 for t ∈ (0,∞). �
Remark 3 Since it will be used later, we explain the hypotheses required on functions G and
δ for the validity of Lemma 2 [6, Lemma 2.2]. By revising the proof in [6], we find that the
conclusion holds just by assuming that G is strictly increasing and δ(t) > 0 for t ∈ (0,∞).

Next, we provide the result on the existence of a unique fixed point for the mapping f . We
use the notation N0 := N ∪ {0}.
Theorem 4 Consider a completemetric space (X , d) and suppose that themapping f : X →
X is continuous and satisfies the GeneralizedWF-contraction property for some G ∈ G̃ and
δ ∈ �̃. Then, there exists a unique fixed point for the mapping f .

Proof We start by selecting an arbitrary element x0 ∈ X , and defining the sequence {xn} in
X by recurrence, as follows:

xn+1 := f xn, for all n ∈ N0.

In case that xn = xn+1 for some n ∈ N0, then we have proved the existence of a fixed point
for f . Therefore, we assume that d(xn, xn+1) > 0 for every n ∈ N0. Similar to [6], we
denote by tn := d(xn, xn+1), n ∈ N0, so that {tn} is a sequence of positive real numbers.
Now, choosing x = xn and y = xn+1 in the inequality (4), we get

δ(tn) + G(tn+1) ≤ G (max{tn, tn+1}) . (7)

By the positiveness of δ on (0,+∞) and the strictly increasing character of G, we get that

G(tn+1) < G (max{tn, tn+1}) = max{G(tn), G(tn+1)},
so that

max{G(tn), G(tn+1)} = G(tn),

and (7) is reduced to

δ(tn) + G(tn+1) ≤ G (tn) ,

for every n ∈ N0. Hence, similar to Theorem 2.1 [6], by applying Lemma 2 (see Remark 3),
we deduce the strictly decreasing character of the sequence {tn} and the convergence of the
series

∑∞
i=0 δ(ti ) < ∞, thus, the general term is convergent to zero, that is, lim

n→∞ δ(tn) = 0,

which implies that

lim
n→∞ tn = 0, (8)

by virtue of condition (G2). By (G3), and the convergence of
∑∞

i=0 δ(ti ) < ∞, we deduce

the convergence of
∞∑

i=0

ti < ∞.
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Now, we prove that {xn} is a Cauchy sequence. Letm, n ∈ Nwithm > n, then we obtain

d(xm, xn) ≤
m−1∑

i=n

ti <

∞∑

i=n

ti → 0, as n → ∞,

due to the convergence of
∑∞

i=0 ti < ∞. This proves that {xn} is a Cauchy sequence.
By the completeness of X , there exists x ∈ X which is its limit, and using the continuity

of f , we have

x = lim
n→∞ xn+1 = f

(
lim
n→∞ xn

)
= f x .

Since the uniqueness was justified in Lemma 3, the proof is finished. �
Remark 5 In the statement and proof of Theorem 4, the family �̃ can be replaced by:

�̂ The family �̂ given by all functions δ : [0,∞) → [0,∞) satisfying the following
two properties:

(Ĝ2): δ(t) > 0 for all t > 0.
(Ĝ3): For every strictly decreasing sequence {sn} of positive real numbers, we have

∞∑

n=0

δ(sn) < ∞ ⇒
∞∑

n=0

sn < ∞.

Lemma 4 Consider:

� The family � of all functions δ : [0,∞) → [0,∞) satisfying the following three
properties:

(Ĝ2): δ(t) > 0 for all t > 0.
(G3): If t, s are positive real numbers, then

δ(t + s) ≤ δ(t) + δ(s).

(G4): For every strictly increasing sequence {zn} of positive real numbers, we have
if {δ(zn)} is bounded ⇒ {zn} is bounded.

Then � ⊆ �̂.

Proof We prove that � ⊆ �̂ by checking that conditions (G3)–(G4) imply (Ĝ3). Indeed,
let {sn} be a strictly decreasing sequence of positive real numbers, and assume that:

∞∑

n=0

δ(sn) < ∞.

Consider the convergent sequence of partial sums {yn}, where yn = ∑n
j=0 δ(s j ), and the

strictly increasing sequence {zn} of positive real numbers given by zn = ∑n
j=0 s j . Then, by

(G3),

0 < δ(zn) = δ

⎛

⎝
n∑

j=0

s j

⎞

⎠ ≤
n∑

j=0

δ(s j ) = yn, for all n ∈ N.
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Since {yn} is convergent, then it is bounded, so {δ(zn)} is a bounded sequence. By (G4), {zn}
is also bounded. Moreover, it is an increasing sequence, so {zn} is convergent, but this is the
sequence of partial sums of the series

∑∞
n=0 sn , whose sum is finite. �

Remark 6 It is clear that a WF-contraction is continuous and also satisfies the inequality
required to be a Generalized WF-contraction (by the nondecreasing character of G), so
Theorem 4 provides a generalized inequality in comparison to Theorem 2.1 [6]. However,
we have modified the families G (extending it) and � (adding or modifying the conditions),
in order to clarify the procedure.

In the following Corollary, we consider the particular case of G(t) = t , and δ(t) = μt ,
where μ > 0, which belong to the families G and �̃ ∩ �̂, respectively.

Corollary 7 Consider a complete metric space (X , d) and suppose that the mapping f :
X → X is continuous and that, for all x, y ∈ X with d( f x, f y) > 0, we have

d( f x, f y) ≤ max{d(x, y), d(x, f x), d(y, f y)} − μ d(x, y). (9)

Then, there exists a unique fixed point for the mapping f .

Last result is an extension of Banach Contraction Principle since a function satisfying

d( f x, f y) ≤ c d(x, y), for all x, y ∈ X , (10)

with c ∈ [0, 1), is continuous and satisfies
d( f x, f y) ≤ (1 − (1 − c))d(x, y)

≤ max{d(x, y), d(x, f x), d(y, f y)} − μ d(x, y),
(11)

for all x, y ∈ X , where μ := 1 − c ∈ (0, 1].
Also, by taking G(t) = ln(t + r), where r is fixed with r ∈ (0, 1] and δ ∈ �̃ ∪ �̂, we

have the following Corollary.

Corollary 8 Suppose that r is fixed with r ∈ (0, 1] and that δ ∈ �̃ ∪ �̂. Consider a complete
metric space (X , d) and suppose that the mapping f : X → X is continuous and that, for
all x, y ∈ X with d( f x, f y) > 0, we have

d( f x, f y) ≤ e−δ(d(x,y)) [max{d(x, y), d(x, f x), d(y, f y)} + r ] − r . (12)

Then, there exists a unique fixed point for the mapping f .

4 Application

Similar to the application shown in [6], we present an example of a two-point boundary value
problem for differential equations of second order, and we apply the new results in order
to deduce the existence of a unique solution. The problem considered is similar to equation
(4.1) in [6]:

{
−x ′′(t) = g(t, x(t)), t ∈ J = [0, 1],
x(0) = α, x(1) = β,

(13)

where α, β ∈ R, and g : J × R → R is a continuous function. For the above-mentioned
boundary value problem (13), the Green’s function is defined as:

K (t, s) =
{
s(1 − t), 0 ≤ s < t ≤ 1,

t(1 − s), 0 ≤ t ≤ s ≤ 1.
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Considering the space C(J ) consisting of all continuous real functions defined on J, it is
well-known that (C(J ), dθ ) is a completemetric space if we consider the weighted supremum
distance

dθ (x, y) = max
t∈J {|x(t) − y(t)| e−θ t }, x, y ∈ C(J ), (14)

where θ ≥ 0 is fixed. In the following, we use d := d0 the supremum norm.
By applying the results proved, we can deduce the existence of a unique solution for

problem (13).

Theorem 9 Suppose that there exists δ ∈ �̃ ∪ �̂ such that, for all t, s ∈ J and non-identical
x, y ∈ C(J ), we have

|K (t, s) [g(s, x(s)) − g(s, y(s))]|
≤ max {|x(s) − y(s)| ,

∣∣∣∣x(s) − α − (β − α)t −
∫ 1

0
K (t, s)g(s, x(s))ds

∣∣∣∣ ,
∣∣∣∣y(s) − α − (β − α)t −

∫ 1

0
K (t, s)g(s, y(s))ds

∣∣∣∣

}

− δ(d(x, y)).

Then, problem (13) has a unique solution x∗ ∈ C2.
Proof It is well known that x ∈ C2 is a solution to (13) if and only if x ∈ C is a solution to

x(t) = α + (β − α)t +
∫ 1

0
K (t, s)g(s, x(s))ds, for all t ∈ J . (15)

Hence, we can define a mapping f : C(J ) → C(J ) by

f x(t) = α + (β − α)t +
∫ 1

0
K (t, s)g(s, x(s))ds, for all t ∈ J. (16)

This definition of f clearly allows to affirm that thefixedpoints of f inC(J ) are the continuous
solutions to (15), and, therefore, the solutions to the boundary value problem (13).

Next, we check the validity of the conditions in Theorem 4. It is obvious that f is a
continuous mapping. Let x, y ∈ C(J ) with d( f x, f y) > 0, that is, x not coincident with y,
then we obtain, for t ∈ J , that

| f x(t) − f y(t)| =
∣∣∣∣
∫ 1

0
K (t, s)g(s, x(s))ds −

∫ 1

0
K (t, s)g(s, y(s))ds

∣∣∣∣

≤
∫ 1

0
|K (t, s) [g(s, x(s)) − g(s, y(s))]| ds

≤
∫ 1

0

(
max

{
|x(s) − y(s)| ,

∣∣∣∣x(s) − α − (β − α)t −
∫ 1

0
K (t, s)g(s, x(s))ds

∣∣∣∣ ,
∣∣∣∣y(s) − α − (β − α)t −

∫ 1

0
K (t, s)g(s, y(s))ds

∣∣∣∣

}
− δ(d(x, y))

)
ds

≤ max {d(x, y), d(x, f x), d(y, f y)} − δ(d(x, y)),

therefore

d( f x, f y)) ≤ max {d(x, y), d(x, f x), d(y, f y)} − δ(d(x, y)).
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This proves that condition (4) is satisfied for G chosen as the identity mapping. By applying
Theorem 4, there exists a unique solution to problem (13). �

We can extend Theorem 9 in the following way.

Theorem 10 Suppose that there exist G ∈ G, and δ ∈ �̃ ∪ �̂ such that, for all t, s ∈ J and
non-identical x, y ∈ C(J ), we have

|K (t, s) [g(s, x(s)) − g(s, y(s))]|
≤ G−1 [G(max {|x(s) − y(s)| ,

∣∣∣∣x(s) − α − (β − α)t −
∫ 1

0
K (t, s)g(s, x(s))ds

∣∣∣∣ ,
∣∣∣∣y(s) − α − (β − α)t −

∫ 1

0
K (t, s)g(s, y(s))ds

∣∣∣∣

})

−δ(d(x, y))] .

Then, problem (13) has a unique solution x∗ ∈ C2.

Proof It is obvious since both G and G−1 are strictly increasing functions. �
Acknowledgements The research of R. Rodríguez-López is partially supported by grant numbersMTM2016-
75140-P (AEI/FEDER, UE) and ED431C 2019/02 (GRC Xunta de Galicia).
The authors are grateful to the Editor in Chief and the anonymous Referees for their helpful comments towards
the improvement of the paper.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alber, Y. I., Guerre-Delabriere, S.: Principle of weakly contractivemaps inHilbert spaces, in: NewResults
in Operator Theory and Its Applications, Springer-Verlag, Basel, 7–22 (1997)

2. Ali, J., Imdad, M.: An implicit function implies several contraction conditions. Sarajevo J. Math. 4,
269–285 (2008)

3. Altun, I., Turkoglu, D.: Some fixed point theorems for weakly compatible mappings satisfying an implicit
relation. Taiwanese J. Math. 13, 1291–1304 (2009)

4. Argoubi, H., Samet, B., Vetro, C.: Nonlinear contractions involving simulation functions in a metric space
with a partial order. J. Nonlinear Sci. Appl. 8, 1082–1094 (2015)

5. Dutta, P., Choudhury, B. S.: A generalization of contraction principle in metric spaces, Fixed Point Theory
Appl. 2008, Article ID 406368, 8 pages (2008)

6. Gubran, R., Alfaqih, W.M., Imdad, M.: Fixed point theorems via WF-contractions. Kragujevac J. Math.
45(3), 353–360 (2021)

7. Imdad, M., Ali, J.: A general fixed point theorem in fuzzy metric spaces via an implicit function. J. Appl.
Math. Inform. 26, 591–603 (2008)

8. Imdad, M., Gubran, R., Ahmadullah, M.: Using an implicit function to prove common fixed point theo-
rems. J. Adv. Math. Stud. 11(3), 481–491 (2018)

123

http://creativecommons.org/licenses/by/4.0/


332 R. Rodríguez-López, R. Tiwari

9. Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications
to ordinary differential equations. Order 22(3), 223–239 (2005)

10. Nieto, J.J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and
applications to ordinary differential equations. Acta Mathematica Sinica, English Series 23(12), 2205–
2212 (2007)

11. O’Regan, D., Petrusel, A.: Fixed point theorems for generalized contractions in ordered metric spaces. J.
Math. Anal. Appl. 341, 1241–1252 (2008)

12. Popa, V.: Fixed point theorems for implicit contractive mappings. Stud. Cerc. St. Ser. Mat. Univ. Bacau
7, 127–133 (1997)

13. Popa, V.: A general fixed point theorem for weakly compatible mappings in compact metric spaces.
Turkish J. Math. 25, 465–474 (2001)

14. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to
matrix equations. Proc. Amer. Math. Soc. 132, 1435–1443 (2004)

15. Rhoades, B.: Some theorems for weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)
16. Tiwari, R., Gupta, S.: Some common fixed point theorems in metric spaces satisfying an implicit relation

involving quadratic terms. Funct. Anal. Approxim. Compt. 8(2), 45–51 (2016)
17. Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed

Point Theory Appl. Article ID 94, 6 pages (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Fixed point theorems via Generalized WF-Contractions with applications
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main result
	4 Application
	Acknowledgements
	References




