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Abstract
This article proves a case of the p-adic Birch and Swinnerton-Dyer conjecture for Garrett
p-adic L-functions of [6], in the exceptional zero setting of extended analytic rank 2.

Résumé
Cet article prouve un cas de la conjecture p-adique de Birch et Swinnerton-Dyer pour les
fonctions L p-adiques de Garrett formulée dans [6], dans le cadre de zéros exceptionnels de
rang analytique étendu égal à 2.
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Introduction

Let A be an elliptic curve defined over Q, having ordinary reduction at a rational prime
p > 3. Let �1 and �2 be odd, irreducible, two-dimensional Artin representations of the
absolute Galois group ofQ, which are unramified at p and satisfy the self-duality condition

det(�1) = det(�2)
−1.

By modularity, the triple (A, �1, �2) arises from a triple ( f , g, h) of cuspidal p-ordinary
newforms of weights wo = (2, 1, 1). Let fα be the ordinary p-stabilisation of f , and fix
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p-stabilisations gα and hα of g and h respectively. Set � = �1 ⊗ �2. In the recent paper [6]
we proposed a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for the leading
term at wo of the 3-variable Garrett–Hida p-adic L-function Lαα

p (A, �) = L p( f , gα, hα)
associated with the triple ( f , gα, hα) of Hida families specialising to ( fα, gα, hα) at wo. In
this article we verify our conjecture in the analytic rank-zero exceptional cases, viz. when
the complex Garrett L-function L(A, �, s) = L( f ⊗ g ⊗ h, s) does not vanish at s = 1
and Lαα

p (A, �) has an exceptional zero at wo in the sense of Mazur–Tate–Teitelbaum (cf.
Theorem 2.1 and Sect. 2.1 below). Moreover, when L(A, �, 1) = 0 and Lαα

p (A, �) has
an exceptional zero, we propose a conjecture relating the value at wo of the fourth partial
derivative of Lαα

p (A, �) along the f -direction to the p-adic logarithms of two global points
on A rational over the number field cut out by � (cf. Conjecture 2.3).

1 Setting and notations

Fix algebraic closures Q̄ and Q̄p of Q and Qp respectively, and field embeddings
i p : Q̄ ↪−→ Q̄p and i∞ : Q̄ ↪−→ C. With the notations of the Introduction, let

ξ =
∑

n≥1

an(ξ) · qn ∈ Su(Nξ , χξ )Q̄

denote one of the cuspidal newforms f , g and h. Here u and Nξ are the weight and the
conductor of ξ respectively, and Su(Nξ , χξ )F is the space of cuspidal modular forms of
level �1(Nξ ), weight u, character χξ and Fourier coefficients in the subfield F of Q̄p . Fix a
number field Q(�) containing for any ξ the Fourier coefficients an(ξ), as well as the roots
αξ and βξ of the pth Hecke polynomials Pξ,p = X2 − ap(ξ) · X + χξ (p) · p. Let V�i be a
two-dimensional Q(�)-vector space affording the representation �i , and let K� be a Galois
number field such that �i factors through Gal(K�/Q). Set

V� = V�1 ⊗Q(�) V�2 and Vp(A, �) = Vp(A) ⊗Q V�,

where Vp(A) = H1
ét (AQ̄,Qp(1)) is the p-adic Tate module of A with Qp-coefficients.

Throughout this note we make the following

Assumption 1.1 1. (Self-duality) The characters χg and χh are inverse to each other.
2. (Local signs) The conductors Ng and Nh are coprime to p · N f .
3. (Étaleness) The forms g and h are cuspidal, p-regular and do not have RM by a real

quadratic field in which p splits.

The first condition is a reformulation of the self-duality condition mentioned in the Intro-
duction, namely det(�1) = det(�2)−1. Recall that the form ξ is p-regular if Pξ,p has distinct
roots. Moreover, one says that a weight-one eigenform has RM (real multiplication) if it is the
theta series associated with a ray class character of a real quadratic field. Assumption 1.1.3
is equivalent to require that V�i is irreducible, not isomorphic to IndQKχ for a finite order
character χ : G K −→ Q(�)∗ of a real quadratic field K in which p splits, and that an arith-
metic Frobenius at p acts on V�i with distinct eigenvalues. For ξ = g, h, this assumption
guarantees that the p-adic Coleman–Mazur–Buzzard eigencurve of tame level Nξ is étale
over the weight space at the points corresponding to the p-stabilisations of ξ (cf. [2]). It is
used in [6] to construct the Garrett–Nekovář height ⟪·, ·⟫ f gαhα

which appears in the main
result of this note. To explain the relevance of Assumptions 1.1.1 and 1.1.2, let α f be the
unit root of Pf ,p and fix roots αg and αh of Pg,p and Ph,p respectively. Fix a finite extension

123



On exceptional zeros of Garrett–Hida... 305

L of Qp containing Q(�) and the roots of unity of order lcm(N f , Ng, Nh). Let ξ be one of
f , g and h, and let uo be the weight of ξ . According to the results of [2,10,18], there exists
a unique Hida family

ξα =
∑

n≥1

an(ξα) · qn ∈ Oξ [[q]]

which specialises at uo to the p-stabilised newform

ξα = ξ(q) − χξ (p)pu−1

αξ
· ξ(q p) ∈ Suo(p · Mξ , χξ )L .

Here Mξ = Nξ /pordp(Nξ ) is the tame level of ξ (so that Mξ = Nξ if ξ = g, h), and Oξ is the
ring of bounded analytic functions on a (sufficiently small) connected open disc Uξ in the
p-adic weight space over L . For each classical weight u in Uξ ∩ Z≥3, the weight-u
specialisation ξα,u = ∑

n≥1 an(ξα)(u) · qn ∈ L[[q]] of ξα is the q-expansion of the ordi-
nary p-stabilisation of a newform ξu in Su(Mξ , χξ )L . Since f has a unique p-ordinary
p-stabilisation fα , we simply write f for fα .

Assumption 1.1.1 guarantees that for each classical triple w = (k, l,m) in the set

	 = Uf × Ug × Uh ∩ Z3≥1

the complex Garrett L-function L( fk ⊗ gl ⊗ hm, s) admits an analytic continuation to all
of C and satisfies a functional equation relating its values at s and k + l + m − 2 − s,
with root number ε(w) = ∏

�≤∞ ε�(w) equal to +1 or to −1. Assumption 1.1.2 implies
that all the local signs ε�(w) are equal to +1 for every w in the f -unbalanced region
	 f = {w = (k, l,m) ∈ 	 : k ≥ l + m} (cf. [11]). Under these assumptions, [12] associates
with ( f , gα, hα) an analytic function

L αα
p (A, �) = Lp( f , gα, hα)

in the ring Of gh = Of ⊗̂LOg⊗̂LOh, whose square

Lαα
p (A, �) = L p( f , gα, hα) = Lp( f , gα, hα)

2

satisfies the following interpolation property. For each w = (k, l,m) in 	 f , the value of
Lαα

p (A, �) at w is an explicit non-zero complex multiple of

(
1 − βkαlαm

pcw

)2 (
1 − βkβlαm

pcw

)2 (
1 − βkαlβm

pcw

)2 (
1 − βkβlβm

pcw

)2

·L( fk ⊗gl ⊗hm, cw).

(1)
Here cw = k+l+m−2

2 , and for ξ = f , gα, hα one denotes by αu the unit root of Pξu ,p and
sets βu · αu = χ ′

ξ (p) · pu−1, where χ ′
ξ is the prime-to-p part of χξ (so that χ ′

ξ = χξ for
ξ = g, h, and χ ′

f is the trivial character modulo M f ). We refer to Theorem A of loc. cit.
for the precise interpolation formula. We call Lαα

p (A, �) = L p( f , gα, hα) the Garrett–Hida
p-adic L-function associated with (A, �) (or with ( f , gα, hα)).

2 Exceptional zero formulae

The p-adic variant of the Birch and Swinnerton-Dyer conjecture formulated in [6] predicts
that the leading term of Lαα

p (A, �) at wo = (2, 1, 1) is encoded by the discriminant of the
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306 M. Bertolini et al..

Garrett– Nekovář height pairing

⟪·, ·⟫ f gαhα
: A†(K�)

� ⊗Q(�) A†(K�)
� −→ I /I 2 (2)

constructed in Section 2 of loco citato, where I is the ideal of functions in Of gh which
vanish at wo and the p-extended Mordell–Weil group A†(K�)

� is defined as follows. When
A has good reduction at p, one sets A†(K�)

� = A(K�)
�, where A(K�)

� is a shorthand
for the Gal(K�/Q)-invariants of A(K�) ⊗Z V�. If A has multiplicative reduction at p,
then α f = ap( f ) = ±1 and the maximal p-unramified quotient Vp(A)− of Vp(A) is a
1-dimensional Qp-vector space on which an arithmetic Frobenius acts as multiplication by
α f . Let qA in pZp be the p-adic Tate period of the base change AQp of A toQp (cf. Chapter
V of [15]), and letQp2 be the quadratic unramified extension ofQp . The Tate uniformisation
yields a rigid analytic morphism

℘Tate : Grig
m,Qp2

−→ AQp2

with kernel qZ
A and unique up to sign. Set

q(A) = p−(
(℘Tate(

pn√qA ))n≥1
) ∈ Vp(A)−,

where p− denotes the projection Vp(A) −→ Vp(A)− and (pn√qA )n≥1 is any compatible
system of pn-th roots of qA, and define

A†(K�)
� = A(K�)

� ⊕ Qp(A, �)

to be the direct sum of A(K�)
� and the Q(�)-submodule

Qp(A, �) = H0(Qp,Q(�) · q(A) ⊗Q(�) V�)

of H0(Qp, Vp(A)− ⊗Q V�). The Garrett–Nekovář height ⟪·, ·⟫ f gαhα
depends on the choice

of suitably normalised GQ-equivariant embeddings

γg : V�1 ↪−→ V (g) and γh : V�2 ↪−→ V (h), (3)

where V (ξ) = V (ξα) ⊗1 L (for ξ = g, h) is the weight-one specialisation of the big
Galois representation V (ξα) associated with ξα . (We refer to Sect. 3.1 below for precise
definitions.) More precisely, denote by V ( f ) the fα-isotypic component of the cohomology
group H1

ét (X1(N f , p)Q̄,Qp(1)), where X1(N f , p)Q̄ is the base change to Q̄ of the compact
modular curve X1(N f , p) of level �1(N f ) ∩ �0(p) over Q, and set

V ( f , g, h) = V ( f ) ⊗Qp V (g) ⊗L V (h).

Section 2 of [6] constructs a canonical Garrett–Nekovář p-adic height pairing

⟪·, ·⟫ f gαhα
: Sel†(Q, V ( f , g, h)) ⊗L Sel†(Q, V ( f , g, h)) −→ I /I 2 (4)

on the naive extended Selmer group of V ( f , g, h) over Q, defined as the direct sum of
the Bloch–Kato Selmer group Sel(Q, V ( f , g, h)) of V ( f , g, h) over Q and the module
H0(Qp, V ( f , g, h)−) of GQp -invariants of the maximal p-unramified quotient V ( f , g, h)−
of V ( f , g, h). (The definition of ⟪·, ·⟫ f gαhα

is briefly recalled in Sect. 3.2.3 below.) Fix a
modular parametrisation ℘∞ : X1(N f , p) −→ A, under which one identifies V ( f ) and
Vp(A). The embeddings γg and γh and the global Kummer map on A(K�) then induce
an embedding γgh : A†(K�)

� ↪−→ Sel†(Q, V ( f , g, h)). The pairing (2) is defined to be
composition of the canonical Garrett–Nekovář height and γ⊗2

gh . The pairings (2) and (4)

are skew-symmetric, and the discriminant of (2) in (I r†(A,�)/I r†(A,�)+1)/Q(�)∗2, where
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r†(A, �) = dimQ(�) A†(K�)
�, is independent of the choice of ℘∞, γg and γh . We refer to

[6] for more details.
If ξ denotes either g or h, then the restriction to GQp of the Artin representation V (ξ) is

the direct sum of the submodules V (ξ)α and V (ξ)β on which an arithmetic Frobenius acts
as multiplication by αξ and βξ respectively (cf. Assumption 1.1.3). The GQp -representation
V ( f , g, h)− then decomposes as the direct sum of the subspaces

V ( f )−i j = V ( f )− ⊗Qp V (g)i ⊗L V (h) j ,

where (i, j) is a pair of elements of {α, β}. If ξ denotes either g or h, Sect. 3.1.1 below recalls
the definition of canonical weight-one differentials

ωξα ∈ (V (ξ)α ⊗Qp Q
nr
p )

GQp and ηξα ∈ (V (ξ)β ⊗Qp Q
nr
p )

GQp , (5)

where Qnr
p is the maximal unramified extension of Qp . If A is multiplicative at p, set

q( f ) = ℘−1∞ (q(A)) ∈ V ( f )−,

where one denotes again by ℘∞ : V ( f )−  Vp(A)− the isomorphism arising form the fixed
modular parametrisation ℘∞ : X1(N f , p) −→ A.

Under the running assumptions, the Q(�)-module Qp(A, �) (resp., the L-module
H0(Qp, V ( f , g, h)−)) is non-zero precisely A is multiplicative at p and

α f = αg · αh or α f = βg · αh,

in which case it has dimension 2 and one says that (A, �) is exceptional at p. More precisely,
note that αg �= βg by Assumptions 1.1.3, hence only one of the previous identities can be
satisfied. Moreover α f = αg · αh (resp., α f = βg · αh) if and only if α f = βg · βh (resp.,
α f = αg · βh) by Assumption 1.1.1. Fix an auxiliary integer m p such that p splits (resp., is
inert) in Q

[√
m p

]
if α f = +1 (resp., α f = −1), so that GQp acts trivially on

√
m p · q( f )

in V ( f )− ⊗Qp Q
nr
p . If α f = αg · αh , then GQp acts trivially on V ( f )−αα and V ( f )−ββ , hence

the p-adic periods

qαα = √
m p · q( f ) ⊗ ωgα ⊗ ωhα and qββ = √

m p · q( f ) ⊗ ηgα ⊗ ηhα

can naturally be viewed as elements of V ( f )−αα and V ( f )−ββ respectively, which generate

H0(Qp, V ( f , g, h)−). Similarly, if α f = βg · αh , then the periods

qαβ = √
m p · q( f ) ⊗ ωgα ⊗ ηgh and qβα = √

m p · q( f ) ⊗ ηgα ⊗ ωhα

can naturally be viewed as generators of H0(Qp, V ( f , g, h)−).
Equation (1) shows that the value of the square-root Garrett–Hida L-functionL αα

p (A, �)
at wo is a non-zero multiple of

(
1 − αgαh

α f

)(
1 − βgαh

α f

) (
1 − αgβh

α f

)(
1 − βgβh

α f

)
· √

L(A, �, 1),

where L(A, �, s) = L( f ⊗ g ⊗ h, s). The previous discussion then shows that (A, �) is
exceptional at p precisely if one of the Euler factors which appear in the previous expression
is zero, id est if L αα

p (A, �) (or Lαα
p (A, �)) has an exceptional zero in the sense of Mazur–

Tate–Teitelbaum [13]. In this case Lemma 9.8 of [7] proves that the restrictionL αα
p (A, �)|L

of L αα
p (A, �) to the improving line L defined by the equations m = 1 and k = l + 1 admits

the factorisation

L αα
p (A, �)|L = E f · Eg · L αα

p (A, �)�
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308 M. Bertolini et al..

in the ring O(L) of analytic functions on L, where

E f = 1 − ap( f )

ap(gα) · ap(hα)

∣∣∣∣
L

and Eg = 1 − χh(p) · ap(gα)

ap( f ) · ap(hα)

∣∣∣∣
L
.

Moreover, the value at wo of the improved p-adic L-function L αα
p (A, �)� is an explicit

algebraic number in Q(�), equal to zero precisely if L(A, �, s) vanishes at s = 1. We refer
to the proof of Proposition 8.3 of [12] for details.

The following is the main result of this note.

Theorem 2.1 Assume that (A, �) is exceptional at p. Let (q�, q�) denote either the pair
(qαα, qββ) or (qαβ, qβα), depending on whether α f = αg · αh or α f = βg · αh respectively.
Then the following equality holds in I /I 2 up to sign.

L αα
p (A, �) (mod I 2) = deg(℘∞) · (1 − βh/αh)

m p · ordp(qA)
· L αα

p (A, �)�(wo) · ⟪q�, q�⟫ f gαhα

Theorem 2.1 is proved in Sect. 4 below. More precisely, Sects. 3.3 and 3.4 below prove
that the following equality holds in I /I 2 up to sign:

2 · deg(℘∞)

m p · ordp(qA)
· ⟪q�, q�⟫ f gαhα

=
(
Lan

f − Lan
gα

)
· (l − 1) + ε ·

(
Lan

f − Lan
hα

)
· (m − 1),

(6)

where ε = +1 if α f = αg · αh and ε = −1 if α f = βg · βh , and where

− 1

2
· Lan

ξ = d log ap(ξ)u=uo (7)

is the value at the centre uo of Uξ of the logarithmic derivative of the p-th Fourier coefficient
of the Hida family ξ = f , gα, hα . In Sect. 4 we then deduce Theorem 2.1 from Eq. (6) and
the study carried out in [7, Section 9] of the linear term ofL αα

p (A, �) atwo in the exceptional
case.

It should be possible to extend Theorem 2.1 (and Conjecture 2.3 below) to the case of
p-new eigenforms of even weight k ≥ 2 and trivial character (cf. Section 1.1 of [6]). We
have not checked the details.

2.1 The rank-zero exceptional case of [6, Conjecture 1.1]

Assume in this section that (A, �) is exceptional at p, and that theGarrett complex L-function
L(A, �, s) = L( f ⊗ g ⊗ h, s) does not vanish at s = 1:

L(A, �, 1) �= 0.

According to the main result of [8] (see also Theorem B of [3]), one has

A(K�)
� = 0,

hence A†(K�)
� = Qp(A, �). The Garrett– Nekovář p-adic regulator Rαα

p (A, �), viz. the
discriminant of the p-adic height ⟪·, ·⟫ f gαhα

on A†(K�)
�, is then given by

Rαα
p (A, �) = det

(
⟪qi , q j⟫ f gαhα

)
1≤i, j≤2 = ⟪q1, q2⟫

2
f gαhα

in (I 2/I 3)/Q(�)∗2, where (q1, q2) is a Q(�)-basis of Qp(A, �).
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On exceptional zeros of Garrett–Hida... 309

Let γgh : V (A, �)− ↪−→ V ( f , g, h)− be the GQ-equivariant embedding defined by the
tensor product of the isomorphism Vp(A)−  V ( f )− induced by℘∞, γg and γh (cf. Eq. (3)).
The normalisation imposed on the embeddings γg and γh (and described in Sect. 3.1.1 below)
implies that the matrix M in GL2(L) defined by the identity (q� q�) · M = (γgh(q1) γgh(q2))
has determinant in Q(�)∗. In light of the above discussion, Theorem 2.1 then proves the
following corollary, which together with Eq. (6) establishes [6, Conjecture 1.1] in the present
setting.

Corollary 2.2 If L(A, �, s) does not vanish at s = 1, then A†(K�)
� = Qp(A, �) and the

following equality holds in the quotient of I 2/I 3 by the action of Q(�)∗2.

Lαα
p (A, �) (mod I 3) = Rαα

p (A, �)

2.2 Exceptional zeros and rational points (cf. [14])

Assume in this section that (A, �) is exceptional at p, and that theGarrett complex L-function
L(A, �, s) vanishes at the central critical point s = 1:

L(A, �, 1) = 0.

Set {�, �} = {αα, ββ} of {�, �} = {αβ, βα}, depending on whether
α f = αg · αhorα f = βg · αh .

The p-adic L-function L αα
p (A, �) belongs to I 2 (cf. Theorem 2.1) and Conjecture 2.3 of

[6] predicts that its image in (I 2/I 3)/Q(�)∗ equals

⟪q�, q�⟫ f gαhα
⟪P, Q⟫ f gαhα

− ⟪q�, P⟫ f gαhα
⟪q�, Q⟫ f gαhα

+ ⟪q�, Q⟫ f gαhα
⟪q�, P⟫ f gαhα

for two rational points P and Q in A(K�)
�. (Recall that the p-adic height ⟪·, ·⟫ f gαhα

is
skew-symmetric, hence the previous expression is a square root of its discriminant on the
Q(�)-submodule of A†(K�)

� generated by q�, q�, P and Q.) One has

⟪q�, q�⟫ f gαhα
(k, 1, 1) = 0

by Eq. (6). Moreover, Sect. 3.5 below proves that

⟪q�, x⟫ f gαhα
(k, 1, 1) = 1

2
· log�(resp(x)) · (k − 2) (8)

for each Selmer class x in Sel(Q, V ( f , g, h)), where

log� = 〈logp(·), q�〉 f gh : H1
fin(Qp, V ( f , g, h)) −→ L.

Here logp : H1
fin(Qp, V ( f , g, h))  DdR(V ( f , g, h))/Fil0 is the Bloch–Kato p-adic loga-

rithm (cf. Lemma 9.1 of [7]), and 〈·, ·〉 f gh : DdR(V ( f , g, h))⊗2 −→ L is the pairing induced
by the natural Kummer duality π f gh : V ( f , g, h)⊗2 −→ L(1) defined in Sect. 3.1.1 below
(cf. Eq. (11)). We are then led to the following

Conjecture 2.3 Assume that A(K�)
� is a 2-dimensional Q(�)-vector space. Then for any

Q(�)-basis (P, Q) of A(K�)
�, the equality

∂2L αα
p (A, �)

∂k2
(wo) = log�(P) · log�(Q) − log�(P) · log�(Q)

holds in L up to multiplication by a non-zero scalar in Q(�)∗.
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As explained in [5], themain result of [1] can be used to prove cases ofConjecture 2.3when
g and h are theta series associated with certain ray class characters of the same imaginary
quadratic field in which p is inert (and P and Q are Heegner points). By combining this
with an extension of the height computations carried out in [16,17], the article [4] proves
instances of Conjecture 1.1 of [6] in this setting.

Remark 2.4 In light of the aforementioned results of [5], Rivero proposes in [14, Conjecture
4.5] a variant of Conjecture 2.3. He also asks (cf. Question 5.3 of [14]) if one can expect

a similar description of
∂2L αα

p (A,�)

∂k2
(wo) when A has good reduction at p. The previous

discussion places Rivero’s conjecture within a conceptual framework and sheds some light
on this question.

3 Height computations

Throughout the rest of this note we assume that (A, �) is exceptional at p. In particular A
has multiplicative reduction at p, id est p divides exactly N f .

3.1 Setting and notations

This subsection briefly recalls the needed definitions and notations from our previous articles
[6,7].

3.1.1 Galois representations

Set N = lcm(N f , Ng, Nh) and let GQ,N be the Galois group of the maximal extension
of Q contained in Q̄ and unramified outside N∞. If ξ denotes one of f , gα and hα , let
V (ξ) be the big Galois representation associated with ξ (cf. Section 5 of [7]). It is a free
Oξ -module of rank two, equipped with a continuous linear action GQ,N . For each u in
Uξ ∩ Z≥2 the base change V (ξ) ⊗u L of V (ξ) along evaluation at u on Oξ is canonically
isomorphic to the homological p-adic Deligne representation of ξu with coefficients in L (cf.
loco citato for more details). In particular if ξ = f and u = 2 there is a natural specialisation
isomorphism ρ2 : V ( f )⊗2 L  V ( f ). If ξ = gα, hα and u = 1 set V (ξ) = V (ξ)⊗1 L (cf.
Sect. 1). It is a two-dimensional L-vector space affording the dual of the p-adic Deligne–
Serre representation of ξ = g, h with coefficients in L . In order to have a uniform notation,
in this case one defines ρ1 : V (ξ) ⊗1 L −→ V (ξ) to be the identity.

The restriction of V (ξ) to GQp (via the embedding i p fixed at the outset) fits into a short
exact sequence ofOξ [GQp ]-modules V (ξ)+ ↪−→ V (ξ) −� V (ξ)− with V (ξ)± free of rank
one over Oξ . More precisely, let χcyc : GQ −→ Z∗

p be the p-adic cyclotomic character, and
let ǎp(ξ) : GQp −→ O∗

ξ
be the unramified character sending an arithmetic Frobenius to the

p-th Fourier coefficients ap(ξ) of ξ . Then

V (ξ)+  Oξ

(
χu−1
cyc · χξ ǎp(ξ)

−1) and V (ξ)−  Oξ (ǎp(ξ)), (9)

where χu−1
cyc : GQ −→ O∗

ξ
satisfies χu−1

cyc (σ )(u) = χcyc(σ )
u−1 for each u in Uξ ∩ Z.

(The freeness of V (ξ)± is guaranteed by Assumption 1.1.3, cf. Section 5 of [7].) If ξ = f
and u = 2 the specialisation isomorphism ρ2 identifies V ( f )− ⊗2 L with the maximal
unramified quotient V ( f )− of V ( f ). If ξ = gα, hα and u = 1 we set V (ξ)β = V (ξ)+ ⊗1 L
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and V (ξ)α = V (ξ)− ⊗1 L . One has V (ξ) = V (ξ)α ⊕ V (ξ)β , where V (ξ)γ = V (ξ)Frobp=γξ

for γ = α, β is the submodule of V (ξ) on which an arithmetic Frobenius Frobp acts as
multiplication by γξ = αξ , βξ (cf. Assumption 1.1.3).

There is a natural GQ-equivariant skew-symmetric perfect pairing

πξ : V (ξ) ⊗Oξ
V (ξ) −→ Oξ (χξ · χu−1

cyc ),

inducing perfect dualities πξ : V (ξ)± ⊗Oξ
V (ξ)∓ −→ Oξ (χξ ·χu−1

cyc ). (See Section 5 cf. [7]
for the definitions).

Denote by� f gh = χ
(4−k−l−m)/2
cyc : GQ −→ O∗

f gh the character whose composition with

evaluation at (k, l,m) in Uf × Ug × Uh ∩Z3 on Of gh equals χ
(4−k−l−m)/2
cyc . If · denotes one

of the symbols ∅,+ and −, define

V · = V ( f )·⊗̂L V (gα)⊗̂V (hα) ⊗O f gh � f gh.

Then V = V ( f , gα, hα), resp. V
± = V ( f , gα, hα)

± is a freeOf gh-module of rank 8, resp.
4, equippedwith a continuous action ofGQ,N , resp.GQp . Asχg ·χh = 1 (cf.Assumption 1.1),
the product of the perfect dualities πξ , for ξ = f , gα, hα , yields a perfect skew-symmetric
Kummer duality π : V ⊗O f gh V −→ Of gh(1), inducing a perfect local Kummer duality
π : V± ⊗O f gh V∓ −→ Of gh(1). After setting

V · = V ( f , g, h)· = V ( f )· ⊗L V (g) ⊗L V (h)

and wo = (2, 1, 1), the product ρwo = ρ2⊗̂ρ1⊗̂ρ1 gives natural isomorphisms

ρwo : V · ⊗wo L  V · (10)

(where · ⊗wo L denotes the base change along evaluation at wo on Of gh). Let

π f gh : V ⊗L V −→ L(1) (11)

be the specialisation of π via ρwo , and define π : V ± ⊗L V ∓ −→ L(1) similarly.

Weight one differentials Define D(ξ)− = H0(Qp, V (ξ)−⊗̂Qp Q̂
nr
p ), where Q̂

nr
p is the

p-adic completion of the maximal unramified extension ofQp (and as usual ξ denotes one of
f , gα and hα). For each u in Uξ ∩ Z≥2 there is a natural comparison isomorphism between
D(ξ)−⊗u L and the ξu-isotypic component of the space of cuspidal modular forms of weight
u, level �1(Nξ p) and Fourier coefficients in L . Assumption 1.1.3 guarantees that D(ξ)− is
free (of rank one) over Oξ , and admits a basis ωξ whose image in D(ξ)− ⊗u L corresponds
to ξu under the aforementioned comparison isomorphism, for each u in Uξ ∩Z≥2. (We refer
to Section 3.1 of [6] and the references therein for more details.)

For ξ = gα, hα , the holomorphic weight-one differential

ωξα ∈ (V (ξ)α ⊗Qp Q
nr
p )

GQp

mentioned in Eq. (5) is defined to be the weight-one specialisation ofωξ , viz. the image ofωξ

in the quotient D(ξ)− ⊗1 L = D(ξ)α . The weight-one specialisation of πξ yields a perfect
GQ-equivariant skew-symmetric pairing

πξ : V (ξ) ⊗L V (ξ) −→ L(χξ ).

Let c be the common conductor of χg and χh , and identify (L(χξ )⊗Qp Q
nr
p )

GQp with L via

the Gauß sum G(χξ ) = (−c)iξ
∑

a∈(Z/cZ)∗ χξ (a)
−1 ⊗ e2π ia/c, where ig = 0 and ih = 1 (so
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that G(χg) · G(χh) = 1 by Assumption 1.1.1). The pairing πξ then induces a perfect duality

〈·, ·〉ξ : D(ξ)α ⊗L D(ξ)β −→ L , where D(ξ)γ = (V (ξ)γ ⊗Qp Qnr
p )

GQp . One defines the
antiholomorphic weight-one differential (cf. Eq. (5))

ηξα ∈ (V (ξ)β ⊗Qp Q
nr
p )

GQp

to be the dual of ωξα under 〈·, ·〉ξ , viz. the element satisfying
〈
ωξα , ηξα

〉
ξ

= 1.

The embeddings �g and �h With the notations of Sect. 1, set Vg = V�1 and Vh = V�2 .
Let ξ denote either g or h. As recalled above, the Artin representation V (ξ) = V (ξ) ⊗1 L
affords the dual of the p-adic Deligne representation of ξ with coefficients in L , id est
is isomorphic to Vξ ⊗Q(�) L . Enlarging L if necessary, we normalise the GQ-equivariant
embedding γξ : Vξ −→ V (ξ) (introduced in Eq. (3)) by requiring that the composition
πξ ◦ (γξ ⊗ γξ ) takes values in the number field Q(�) (via the embedding i p : Q̄ ↪−→ Q̄p
fixed at the outset).

3.1.2 Selmer complexes

Let R�̃ f (Q, V ) be the Nekovář Selmer complex associated with (V , V +) (cf. Section 2.2 of
[6]). It is an element of the derived category Db

ft(L) of cohomologically bounded complexes
of L-modules with cohomology of finite type over L , sitting is an exact triangle

R�cont(GQ,N , V )
p−◦resp−→ R�cont(GQp , V −) −→ R�̃ f (Q, V )[1], (12)

where R�cont(G, ·) is the complex of continuous non-homogeneous cochains of G with
values in ·, resp is the restriction map (induced by the embedding i p : Q̄ ↪−→ Q̄p fixed at
the outset) and p− is the map induced by the projection V −→ V −. Denote by

H̃ ·
f (Q, V ) = H ·(R�̃ f (Q, V ))

the cohomology of R�̃(Q, V ), let Sel(Q, V ) be the Bloch–Kato Selmer group of V over
Q, and let i+ : V + −→ V be the natural inclusion. Then there is a commutative and exact
diagram of L-vector spaces (cf. loc. cit.)

0 H0(Qp, V −)
j

H̃1
f (Q, V )

·+

Sel(Q, V )

resp

0

H1(Qp, V +) i+
H1(Qp, V )

(13)

where the first line arises from the exact triangle (12). In addition there is a unique section
ıur : Sel(Q, V ) −→ H̃1

f (Q, V ) of the above projection such that ıur(x)+ belongs to the

Bloch–Kato finite subspace H1
fin(Qp, V +) for each x in Sel(Q, V ). We often use j and ıur to

identify Nekovář’s extended Selmer group H̃1
f (Q, V ) with the naive extended Selmer group

Sel†(Q, V ) = H0(Qp, V −) ⊕ Sel(Q, V ) (cf. Sect. 1).
One similarly associates with (V , V+) a Selmer complex

R�̃ f (Q, V ) ∈ Db
ft(Of gh)

sitting in an exact triangle analogous to (12). (We refer to loc. cit. for more details.)
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3.2 Preliminary lemmas

This section gives a concrete description of the functionals ⟪q, ·⟫ f gαhα
: Sel†(Q, V ) −→ L

for q in H0(Qp, V −) (cf. Lemma 3.4 below).

3.2.1 Bockstein maps

Let (C, C) denote one of the pairs
(R�p(V−),R�p(V

−)), (R�(V ),R�(V )) and (R�̃ f (Q, V ),R�̃ f (Q, V )),

where R�p(·) and R�(·) are shorthands for R�cont(Qp, ·) = R�cont(GQp , ·) and
R�cont(GQ,N , ·) respectively (cf. Sect. 3.1.2). The specialisation maps ρwo (cf. Eq. (10))
induce isomorphisms

ρwo : C ⊗L
O f gh,wo

L  C and ρwo ⊗ id : C ⊗L
O f gh

I /I 2[1]  C ⊗L I /I 2[1]. (14)

Applying C ⊗L
O f gh

· to the exact triangle

I /I 2 −→ Of gh/I
2 −→ L −→ I /I 2[1]

(arising from evaluation on wo) then yields a derived Bockstein map

βC/C : C −→ C ⊗L I /I 2[1],
which in turn induces in cohomology a Bockstein map

βC/C : Hi (C) −→ Hi+1(C) ⊗L I /I 2.

If no risk of confusion arises, we simply write β for βC/C . Let

j : Hi (Qp, V −) −→ H̃ i+1
f (Q, V )

be the maps arising from the exact triangle (12).

Lemma 3.1 The following diagram commutes.

H0(Qp, V −)
β

j

H1(Qp, V −) ⊗L I /I 2

j⊗I /I 2

H̃1
f (Q, V )

β
H̃2

f (Q, V ) ⊗L I /I 2

Proof For M = V , V one has an exact triangle (cf. Equation (12))

�M : R�cont(GQ,N , M)[−1] p−◦resp−→ R�cont(Qp, M−)[−1] j M−→ R�̃ f (Q, M).

Moreover �V is obtained by applying · ⊗L
O f gh,wo

L to �V (cf. Eq. (14)). It follows from

the definition of the derived Bockstein maps β− and β on R�cont(Qp, V −) and R�̃(Q, V )

respectively that j V ⊗I /I 2[1] ◦ β− is equal to β ◦ j V . Since by definition the maps j are
the ones induced in cohomology by j V , the lemma follows. ��

The following lemma gives a concrete description of βC/C .
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Lemma 3.2 Let (C, C) be as above, let z be a 1-cocycle in C, let Z be a 1-cochain in C, and
let Zk, Zl and Zm be 2-cochains in C such that

ρwo(Z) = z and d Z = Zk · (k − 2) + Zl · (l − 1) + Zm · (m − 1).

Then z· = ρwo(Z ·) is a 2-cocycle for · = k, l,m, and one has the equality

−βC/C(cl(z)) = cl(zk) · (k − 2) + cl(zl) · (l − 1) + cl(zm) · (m − 1)

in H2(C) ⊗L I /I 2, where cl(·) is the class in Hi (C) represented by the i-cocycle ·.
Proof The proof is very similar to that of [16, Lemma 5.5]. We omit it. ��

3.2.2 Local and global duality

Nekovář’s generalised Poitou–Tate duality associateswith the perfect dualityπ f gh introduced
in Eq. (11) a global cup-product pairing (cf. Section 2.4 of [6])

〈·, ·〉Nek : H̃2
f (Q, V ) ⊗L H̃1

f (Q, V ) −→ L. (15)

The pairing π f gh induces a Kummer duality V − ⊗L V + −→ L(1) and we denote by

〈·, ·〉Tate : H1(Qp, V −) ⊗L H1 (
Qp, V +) −→ L (16)

the induced local Tate duality pairing. Recall finally the map

·+ : H̃1
f (Q, V ) −→ H1(Qp, V +)

introduced in diagram (13).

Lemma 3.3 For each ζ in H1(Qp, V −) and ξ in H̃1
f (Q, V ) one has

〈j (ζ ), ξ 〉Nek = 〈ζ, ξ+〉Tate.

Proof This is proved as in [16, Lemma 5.7]. ��

3.2.3 The Garrett–Nekovář p-adic height pairing

Set

β̃ f gαhα = βR�̃ f (Q,V )/R�̃ f (Q,V ) : H̃1
f (Q, V ) −→ H̃2

f (Q, V ) ⊗L I /I 2.

After identifying H̃1
f (Q, V ) with Sel†(Q, V ) (cf. Sect. 3.1.2), the canonical height

⟪·, ·⟫ f gαhα
introduced in Sect. is defined by (cf. [6, Section 2])

⟪x, y⟫ f gαhα
= 〈

β̃ f gαhα (x), y
〉
Nek

for each x and y in H̃1
f (Q, V ), where we write again 〈·, ·〉Nek for the I /I 2-base change of

Nekovář’s cup-product (15). Lemmas 3.1 and 3.3 give the following

Lemma 3.4 For each q in H0(Qp, V −) one has

⟪j (q), ·⟫ f gαhα
= 〈

β−
f gαhα

(q), ·+〉
Tate

as I /I 2-valued maps on H̃1
f (Q, V ), where β−

f gαhα
= βR�p(V−)/R�p(V −) (and we write

again 〈·, ·〉Tate for the I /I 2-base change of the local Tate pairing (16)).
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3.3 Computation of ⟪qˇˇ, q˛˛⟫ f g˛h˛

Assume in this subsection α f = αg · αh , so that H0(Qp, V −) is generated over L by the
periods

qαα = √
m p · q( f ) ⊗ ωgα ⊗ ωhα and qββ = √

m p · q( f ) ⊗ ηgα ⊗ ηhα .

Recall that χcyc : GQ −→ Z∗
p denotes the p-adic cyclotomic character. Fix a lift qββ in

V− of qββ under ρwo . Since (cf. Sect. 3.1.1)

qββ ∈ V ( f )− ⊗Qp V (g)β ⊗L V (h)β ↪−→ V −

and V (ξ)β = V (ξα)
+ ⊗1 L for ξ = g, h, we can choose qββ in the GQp -submodule

V ( f )−⊗̂L V (g)+⊗̂L V (h)+ ⊗O f gh � f gh ↪−→ V−

(cf. Sect. 3.1.1). By Eq. (9) one has

dqββ = � · qββ, (17)

where d denotes the differentials of the complex R�cont(Qp, V
−) and

� = ǎp( f )

ǎp(gα) · ǎp(hα)
· χ(l+m−k)/2

cyc − 1 : GQp −→ Of gh.

The assumption α f = αg · αh implies that � takes value in I , and that its composition
�′ with the projection I −→ I /I 2 is of the form

�′ = ϕk · (k − 2) + ϕl · (l − 1) + ϕm · (m − 1)

with ϕu in H1(Qp,Qp) for u = k, l,m. Identify H1(Qp,Qp) with the Qp-vector space
Hom(Q∗

p,Qp) of continuous morphisms of groups from Q∗
p to Qp via the local reciprocity

map recp : Q∗
p −→ Gab

Qp
, normalised by requiring recp(p−1) to be an arithmetic Frobenius.

By local class field theory, for each p-adic unit u one has

ϕk(u) = ∂

∂k

(
〈u〉(l+m−k)/2 − 1

)∣∣∣
wo

= −1

2
· logp(u),

where 〈·〉 : Z∗
p −→ 1 + pZp denotes the projection to principal units, and

ϕk(p) = ∂

∂k

(
ap(gα) · ap(hα)

ap( f )
− 1

)∣∣∣∣
wo

= 1

2
· Lan

f

(cf. Eq. (7)). As a consequence −2 · ϕk is equal to
log f = logp −Lan

f · ordp ∈ H1(Qp,Qp)

(where the p-adic valuation ordp : Q∗
p −→ Qp is normalised by ordp(p) = 1). Similarly

one shows that 2 · ϕl and 2 · ϕm are equal to the logarithms loggα = logp −Lan
gα

· ordp and
loghα = logp −Lan

gα
· ordp . It then follows from Eq. (17) and Lemma 3.2 that

2 · β−
f gαhα

(qββ) =
(
log f ·(k − 2) − loggα ·(l − 1) − loghα ·(m − 1)

)
⊗ qββ (18)

in H1(Qp, V −) ⊗L I /I 2, where (with the notations introduced in Sect. 3.2.1) one writes
β−
f gαhα

for the Bockstein map βC/C associated with C = R�p(V−). Note that

V ( f )−ββ = V ( f )− ⊗Qp V (g)β ⊗L V (h)β
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is an L[GQp ]-direct summand of V − on which GQp acts trivially, so that logξ ⊗qββ (for
ξ = f , gα, hα) belongs to the direct summand

H1(Qp, V ( f )−ββ) = H1(Qp,Qp) ⊗Qp V ( f )−ββ

of the local cohomology group H1(Qp, V −). Similarly

V ( f )+αα = V ( f )+ ⊗Qp V (g)α ⊗L V (h)α

is an L[GQp ]-direct summand of V + isomorphic to Qp(1), hence

H1(Qp, V ( f )+αα) = H1(Qp,Qp(1)) ⊗Qp V ( f )+αα(−1) (19)

is a direct summand of H1(Qp, V +). The local Tate pairing 〈·, ·〉Tate introduced in Sect. 3.2.2
induces a perfect duality (denoted by the same symbol) between H1(Qp, V ( f )−ββ) and

H1(Qp, V ( f )+αα), and identifying H1(Qp,Zp(1)) with the p-adic completion Q̂
∗
p of Q∗

p
via the local Kummer map, local class field theory gives

〈ϕ ⊗ v−, u ⊗ v+〉Tate = ϕ(u) · π f gh(−1)(v+ ⊗ v−) (20)

for each ϕ in H1(Qp,Qp), u in H1(Qp,Qp(1)), v
− in V ( f )−ββ and v+ in V ( f )+αα . Here

π f gh(−1) : V ( f )+αα(−1) ⊗L V ( f )−ββ −→ L

is the composition of π f gh ⊗ Qp(−1) with the evaluation pairing L(1) ⊗L L(−1) −→ L .

Recall that we identify H0(Qp, V −) with a submodule of H̃1
f (Q, V ) via the embedding

j introduced in Diagram (13). Lemma 3.4 and Eqs. (18) and (20) give

2 · ⟪qββ, z⟫ f gαhα
Lemma 3.8= 2 · 〈

β−
f gαhα

(qββ), z+〉
Tate

Equation (18)=
∑

ξ

(−1)uo · 〈logξ ⊗qββ, z+〉Tate · (u − uo)

Equation (20)=
∑

ξ

(−1)uo · logξ (z
+
αα) · (u − uo) (21)

for each z in H̃1
f (Q, V ), where ξ = f , gα, hα , uo = 2, 1, 1 is the centre of Uξ , and

z+
αα ∈ H1(Qp,Qp(1)) = Q̂

∗
p ⊗Zp Qp

is defined as follows.Let prαα denote theprojectiononto thedirect summand H1(Qp, V ( f )+αα)
of the local cohomology group H1(Qp, V +), and let q∗

ββ be the generator of V ( f )+αα(−1)
dual to qββ under π f gh(−1), namely satisfying

π f gh(−1)(q∗
ββ ⊗ qββ) = 1.

Then z+
αα is defined (via the natural isomorphism (19)) by the identity

prαα(z
+) = z+

αα ⊗ q∗
ββ . (22)

We now determine z+
αα for z = j (qαα). By definition j (qαα) is represented by

cαα = (0, dq̃αα, q̃αα) ∈ C̃
1
f (Q, V ),
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where q̃αα in V is a lift of qαα under the the projection V −→ V −, and where

dq̃αα : GQp −→ V +

is its image under the differential in R�cont(Qp, V ). By construction dq̃αα represents the
class q+

αα = j (qαα)+ in H1(Qp, V +). Since V (ξ) is the direct sum of V (ξ)α and V (ξ)β for
ξ = g, h, we can (and will) choose q̃αα of the form

q̃αα = √
m p · q̃( f ) ⊗ ωgα ⊗ ωhα

for a lift q̃( f ) of q( f ) under the projection V ( f ) −→ V ( f )−, so that dq̃αα represents the
image of qαα under the connecting morphism

δαα : V ( f )−αα −→ H1(Qp, V ( f )+αα)

arising from the short exact sequence of GQp -modules

0 −→ V ( f )+αα −→ V ( f )αα −→ V ( f )−αα −→ 0,

where V ( f )·αα is the L[GQp ]-direct summand V ( f )· ⊗Qp V (g)α ⊗L V (h)α of V ·. Let qA

in pZp be the Tate period of AQp . Tate’s theory gives a rigid analytic isomorphisms between

the base change EQ2
p
of the Tate curve E = Grig

m,Qp
/qZ

A to the quadratic unramified extension

Qp2 ofQp and AQp2
. Set Vp(E) = H1

Ket(EQ̄p
,Qp(1)) and let ℘Tate : Vp(E)  Vp(A) be the

isomorphisms of GQp2
-modules induced by the Tate uniformisation. There is a short exact

sequence of Qp[GQp ]-modules

0 −→ Qp(1)
a−→ Vp(E)

b−→ Qp −→ 0, (23)

where a(ζp∞) = (ζpn · qZ
A)n≥1 for each compatible system ζp∞ = (ζpn )n≥1 of pn-th roots

of unity, and b is the Qp-linear extension of the inverse limit of (canonical) maps

bn : E(Q̄p)pn = (Q̄
∗
p/qZ

A)pn −→ Z/pnZ

defined by bn(x · qZ
A) = pn ·ordp(x)

ordp(qA)
+ pn · Z. By definition q(A) = ℘−

Tate(1), where ℘
−
Tate ◦ b

is the composition of ℘Tate and the projection Vp(A) −→ Vp(A)− onto the maximal GQp -
unramified quotient, and

q̃( f ) = ℘−1∞ ◦ ℘Tate(
p∞√qA )

is the image of a compatible system p∞√qA of pn-th roots of the Tate period qA under the
composition of ℘Tate and the inverse of the isomorphism ℘∞ : V ( f )  Vp(A) induced by
the fixed modular parametrisation ℘∞ : X1(N f ) −→ A. As a consequence 1 inQp maps to
qA⊗̂1 under the connecting map Qp −→ H1(Qp,Qp(1)) = Q∗

p⊗̂Qp associated with the
short exact sequence (23), hence

j (qαα)
+ = cl(dq̃αα) = δαα(qαα) = √

m p · (℘−1∞∗ ◦ ℘Tate)
+∗ (qA⊗̂1) ⊗ ωgα ⊗ ωhα (24)

in

H1(Qp, V ( f )+αα) = H0(Gal(Qp2/Q), H1(Qp2 , V ( f )+) ⊗Qp V (g)α ⊗L V (h)α
)
,

where

(℘−1∞ ◦ ℘Tate)
+∗ : Q∗

p2⊗̂Qp  H1(Qp2 , V ( f )+)
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is the map induced in cohomology by the composition of ℘−1∞ and

℘+
Tate = ℘Tate ◦ a.

If A denotes either A or E , denote by

πA : Vp(A)(−1) ⊗Qp Vp(A) −→ Qp

the composition of the evaluation pairingQp(1)⊗Qp Qp(−1) −→ Qp with the base change
of the Weil pairing on Vp(A) by Qp(−1). Set

q(A)∗ = ℘+
Tate(ζp∞) ⊗ ζ ∗

p∞ ∈ Vp(A)+(−1),

where ζp∞ is a generator of Qp(1) and ζ
∗
p∞ in Qp(−1) is its dual basis, and set

q( f )∗ = deg(℘∞) · ℘−1∞ (q(A)∗) ∈ V ( f )+(−1).

As πE ((a(y)⊗ z)⊗ x) = b(x) · z(y) for each x in Vp(E), y inQp(1) and z inQp(−1), the
functoriality of the Poincaré duality under finite morphisms yields

π f (q( f )∗ ⊗ q( f )) = πA(q(A)∗ ⊗ q(A)) = πE
(
(a(ζp∞) ⊗ ζ ∗

p∞) ⊗ p∞√qA
) = 1,

then (by the definition of the weight-one differentials ηξα , cf. Sect. 3.1.1)

q∗
ββ = 1√

m p
· q( f )∗ ⊗ ωgα ⊗ ωhα .

Together with Eq. (24) this gives

j (qαα)
+ = m p

deg(℘∞)
· (qA⊗̂1) ⊗ q∗

ββ, (25)

id est
j (qαα)

+
αα = m p

deg(℘∞)
· qA⊗̂1. (26)

According to Theorem 3.18 of [9] Lan
f = logp(qA)

ordp(qA)
, so that

− 2 · deg(℘∞)

m p · ordp(qA)
· ⟪qββ, qαα⟫ f gαhα

= (Lan
f − Lan

gα
) · (l − 1) + (Lan

f − Lan
hα ) · (m − 1)

(27)

by Eqs. (21) and (26).

3.4 Computation of ⟪q˛ˇ, qˇ˛⟫ f g˛h˛

Assume in this subsection α f = βg · αh , so that H0(Qp, V −) is generated by the p-adic
periods

qαβ = √
m p · q( f ) ⊗ ωgα ⊗ ηhα and qβα = √

m p · q( f ) ⊗ ηgα ⊗ ωhα .

For γ δ = αβ, βα and · = ∅,±, define V ( f )·γ δ = V ( f )· ⊗Qp V (g)γ ⊗ V (h)δ . Then

H0(Qp, V −) = V ( f )−αβ ⊕ V ( f )−βα,

GQp acts on V ( f )+αβ and V ( f )+βα via the p-adic cyclotomic character, and the local Tate
pairing 〈·, ·〉Tate introduced in Sect. 3.2.2 induces a perfect duality (denoted by the same
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symbol) between H1(Qp, V ( f )−αβ) and H1(Qp, V ( f )+βα). The argument of the proof of Eq.
(25) shows that

j (qβα)
+ = m p

deg(℘∞)
· (qA⊗̂1) ⊗ q∗

αβ (28)

in the direct summand H1(Qp, V ( f )+βα) = Q∗
p⊗̂V ( f )+βα(−1) of H1(Qp, V +), where

q∗
αβ = 1√

m p
· q( f )∗ ⊗ ηgα ⊗ ωhα satisfies π f gh(−1)(q∗

αβ ⊗ qαβ) = 1. (29)

Let prαβ : H1(Qp, V −) −→ H1(Qp,Qp) ⊗Qp V ( f )−αβ denote the projection, and write

prαβ ⊗ I /I 2 ◦ β−
f gαhα

(qαβ) =
∑

u

γu ⊗ qαβ · (u − uo) (30)

with γu in H1(Qp,Qp) = Hom(Q∗
p,Qp) for u = k, l,m, where (with the notations intro-

duced in Sect. 3.2.1) β−
f gαhα

is a shorthand for

βR�cont(Qp,V
−)/R�cont(Qp,V −) : H0(Qp, V −) −→ H1(Qp, V −) ⊗L I /I 2,

and uo = 2 if u = k and uo = 1 if u = l,m. Then (cf. Eq. (21))

⟪qαβ, qβα⟫ f gαhα
Lemma 3.4= 〈

β−
f gαhα

(qαβ), j (qβα)
+〉

Tate

Eqs. (28) and (30)= m p

deg(℘∞)
·

∑

u

〈γu ⊗ qαβ, (qA⊗̂1) ⊗ q∗
αβ〉Tate · (u − uo)

= m p

deg(℘∞)
·

∑

u

γu(qA) · (u − uo), (31)

where the last equality follows from Eq. (29) and the analogue of Eq. (20) obtained by
replacing αα and ββ with βα and αβ respectively. It then remains to compute γu for u equal
to k, l and m.

For ξ = f , gα, hα , fix Oξ -bases b±
ξ
of V (ξ)±. After identifying V (ξ) with Oξ ⊕ Oξ via

the Oξ -basis (b
+
ξ
, b−

ξ
), the action of GQp on V (ξ) is given by (cf. Eq. (9))

⎛

⎝
χξ · ǎp(ξ)

−1 · χu−1
cyc cξ

0 ǎp(ξ)

⎞

⎠ : GQp −→ GL2(Oξ )

for a continuous map cξ : GQp −→ Oξ . Without loss of generality, assume that

qαβ = b−
f ⊗̂b−

gα
⊗̂b+

hα
⊗ 1

in V− = V ( f )−⊗̂L V (gα)⊗̂L V (hα) ⊗O f gh � f gh maps to

qαβ ∈ V ( f )−αβ = V ( f )− ⊗Qp V (g)α ⊗L V (h)β

under ρw : V− −→ V −. (Recall that V (ξ) = V (ξα) ⊗1 L is the direct sum of the modules
V (ξ)α = V (ξα)

− ⊗1 L and V (ξ)β = V (ξα)
+ ⊗1 L for ξ = g, h, cf. Sect. 3.1.1.) Then

dqαβ = � · qαβ + � · qββ, (32)
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where qββ = b−
f ⊗̂b+

gα
⊗̂b+

hα
⊗ 1, where

� = ǎp( f ) · ǎp(gα)

ǎp(hα)
· χh · χ(m−k−l+2)/2

cyc − 1

and where

� = ǎp( f ) · ǎp(hα)−1 · χh · χ(m−k−l+2)/2
cyc · cgα .

The exceptional zero condition α f = βg ·αh and the self duality condition χg ·χh = 1 imply
that � takes values in I . Moreover, since the GQp -module V (g) = V (gα) ⊗1 L splits as
the direct sum of V (g)β = V (gα)

+ ⊗1 L and V (g)α = V (gα)
− ⊗1 L , the map cgα takes

values in (l − 1) · Og , hence � takes values in I . Because by construction qββ maps to an
element of V ( f )−ββ under the specialisation map ρwo : V− −→ V −, Lemma 3.2 and Eqs.
(30) and (32) yield the identities

γu = − ∂

∂u
�(·)(wo),

hence (as in the previous subsection) a direct computation gives

γk = 1

2
· log f , γl = 1

2
· loggα and γm = −1

2
· loghα . (33)

Recalling that log f (qA) = 0 by [9, Theorem 3.18], Eq. (31) finally proves

2 · deg(℘∞)

m p · ordp(qA)
· ⟪qαβ, qβα⟫ f gαhα

= (Lan
f − Lan

gα
) · (l − 1) − (Lan

f − Lan
hα ) · (m − 1).

(34)

3.5 Proof of equation (8)

Assume in this subsection that (A, �) is exceptional at p, and fix a Selmer class x in
Sel(Q, V ( f , g, h)). Let

x̃ = ıur(x) ∈ H̃1
f (Q, V ( f , g, h))

be the corresponding extended Selmer class (cf. Sect. 3.1.2). By construction x̃+ belongs
to the finite subspace of H1(Qp, V +), and its image under the natural map i+ :
H1
fin(Qp, V +) −→ H1

fin(Qp, V ) equals the restriction of x at p:

resp(x) = i+(x̃+). (35)

The Galois group GQp acts on V ( f )+� via the p-adic cyclotomic character, hence

H1
fin(Qp, V ( f )+� ) = Z∗

p ⊗Zp V ( f )+� (−1)

by Kummer theory. If q∗
� in V ( f )+� denotes (as in the previous subsections) the dual basis of

q� in V ( f )−� under the pairing π f gh , and if one writes

pr�(x̃
+) = x̃+

� ⊗ q∗
� ∈ H1

fin(Qp, V ( f )+� )

for some x̃+
� in Z∗

p ⊗Zp L , then Eq. (35) yields the equality

log�(resp(x)) = 〈log+
p (x̃

+), q�〉 f gh = 〈logp(x̃
+
� ) ⊗ q∗

� , q�〉 f gh = logp(x̃
+
� ), (36)
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where log+
p : H1

fin(Qp, V +)  DdR(V +) is the Bloch–Kato logarithm and (with a slight
abuse of notation) we denote again by logp : Z∗

p ⊗Zp L −→ L the L-linear extension of
the p-adic logarithm. In the previous equation we used the functoriality of the Bloch–Kato
logarithm and the fact that (by construction) the linear form

〈·, q�
〉

f gh on DdR(V +) factors
through the projection onto DdR(V ( f )+� ) = V ( f )+� (−1).

Assume (α f = αg · αh and) q� = qββ . According to Eqs. (21) and (36)

2 · ⟪qββ, x⟫ f gαhα
= logαα(resp(x)) · (k − l − m), (37)

thus proving Eq. (8) in this case.
Assume q� = qαβ . Since (with the notations of Section 3.4)� takes values in (l−1)·Of gh,

it follows from Lemma 3.2 and Eqs. (32) and (33) that

2 · β−
f gαhα

(qαβ) =
∑

ξ

εξ · logξ ⊗qαβ · (u − uo) + ϑ · (l − 1) (38)

for some cohomology class ϑ in H1(Qp, V ( f )−ββ), where εhα = −1 and εξ = +1 for
ξ = f , gα . One has then

⟪qαβ, x⟫ f gαhα
(k, 1, 1)

Lemma 3.4= 〈
β−
f gαhα

(qαβ), x̃+〉
Tate(k, 1, 1)

Equation (38)= 1

2
· 〈log f ⊗qαβ, x̃+

βα ⊗ q∗
αβ〉Tate · (k − 2)

= 1

2
· log f (x̃

+
αβ) · π f gh(qαβ ⊗ q∗

αβ) · (k − 2)

Equation (36)= 1

2
· logαβ(resp(x)) · (k − 2), (39)

thus proving Eq. (8) when q� = qαβ . Switching the roles of the Hida families gα and hα ,
this also proves Eq. (8) when q� = qβα .

Assume finally q� = qαα . With the notations of Sect. 3.4, let (b+
ξ
, b−

ξ
) be Oξ -bases

of V (ξ) such that qαα = b−
f ⊗̂b−

gα
⊗̂b−

hα
⊗ 1 is a lift of qαα under the specialisation map

ρwo : V− −→ V −. Since cξ takes values in (u − uo) · Oξ for ξ = gα, hα , one has

dqαα ≡
(
χ(4−k−l−m)/2
cyc ·

∏

ξ

ǎp(ξ) − 1
)

· qαα
(
mod (l − 1,m − 1) · C1

cont(Qp, V
−)

)
,

hence Lemma 3.2 and a direct computation give

2 · β−
f gαhα

(qαα) = log f ⊗qαα · (k − 2) + ϑ · (l − 1) + ϑ ′ · (m − 1) (40)

for some local cohomology classes ϑ and ϑ ′ in H1(Qp, V −). As in (39) one deduces Eq.
(8) for q� = qαα from Lemma 3.4 and Eqs. (36) and (40).

4 Proof of theorem 2.1

Let � f , �g and �h be the improving planes in Uf × Ug × Uh defined respectively by the
equations k = l + m, k = l − m + 2 and k = m − l + 2. For ξ = f , g, h define

Eξ = 1 − χ̄ξ (p) · ap(ξ)

ap(ξ
′) · ap(ξ

′′)
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in Of gh, where {ξ , ξ ′, ξ ′′} = { f , gα, hα}. Lemma 9.8 of [7] implies that

L αα
p (A, �)|�ξ = Eξ |�ξ · L αα

p (A, �)�ξ (41)

for an improved p-adic L-functionL αα
p (A, �)�ξ inO(�ξ ). Indeed loc. cit. (together with its

analogue obtained by switching the roles of g and h) proves that the meromorphic function
L αα

p (A, �)�ξ on �ξ defined by the previous equation is (bounded, hence) regular at wo.
Shrinking the discs Uξ if necessary, we then conclude that the improved p-adic L-function
L αα

p (A, �)�ξ is analytic on�ξ , as claimed.
Assume first α f = αg · αh , so that

2 · E f (mod I 2) = Lan
f · (k − 2) − Lan

gα
· (l − 1) − Lan

hα · (m − 1). (42)

According to Theorem A and Proposition 9.3 of [7], the partial derivative ofL αα
p (A, �)with

respect to k vanishes at wo, hence

2 · L αα
p (A, �) (mod I 2)

is equal to
(
(Lan

f − Lan
gα ) · (l − 1) + (Lan

f − Lan
hα ) · (m − 1)

) · L αα
p (A, �)�f (wo)

by Eqs. (41) and (42). Moreover, with the notations introduced before the statement of
Theorem 2.1, one has L = � f ∩ �g and E f = E f |L, thus

L αα
p (A, �)�f (wo) = Eg(wo) · L αα

p (A, �)�(wo).

Noting that Eg(wo) = 1− βh/αh (when α f = αg ·αh), the previous discussion and Eq. (27)
conclude the proof of Theorem 2.1 when α f = αg · αh .

Assume now α f = βg · αh . In this case, for ξ = g, h, one has

2 · Eξ (mod I 2) = Lan
ξα

· (u − 1) − Lan
f · (k − 2) − Lan

ξ ′
α

· (u′ − 1), (43)

where {(ξα, u), (ξ ′
α, u

′)} = {(gα, l), (hα,m)}, and
− L αα

p (A, �)�h(wo) = L αα
p (A, �)�g(wo) = E f (wo) · L αα

p (A, �)�(wo). (44)

The second equality in the previous equation follows as above from the definitions, according
towhich L = � f ∩�g and Eg = Eg|L. The first equality follows by noting that the restrictions
of Eg and Eh to the line �g ∩ �h satisfy

Eg|�g∩�h = − χ̄g(p) · ap(gα)

ap( f ) · ap(hα)

∣∣∣∣
�g∩�h

· Eh |�g∩�h

(as ap( f )|�g∩�h = α f = α−1
f and χg · χh = 1 by Assumption 1.1.1) with

− χ̄g(p) · ap(gα)

ap( f ) · ap(hα)
(wo) = −1.

(In other words Eg|�g∩�h and −Eh |�g∩�h have the same leading term at wo, which together
with the equality Eg ·L αα

p (A, �)�g|�g∩�h = Eh ·L αα
p (A, �)�h |�g∩�h implies the first identity

in Eq. (44).) Write

2 · L αα
p (A, �) (mod I 2) = a · (k − 2) + b · (l − 1) + c · (m − 1)
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with a, b and c in L . Equations (41) and (43) with ξ = g and Eq. (44) give

a + b = E f (wo) · (
Lan
gα

− Lan
f

) · L �
p (wo) and c − a = E f (wo) · (

Lan
f − Lan

hα

) · L �
p (wo),

where L �
p is a shorthand for L αα

p (A, �)�. Similarly

b − a = E f (wo) · (
Lan
gα

− Lan
f

) · L �
p (wo) and a + c = E f (wo) · (

Lan
f − Lan

hα

) · L �
p (wo)

by Eqs. (41) and (43) with ξ = h and Eq. (44). As a consequence

−2 · L αα
p (A, �) (mod I 2)

equals

E f (wo) · (
(Lan

f − Lan
gα
) · (l − 1) − (Lan

f − Lan
hα ) · (m − 1)

) · L αα
p (A, �)�(wo).

Noting that E f (wo) = 1 − βh
αh

(when α f = βg · αh), the previous discussion and Eq. (34)
prove Theorem 2.1 when α f = βg · αh .
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