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Abstract
Recently, D. Bucur and M. Nahon used boundary homogenisation to show the remarkable
flexibility of Steklov eigenvalues of planar domains. In the present paperwe extend their result
to higher dimensions and to arbitrarymanifolds with boundary, even though in those cases the
boundary does not generally exhibit any periodic structure. Our arguments use a framework
of variational eigenvalues and provide a different proof of the original results. Furthermore,
we present an application of this flexibility to the optimisation of Steklov eigenvalues under
perimeter constraint. It is proved that the best upper bound for normalised Steklov eigenvalues
of surfaces of genus zero and any fixed number of boundary components can always be
saturated by planar domains. This is the case even though any actual maximisers (except
for simply connected surfaces) are always far from being planar themselves. In particular, it
yields sharp upper bound for the first Steklov eigenvalue of doubly connected planar domains.

Résumé
D.Bucur etM.Nahon ont récemment démontré une flexibilité remarquable pour le spectre de
Steklov de domaines planaires grâce à une homogénéisation périodique de la frontière. Dans
cet article, nous généralisons leur résultat aux dimensions plus grandes ainsi qu’à des variétés
à bord arbitraire, même lorsque le bord n’est en général pas muni d’une structure périodique.
Nos arguments sont fondés dans le cadre des valeurs propres variationnelles et donnent une
preuve différente des résultats originaux. De plus, nous présentons une application de cette
flexibilité à l’optimisation des valeurs propres de Steklov sous contrainte de périmètre. Nous
démontrons que lameilleure borne supérieure pour les valeurs propres de Steklov normalisées
pour des surfaces de genre nul et n’importe quel nombre de composantes connexes du bord est
saturé par des domaines planaires. Ceci est le cas même si tous les maximiseurs (sauf pour les
surfaces simplement connexes), sont très loin d’être planaires eux-mêmes.Enparticulier, nous
avons une borne supérieure optimale explicite pour la première valeur propre de domaines
planaires doublement connexes.

B Jean Lagacé
jean.lagace@kcl.ac.uk

Mikhail Karpukhin
m.karpukhin@ucl.ac.uk

1 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK

2 Department of Mathematics, King’s College London, The Strand, London WC2R 2LS, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40316-022-00207-8&domain=pdf


176 M. Karpukhin, J. Lagacé

Keywords Steklov problem · Boundary homogenisation · Spectral shape optimisation

Mathematics Subject Classification Primary: 58J50 · 35P15; Secondary: 35J20 · 35B27

1 Introduction, main results and setting

1.1 Optimisation of Steklov eigenvalues

Let (M, g) be a complete smooth Riemannian manifold, � ⊂ M be a domain with non-
empty Lipschitz boundary and 0 �≡ β : ∂� → [0,∞) be a non-negative function. We refer
to such an � as a manifold with Lipschitz boundary; any abstract manifold with smooth
boundary can be realised in this way. Consider the eigenvalue problem{

�gu = 0 in �,

∂νu = σβu on ∂�.
(1.1)

Under some integrability conditions on β to be made explicit later (see Theorem 1.5), the
eigenvalues are discrete and form a sequence

0 = σ0(�, g, β) < σ1(�, g, β) ≤ σ2(�, g, β) ≤ . . . ↗ ∞.

For every k, the naturally normalised eigenvalue is

σ k(�, g, β) = σk(�, g, β)

∫
∂�

β dAg

Volg(�)1− 2
d

,

see [10, 14] for a discussion around the naturality of that normalisation. The case β ≡ 1 is
of particular interest and is referred to as the Steklov problem. The corresponding Steklov
eigenvalues σk(�, g, 1) are denoted simply as σk(�, g). For many known results and open
questions about the Steklov problem, the reader can refer to the survey [12] and the references
therein. In the present paper we are mainly concerned with the optimisation problem for
normalised Steklov eigenvalues.

The first result of this type was obtained by Weinstock [20] who proved that the round
disk maximises the first normalised Steklov eigenvalue in the class of all bounded simply
connected smooth planar domains. The optimisation problem for other topologies of domains
in R

2 remains unsolved. At the same time, if one does not impose any assumptions on the
topology of the planar domain, then the optimal upper bound for all normalised Steklov
eigenvalues is

for all k ∈ N σ k(�, g) ≤ 8πk,

was found in [10]. The main goal of the present paper is to apply the ideas of [4] to the
optimisation problem for planar domains of fixed topology. Among other things, this allows
us to determine the optimal upper bound for the first normalized Steklov eigenvalue in the
class of planar domains with exactly 2 boundary components.

As a starting point, let us note that an examination of Weinstock’s proof yields that the
round disk continues to be the maximiser in the much larger class of all simply connected
Riemannian surfaces. The main observation of the present paper is that the same holds for
other topologies aswell, namely, the optimal upper bound for normalized Steklov eigenvalues
for planar domains of fixed topology does not increase after including arbitrary Riemannian
surfaces of the same topological type. To give a precise statement, for any γ ≥ 0 and b ≥ 1,
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Flexibility of Steklov eigenvalues via boundary homogenisation 177

we let �γ,b be the compact connected surface with boundary of genus γ with b boundary
components, and we define


k(γ, b) = sup
g

σ k(�γ,b, g).

Theorem 1.1 For every b ≥ 1 and k ≥ 0 one has

sup
�⊂R2

σ k(�) = 
k(0, b),

where the supremum is taken over the set of all bounded Lipschitz domains in R
2 with b

boundary components.

Remark 1.2 It follows from our proof that in fact, 
k(γ, b) is saturated by domains in a
surface of constant curvature for every γ ≥ 0.

The quantities 
k(γ, b) have received a lot of attention following the influential work of
Fraser and Schoen [8], who established the connection between 
k(γ, b) and free boundary
minimal immersions of �g,b into a Euclidean ball. In particular, they showed that for the
annulus �0,2 = A, 
1(0, 2) is achieved by a metric gcc on the so-called critical catenoid in
B
3. Combining this result with Theorem 1.1 one obtains the following.

Corollary 1.3 Let � ⊂ R
2 be a smooth bounded domain with 2 boundary components. Then

one has
σ 1(�) < σ 1(A, gcc) ≈ 4π/1.2. (1.2)

The inequality is sharp, i.e. there exists a sequence of domains �n such that σ 1(�n) →
σ 1(A, gcc).

Remark 1.4 Theorem 1.1 and Corollary 1.3 can be extended to Lipschitz rather than smooth
domains. In such a case, however, inequality (1.2) would stop being strict. In order to rule
out the equality case one would need to show a regularity theorem for σ 1-maximisers in the
spirit of [17, Theorem 1.4].

Many sequences of planar domains saturate bound (1.2). For any bounded � ⊂ R
2

conformal to (A, gcc)one canfind amaximizing sequence�n such that�n → � inHausdorff
distance. Here is a concrete example of one of those maximising sequences, which follows
from the proof of Theorem 1.1 and the geometry of gcc. Let t1 be the unique solution of
coth t = t . Set �0 = {z ∈ R

2, r < |z| < R}, where log R
r = 2t1. Then define �n ⊂ R

2

to be the (topological) annulus whose outer boundary is the same as �0, but whose inner
boundary oscillates uniformly with period 2π/n, where the amplitude of the oscillations is
chosen so that the length of the inner boundary component coincides with the length of the
outer boundary. As n → ∞, the amplitude in this construction is of order O

(
n−1

)
and the

domains�n converge in the Hausdorff metric to�0 while σ 1(�n) → σ 1(A, gcc) as n → ∞.

1.2 Flexibility of the Steklov spectrum

Theorem 1.1 can be proved by using as a main tool the material already contained in [4].
Despite that, we take this opportunity to give an alternative proof using the framework of
measure eigenvalues developed in [10]. This allows and to extend the results of [4] to higher
dimension and in a geometric context.
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178 M. Karpukhin, J. Lagacé

Wefirst make the observation that every compact connected smoothmanifold with bound-
ary can be realised as a bounded smooth domain in a complete Riemannian manifold (M, g).
Through this equivalence, we define manifolds with Lipschitz boundary as bounded Lips-
chitz domains in a complete Riemannian manifold. The weighted Steklov problem (1.1) can
be defined for those manifolds as well, the normal derivative being only well-defined almost
everywhere.

We prove the following flexibility result for Steklov eigenvalues, which was first observed
in [4] for planar domains.

Theorem 1.5 Let � be a compact connected Riemannian manifold with Lipschitz boundary
and let 0 �≡ β : ∂� → [0,∞). Suppose that β ∈ Ld−1(∂�) (if d ≥ 3) or β ∈ L log L(∂�)

(if d = 2). Then, there exists a family of domains �ε ⊂ � with Lipschitz boundary such that

1. As ε → 0, ∂�ε → ∂� in the Hausdorff distance.
2. For every k ∈ N the normalised eigenvalues σ k(�

ε, g) → σ k(�, g, β) as ε → 0.
3. For every ε > 0, � and �ε have the same topological type.

As with [4], the proof is based on homogenisation of the boundary. However, when
d ≥ 3 the boundary may no longer carry a periodic structure which means that classical
homogenisation constructions do not work in that setting. Instead, we adapt the geometric
homogenisation ideas from [11], which do not require any periodic structure. Furthermore,
we interpret the statement (2) of Theorem 1.5 in the formalism of variational eigenval-
ues, which in turn allows us to apply the general convergence results presented in [10]. In
particular, this approach results in a more streamlined proof compared to [4]. Let us note
that boundary homogenisation of the Steklov problem in dimension d ≥ 3 was studied by
Ferrero–Lamberti in [7], however as with most boundary homogenisation results it required
domains in Euclidean space to be of product type; we make no such geometric assumptions.

Theorem 1.1 is a consequence of Theorem 1.5, Koebe uniformization theorem and con-
formal invariance of Steklov eigenvalues for d = 2. For d ≥ 3, Steklov eigenvalues are no
longer conformally invariant, but one still has the following corollary of Theorem 1.5.

Corollary 1.6 Let (M, g) be a closed Riemannian manifold. Then for any k ≥ 0 one has

sup
�

σ k(�, g) = sup
�, β∈C+(∂�)

σ k(�, g, β),

where � varies over all smooth domains � ⊂ M.

Informally, this corollary states that the introduction of density does not change the optimal
upper bound for the normalized Steklov eigenvalues. At the same time, the problem with
density is more natural from the geometric viewpoint [14].

1.3 Plan of the paper

In Sect. 2, we prove Theorem 1.1 and its Corollary 1.3 using conformal changes of variable
and assuming Theorem 1.5. Then, in Sect. 3 we prove Theorem 1.5. This is done by first
assuming that � and β are smooth, using a geometric homogenisation procedure on the
boundary. Then, we relax the smoothness assumption and in turn approximate eigenvalues
for singular densities, then domains with Lipschitz boundary, in the end extracting a diagonal
subsequence from these procedures.
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Flexibility of Steklov eigenvalues via boundary homogenisation 179

1.4 Notation

We make extensive use throughout the paper of Landau’s asymptotic notation. We write

– indiscriminately, f1 = O ( f2) or f1 � f2 to mean that there exists C > 0 such that
| f1| ≤ C f2;

– f1  f2 to mean that f1 � f2 and f2 � f1;
– f1 = o ( f2) to mean that f1/ f2 → 0.

The limit in that last bullet point will be either as a parameter tends to 0 or ∞ and will be
clear from context. The use of a subscript, for instance f1 �� f2 means that the constant C
or the quantities involved in the definition of the limit may depend on the subscript.

Wemake use of a generalisation of Lp spaces, calledOrlicz spaces. Given� an increasing,
nonegative convex function on [0,∞), �(L)(�) is the space

�(L)(�) :=
{
f : � → R measurable : ∃η > 0 s.t.

∫
�

�(| f /η|) dvg < ∞
}

.

In addition to �(x) = x p (which corresponds to Lp spaces), we also will refer to the case
�(x) = ex , denoted exp L, �(x) = x log(1 + x), denoted L log L which is dual to exp L,
and �(x) = x2 log(1 + x)−1/2 denoted L2(log L)−1/2. For a reference on Orlicz space, see
[5].

2 Conformal changes of themetric

In this section we prove Theorem 1.1 and its corollary assuming Theorem 1.5. We start
by introducing the notion of variational eigenvalues and look at how they behave under a
conformal change of variables.

2.1 Function spaces and variational eigenvalues

We study the weighted Steklov problem 1.1 through the formalism developed in [10], see
also [13, 16]. For any domain with Lipschitz boundary � ⊂ M and any Radon measure μ

supported on �, we define the Sobolev spaces W1,p(�,μ) as the closure of C∞(�) under
the norm

‖ f ‖p
W1,p(�,μ)

=
∫

�

|∇ f |p dvg +
∫

�

| f |p dμ;

we write W1,p(�) := W1,p(�, dvg) for the usual Sobolev space.
We say that a measure μ is admissible if the trace operator Tμ : W1,2(�) → L2(�,μ)

is compact. We note that under such conditions W1,2(�,μ) is isomorphic to W1,2(�), see
[10, Theorems 3.4 and 3.5]. For an admissible measure μ and f ∈ C∞(�) we define the
Rayleigh quotients

Rg,μ( f ) :=
∫
�

|∇ f |2 dvg∫
�

| f |2 dμ
.

From this Rayleigh quotient we define the variational eigenvalues

λk(�, g, μ) = inf
Fk+1

sup
f ∈Fk+1\{0}

Rg,μ( f )
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180 M. Karpukhin, J. Lagacé

where the infimum is taken over all (k + 1)-dimensional subspaces Fk+1 ⊂ C∞(�) that
remain (k + 1)-dimensional in L2(�,μ). Admissibility of μ ensures that the variational
eigenvalues are discrete and form a sequence (see [10, Proposition 4.1])

0 = λ0(�, g, μ) < λ1(�, g, μ) ≤ λ2(�, g, μ) ≤ . . . ↗ ∞.

The main example of variational eigenvalues employed in the present paper is the following.
Let 0 �≡ β ∈ Ld−1(∂�; [0,∞)) (if d ≥ 3) or β ∈ L log L(∂�; [0,∞)) (if d = 2) and
Hd−1�∂� be the restriction of the Hausdorff measure to ∂�. Then λk(�, g, βHd−1�∂�) =
σk(�, g, β) as defined in (1.1).

2.2 Conformal optimisation

We are now ready to prove the optimisation theorems for d = 2 under the assumption of
Theorem 1.5.

Proof of Theorem 1.1 Let (�0,b, g) be a surface with Lipschitz boundary of genus 0 with b
boundary components. To prove our claim, it is sufficient to find a family of domains�ε ⊂ R

2

with b boundary components so that σ k(�
ε, g0) → σ k(�0,b, g).

By Koebe’s uniformisation theorem [15], there exists a circle domain � ⊂ R
2 (i.e. a

domain whose boundary is disjoint union of circles) and a conformal diffeomorphism ϕ :
� → �0,b such that g0 = ϕ∗g. It follows from [13, Theorem 1.6] that σ k(�0,b, g) =
σ k(�, g0, |dϕ|) for every k ∈ N. Furthermore, it follows from the proof of [2, Lemma 5.1]
that there is p > 1 so that |dϕ| ∈ Lp(∂�) . Therefore, by Theorem 1.5 there exists a sequence
of domains �ε ⊂ � with the same topological type so that σ k(�

ε, g0) → σ k(�, g0, |dϕ|)
as ε → 0, concluding the proof. ��
Proof of Corollary 1.3 The inequality (1.2) and its sharpness follows immediately from The-
orem 1.1 and [8, Theorem 1.3]. It remains to show that the equality can not be achieved by a
smooth domain �. Suppose that it does, then by [8, Theorem 1.3] there exists ω ∈ C∞(A)

such that ω = 0 on ∂A and (�, g0) is isometric to (A, e−2ωgcc), where gcc is a metric on a
free boundary minimal annulus in B

3. Then the formula for Gauss curvature in a conformal
metric implies that ω is solution to the following problem{

�gccω = −Kgcc on A;
ω = 0 on ∂A.

(2.1)

Let κ and κcc be the geodesic curvature of� and critical catenoid respectively. Recall that the
isometry group of the critical catenoid acts transitively on its boundary. Thus, κcc is constant.
Similarly, since the solution to (2.1) is unique, the function ∂νω is also constant on ∂A. Then
one has κ = κcc − ∂νω is also constant. The only curves of constant geodesic curvature κ on
R
2 are circles of radius κ−1. Hence ∂� consists of two circles of the same radius, which is

impossible. ��

3 Flexibility of the spectrum

In this sectionwe proveTheorem1.5, first under the assumptions that ∂� is smooth andβ > 0
is a smooth density, then under the weaker assumption that ∂� is Lipschitz and β is in an
appropriate integrability class. We first describe the boundary homogenisation construction
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Flexibility of Steklov eigenvalues via boundary homogenisation 181

yielding the appropriate domains �ε . Then, we briefly recall abstract tools defined in [10]
to study eigenvalue continuity results, and we use them in order to obtain continuity of the
Steklov eigenvalues of�ε to weighted Steklov eigenvalue on�. Finally, we extend the results
to the rough case.

3.1 Boundary homogenisation

This construction combines elements found in [11, Section 2] (for the geometric distribution
of the perturbations) and in [4] (for the type of perturbation). A distinction from the con-
struction in [4] is that the approximation is done “from the inside”, allowing us to perform
the construction intrinsically in the geometric setting.

In this subsection we assume that � has smooth boundary and 0 < β ∈ C∞(∂�). This
assumption will be relaxed later in Sect. 3.3. Invariance of normalised eigenvalues under
scaling of the density allows us to furthermore assume that β > 1. Let h be the induced
metric on ∂�, and assume that ε > 0 is small enough that h is uniformly almost Euclidean
in balls of radius 3ε. In other words assume that in geodesic polar coordinates around any
z ∈ ∂�, h reads

h(ρ, θ) = dρ2 + ρ2gSd−2 + r(ρ, θ)

where gSd−2 is the round metric on the d − 2-dimensional sphere, and r is a symmetric
2-tensor such that

‖r‖C1(Bε(z)) = O� (ε) .

For every ε > 0, let Sε be a maximal ε-separated subset of ∂� and let Vε be the Voronoı̆
tesselation associated with Sε, i.e. Vε := {

V ε
z : z ∈ Sε

}
, where

V ε
z := {

x ∈ ∂� : dist(x, z) ≤ dist(x, y) for all y ∈ Sε
}

and the distance is computedwith respect to themetric h.We construct a sequence of domains
�ε ⊂ � in the following way. For every z ∈ Sε and θ ∈ S

d−2, let ρθ,z be the distance from
z to ∂V ε

z along the geodesic starting with direction θ . Then, define wε
z : V ε

z → R as

wε
z (ρ, θ) = ε

(
1 − ρ

ρθ,z

)
.

Then, wε
z is piecewise smooth, vanishes on ∂V ε

z and satisfies the estimates∥∥wε
z

∥∥∞ = ε and
∥∥∇wε

z

∥∥∞  1.

For any smooth nonnegative function α : ∂� → R, we have that

∇(αwε
z ) = α∇wε

z + O (ε) .

In a neighbourhood of size 2ε ‖α‖∞ of the boundary ∂�, write Fermi coordinates as x =
(y, t), where t is the distance along the unit speed geodesic normal to the boundary at y.
Define

Qε
z := {

(y, t) : y ∈ V ε
z and t < α(y)wε

z (y)
}

and
Z ε
z := {

(y, t) : y ∈ V ε
z and t = α(y)wε

z (y)
}
.

Finally, we define �ε as
�ε := � \

⋃
z∈Sε

Qε
z ,
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which has boundary
∂�ε =

⋃
z∈Sε

Z ε
z .

We note that the family �ε has equi-Lipschitz boundary, with the constant depending only
on g, ∂�, and α. Furthermore,

Volg(� \ �ε) � ε.

Finally, for almost every y ∈ V ε
z , if x = (y, t) ∈ Z ε

z then the area element of ∂�ε at x is
given by

dA∂�ε

∣∣
x =

(√
1 + α2

∣∣∇wε
z

∣∣2 + O (ε)

)
dA∂�

∣∣
y . (3.1)

We choose

α =
(

β2 − 1∣∣∇wε
z

∣∣
)1/2

. (3.2)

Since β > 1 and wε
z is piecewise smooth, this implies that the measures in (3.1) are mutually

absolutely continuous with a piecewise smooth weight.

3.2 Continuity of eigenvalues—the smooth setting

We start by introducing conditions under which which variational eigenvalues are continuous
with respect to the measures used to define them. For n ∈ N, let�n ⊂ �. Letμn, μ be Radon
measures supported respectively on �n,�, we introduce the following three conditions:

(M1) μn
∗−⇀ μ as measures on � and Volg(� \ �n) → 0;

(M2) the measures μ, μn are admissible for all n;
(M3) there is an equibounded family of extension maps Jn : W1,2(�n, μn) →
W1,2(�,μn).

The following proposition appears as [10, Proposition 4.11].

Proposition 3.1 Suppose that �n ⊂ � is a sequence of domains and μ,μn are Radon
measures on respectively �,�n satisfying (M1)–(M3). If d ≥ 3, assume that μn → μ in

W1, d
d−1 (�)∗. If d = 2, assume that μn → μ in W1,2,−1/2(�)∗. Then, for all k ∈ N

lim
n→∞ λk(�n, μn) = λk(�,μ).

Remark 3.2 The space W1,2,−1/2(�) is the space of all functions in L2(log L)−1/2 such
that their distributional gradient also belongs in that space. It is a space which is contained
W1,p(�) for all 1 ≤ p < 2 so that the convergence in the previous theorem can be verified
in the dual of any of those spaces.

Proof of Theorem 1.5 under smoothness assumptions Ourgoal is to applyProposition3.1with

με = Hd−1
∣∣∣∣
∂�ε

and μ = βHd−1
∣∣∣∣
∂�

.

It is a simple observation to see that Vol(�ε) → Vol(�), and (3.1) and (3.2) tell us that

με(�)
∗−⇀ μ(�), so that Condition (M1) is verified.
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Flexibility of Steklov eigenvalues via boundary homogenisation 183

Condition (M2) follows from the trace inequality and the fact that β ≥ 1. Condition (M3)
follows from the fact that for all ε, �ε are Lipschitz domains whose Lipschitz constant is
controlled by C� supx∈� β(x), and C� depends on � through the metric.

It only remains to show that με → μ in W1,p(�)∗ for all p > 1. Let N ε be a 2ε ‖α‖∞-
tubular neighbourhood of ∂�, so that ∂�ε ⊂ N ε . It is sufficient to show that for every
f ∈ W1,1(�),

〈με − μ, f 〉W1,1(�) ≤ c ‖ f ‖W1,1(Nε)
(3.3)

for some c > 0. Indeed, it follows from (3.3) that for f ∈ W1,p(�), p > 1,

〈με − μ, f 〉W1,p(�) ≤ c ‖ f ‖W1,1(Nε)
≤ cε

p−1
p ‖ f ‖W1,p(�) .

By density, it is sufficient to prove (3.3) assuming that f is of class C1. Write

〈με − μ, f 〉W1,1(�) =
∫

∂�ε

f dA∂�ε −
∫

∂�

f β dA∂�

=
∑
z∈Sε

[∫
Zε
z

f dA∂�ε −
∫
V ε
z

f β dA�

]
. (3.4)

For any t ∈ [0, 2ε ‖α‖∞) and y ∈ ∂� write

f (y, t) = f (y, 0) +
∫ t

0
∂s f (y, s) ds. (3.5)

It follows from (3.1) and (3.2) that for all z ∈ Sε,∫
Zε
z

f dA∂�ε =
∫
V ε
z

f (y, α(y)w(y))(β(y) + O (ε)) dA∂�

=
∫
V ε
z

(β + O (ε)) f dA∂� +
∫
V ε
z

(β + O (ε))

∫ t(y)

0
∂s f (y, s) ds dA∂�,

where t(y) = α(y)w(y). This means that we can rewrite (3.4) as

〈με − μ, f 〉W1,1(�) =
∑
z∈Sε

O (ε)

∫
V ε
z

f β dA∂� + O (1)
∫
V ε
z

∫ t(y)

0
∂s f (y, s) ds dA∂�.

We claim that the operator T ε : W1,1(N ε) → L1(∂�) has norm ‖T ε‖ � ε−1. Indeed,
integrating (3.5) over t yields

2ε ‖α‖∞ f (y, 0) =
∫ 2ε‖α‖∞

0
f (t) dt −

∫ 2ε‖α‖∞

0

∫ t

0
∂s f (y, s) ds dt .

Changing the order of integration and integrating over y completes the proof of the claim.
Thus, one has ∣∣∣∣∣

∑
z∈Sε

O (ε)

∫
V ε
z

f β dA∂�

∣∣∣∣∣ � ‖β‖∞ ‖ f ‖W1,1(N ε) .

By monotonicity, we have that

∑
z∈Sε

O (1)

∣∣∣∣∣
∫
V ε
z

∫ t

0
∂s f (y, s) ds dA∂�

∣∣∣∣∣ �
∫
N ε

|∇ f | dvg ≤ ‖ f ‖W1,1(N ε) .

This completes the proof that (3.3) holds, which was enough for our purposes, and the proof
of Theorem 1.5 under smoothness assumptions is complete. ��
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3.3 Continuity of eigenvalues—the singular setting

3.3.1 Singular densities

We first give a condition on β so that βHd−1�∂� is an admissible measure.

Lemma 3.3 Suppose that d ≥ 3 (respectively d = 2) and that 0 �≡ β ∈ Ld−1(∂�; [0,∞))

(respectively in L log L(∂�; [0,∞))) is a nonnegative function. Then, the trace Tβ :
W1,2(�) → L2(∂�, βHd−1�∂�) is compact; in other words μβ = βHd−1�∂� is an admis-
sible measure.

Proof The case d = 2 is proven in [13, Proposition 2.2], by factoring Tβ through the bounded
trace W1,2(�) → exp L2(∂�) and appropriate multiplication operators, so that Tβ is seen to
be a norm limit of compact operators. The case d ≥ 3 is dealt with in the same way, using

instead the bounded trace W1,2(�) → L
2(d−1)
d−2 (∂�) given by Gagliardo’s trace theorem [9].

��
Proposition 3.4 Let d ≥ 3 (respectively d = 2) and let βn be a sequence of non-negative
densities converging in Ld−1(∂�) (respectively L log L(∂�)) to a non-negative density β.
Then, as n → ∞ we have λk(M, g, βn dAg) → λk(M, g, β dAg).

Proof Conditions (M1)–(M3) are respected, the only non-trivial one being (M2) which fol-

lows from Lemma 3.3. Let u ∈ W1, d
d−1 (�), for d ≥ 3. Then, the embedding W1, d

d−1 (�) →
L

d−1
d−2 (∂�) given by Gagliardo’s trace theorem [9] and Hölder’s inequality with exponents

d − 1 and d−1
d−2 yield∣∣∣∣

∫
∂�

u(βn − β) dAg

∣∣∣∣ �d,� ‖u‖
W

1, d
d−1 (�)

‖βn − β‖Ld−1(∂�) .

This preciselymeans thatβn dAg → β dAg inW
1, d

d−1 (�)∗, so that the eigenvalues converge.
For d = 2, the same proof holds replacing Gagliardo’s trace theorem with the trace operator
W1,2,−1/2(�) → exp L(∂�), see [6, Theorem 5.3], and Hölder’s inequality on exp L(∂�)

and L log L(∂�). ��

3.3.2 Lipschitz boundary

In order to study convergence of eigenvalues of domains with Lipschitz boundary, we need
[3, Theorem 4.1]. Note that this result is proven in the Euclidean setting, but its proof extends
to the Riemannian setting directly, see [11, Lemma 3.1] for an adaptation to the Riemannian
setting of the only part of the proof which is not completely local.

Proposition 3.5 Let � be a manifold with Lipschitz boundary and for all n ∈ N, let �n ⊂ �

be Lipschitz domains such that 1�n → 1�, strongly in L1(�), Hd−1(∂�n) → Hd−1(∂�)

and
sup
n

‖Tn‖BV(�n)→L1(∂�n)
< ∞

where Tn is the trace operator. Then, for every k ∈ N, σk(�n, g) → σk(�, g).

Proof of Theorem 1.5 for manifolds with Lipschitz boundary Wefirst prove that we can exhaust
any compact manifold with Lipschitz boundary with a sequence of domains with smooth
boundary in such a way that the Steklov eigenvalues are stable.
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Let� be a compact manifold with Lipschitz boundary. Following [19, TheoremA.1], (see
[18, Appendix A] for a discussion of the adaptation to the Riemannian case), there exists a
sequence of smooth domains �n ⊂ � converging to � such that the boundaries of �, �n

may be respectively parametrised by a finite number of equi-Lipschitz maps γ j , γ j,n such
that γ j,n → γ j uniformly. This implies in particular that if T n : BV(�n) → L1(∂�n) is
the trace operator, their norms remains uniformly bounded since it can be estimated in terms
of the Lipschitz constants of ∂�n and the volume of � [1]. In particular, it follows from
Proposition 3.5 that for all k ∈ N, σk(�n, g) → σk(�, g).

It also follows from [19, Theorem A.1] that there are bi-Lipschitz homeomorphisms �n

from ∂�n to ∂�, whose bi-Lipschitz character is preserved uniformly in n. In particular, �n

induces an isomorphism �∗
n : Lp(∂�) → Lp(∂�) for every p ∈ [1,∞], whose norms are

uniformly bounded in n. Therefore, extracting a diagonal subsequence from

– first finding a sequence of domains �n with smooth boundary converging to �;
– then approximating the weight β ◦ �n ∈ Ld−1(∂�n) by smooth weights βm,n ;
– finally finding a sequence of domains with Lipschitz boundary �ε

m,n so thatHd−1�∂�ε
m,n

converges to βm,nHd−1�∂�n ;

provides us with the required sequence of domains proving our claim. ��
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