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Abstract
This article proves a case of the p-adic Birch and Swinnerton-Dyer conjecture for Garrett
p-adic L-functions of [6], in the exceptional zero setting of extended analytic rank 2.

Résumé

Cet article prouve un cas de la conjecture p-adique de Birch et Swinnerton-Dyer pour les
fonctions L p-adiques de Garrett formulée dans [6], dans le cadre de zéros exceptionnels de
rang analytique étendu égal a 2.
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Introduction

Let A be an elliptic curve defined over Q, having ordinary reduction at a rational prime
p > 3. Let o1 and o be odd, irreducible, two-dimensional Artin representations of the
absolute Galois group of Q, which are unramified at p and satisfy the self-duality condition

det(o1) = det(02) ™"

By modularity, the triple (A, o1, 02) arises from a triple (f, g, h) of cuspidal p-ordinary
newforms of weights w, = (2, 1, 1). Let f, be the ordinary p-stabilisation of f, and fix
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p-stabilisations g, and &, of g and & respectively. Set o = 01 ® 3. In the recent paper [6]
we proposed a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for the leading
term at w, of the 3-variable Garrett-Hida p-adic L-function L3*(A, 0) = Ly(f, 84, ha)
associated with the triple (f, g, ko) of Hida families specialising to (fy, 8§, o) at w,. In
this article we verify our conjecture in the analytic rank-zero exceptional cases, viz. when
the complex Garrett L-function L(A, 0,s) = L(f ® g ® h, s) does not vanish at s = 1
and Lg"‘ (A, o) has an exceptional zero at w, in the sense of Mazur—Tate—Teitelbaum (cf.
Theorem 2.1 and Sect. 2.1 below). Moreover, when L(A, p,1) = 0 and L%"‘ (A, 0) has
an exceptional zero, we propose a conjecture relating the value at w, of the fourth partial
derivative of Ly (A, o) along the f-direction to the p-adic logarithms of two global points
on A rational over the number field cut out by o (cf. Conjecture 2.3).

1 Setting and notations

Fix algebraic closures Q and (_),, of Q and Q,, respectively, and field embeddings
ip: Q—20Q pand i : Q — C. With the notations of the Introduction, let

=) a®) - q" € SuNe, xe)g

n>1

denote one of the cuspidal newforms f, g and /. Here u and N¢ are the weight and the
conductor of & respectively, and S, (Ng, x¢)r is the space of cuspidal modular forms of
level I'1 (Ng ), weight u, character xg and Fourier coefficients in the subfield F of Q - Fix a
number field Q(p) containing for any & the Fourier coefficients a, (£), as well as the roots
ag and B of the pth Hecke polynomials Ps , = X —a,(&) - X + xz(p) - p. Let V,, be a
two-dimensional Q(g)-vector space affording the representation g;, and let K, be a Galois
number field such that g; factors through Gal(K,/Q). Set

Vo = Vo, ®Qeo) Vo, and V(A, 0) =V, (A) ®q Vo,

where V,(A) = Hélt(AQ, Q, (1)) is the p-adic Tate module of A with Q ,-coefficients.
Throughout this note we make the following

Assumption 1.1 1. (Self-duality) The characters x, and y;, are inverse to each other.

2. (Local signs) The conductors N, and N}, are coprime to p - N.

3. (Etaleness) The forms g and & are cuspidal, p-regular and do not have RM by a real
quadratic field in which p splits.

The first condition is a reformulation of the self-duality condition mentioned in the Intro-
duction, namely det(o) = det(0»)~". Recall that the form & is p-regular if P, has distinct
roots. Moreover, one says that a weight-one eigenform has RM (real multiplication) if it is the
theta series associated with a ray class character of a real quadratic field. Assumption 1.1.3
is equivalent to require that V), is irreducible, not isomorphic to Indg x for a finite order
character x : Gg —> Q(o)* of a real quadratic field K in which p splits, and that an arith-
metic Frobenius at p acts on V,, with distinct eigenvalues. For & = g, h, this assumption
guarantees that the p-adic Coleman-Mazur-Buzzard eigencurve of tame level Ng is étale
over the weight space at the points corresponding to the p-stabilisations of & (cf. [2]). It is
used in [6] to construct the Garrett—Nekovdr height (-, -)) ¢, ; ~which appears in the main
result of this note. To explain the relevance of Assumptions 1.1.1 and 1.1.2, let ay be the
unit root of Py , and fix roots &g and «y, of P, j, and Py, ), respectively. Fix a finite extension
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L of Q, containing Q(g) and the roots of unity of order Iem(N s, Ng, Ny). Let & be one of
f, g and h, and let u,, be the weight of &. According to the results of [2,10,18], there exists
a unique Hida family

§a = Zan(ga) _qn € ﬁg[[Q]]

n>1
which specialises at u, to the p-stabilised newform

u—1
b= £(q) - L2
o

~£(q") € Su,(p - Mg, xe)r.

Here M; = Ng/pordl’(Né“) is the tame level of £ (so that Mz = N¢ if & = g, h), and O is the
ring of bounded analytic functions on a (sufficiently small) connected open disc Ug in the
p-adic weight space over L. For each classical weight u in Ug N Zx3, the weight-u
specialisation §, , = > ous1anE) W) - q" € Llgqll of &, is the g-expansion of the ordi-
nary p-stabilisation of a newform &, in S, (Mg, x¢)r. Since f has a unique p-ordinary
p-stabilisation f;,, we simply write f for f,,.

Assumption 1.1.1 guarantees that for each classical triple w = (k, [, m) in the set

Y =Us x Ug x Uy NZ3,

the complex Garrett L-function L(fx ® g ® hy,, s) admits an analytic continuation to all
of C and satisfies a functional equation relating its values at s and k +1 +m — 2 — s,
with root number &(w) = [];-., €¢(w) equal to +1 or to —1. Assumption 1.1.2 implies
that all the local signs ;(w) are equal to +1 for every w in the f-unbalanced region
YXr={w=(k,I,m) € X:k>1I1+mj}(cf. [11]). Under these assumptions, [12] associates
with (f, g, ho) an analytic function

Zy4(A 0) = L (f, 8as he)
in the ring Ofgp = ﬁfé)L ﬁg@)L Op, whose square

L3(A,0) = Ly(f, 8ar ha) = Zp(f, 8o )’

satisfies the following interpolation property. For each w = (k, [, m) in X, the value of
L7%(A, ) at w is an explicit non-zero complex multiple of

2 2 2 2
(1_ﬁk()l+0lrn> <l_m> (1_ IBkOZC[,Bm> <1_ﬁk,3£,3m) L(fr®81@hm, Cw).
p w p w p w p w (1)

Here ¢, = ,and for § = f, g,, hy one denotes by «, the unit root of Pg, , and
sets By - oy = Xé (p) - p*~1, where Xé is the prime-to-p part of x¢ (so that Xé = xg for
& =g, h,and X} is the trivial character modulo M y). We refer to Theorem A of loc. cit.
for the precise interpolation formula. We call L7%(A, 0) = L, (f, &4, ho) the Garrett—Hida
p-adic L-function associated with (A, o) (or with (f, g, ha)).

k+l+m—2
2

2 Exceptional zero formulae

The p-adic variant of the Birch and Swinnerton-Dyer conjecture formulated in [6] predicts
that the leading term of L‘;‘)‘)‘ (A, ) at w, = (2, 1, 1) is encoded by the discriminant of the
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Garrett— Nekovdr height pairing
() peun, : AT(KQ)? ®quo) AT(Kp) — 7/.57 )

constructed in Section 2 of loco citato, where .# is the ideal of functions in 0fgj, which
vanish at w, and the p-extended Mordell-Weil group A" (K 0)¢ is defined as follows. When
A has good reduction at p, one sets A*(KQ)Q = A(K,)?, where A(K,)? is a shorthand
for the Gal(K,/Q)-invariants of A(K,) ®z V,. If A has multiplicative reduction at p,
then ey = a,(f) = £l and the maximal p-unramified quotient V,(A)™ of V,(A) is a
1-dimensional Q,,-vector space on which an arithmetic Frobenius acts as multiplication by
ay.Letga in pZ, be the p-adic Tate period of the base change AQp of A to Q,, (cf. Chapter
V of [15]), and let Q 2 bethe quadratic unramified extension of Q,,. The Tate uniformisation
yields a rigid analytic morphism

§Tate - G:,::ngz — Asz
with kernel q% and unique up to sign. Set

q(A) = p~ ((Prae Vg Dn=1) € Vp(A)~,
where p~ denotes the projection V,(A) —> V,(A)™ and (%/ga )n>1 is any compatible
system of p”-th roots of g4, and define
AT(Kp)? = A(Kp)® ® Qp(A. 0)
to be the direct sum of A(K,)¢ and the Q(g)-submodule

Q,(A, 0) = H*(Q,.Q(0) - 4(A) ®q(o) Vo)

of H*(Q p» Vp(A)™ ®q Vp). The Garrett-Nekovdr height (-, -) ; ¢, ho depends on the choice
of suitably normalised G q-equivariant embeddings

Vg : Vo = V(g) and vy :V,, —— V(h), 3)

where V(&) = V(§,) ® L (for &€ = g, h) is the weight-one specialisation of the big
Galois representation V (§,) associated with &,. (We refer to Sect. 3.1 below for precise
definitions.) More precisely, denote by V (f) the f-isotypic component of the cohomology
group Hé]t (X1(Ny, p)Q, Qp(l)), where X{(Ny, p)Q is the base change to Q of the compact
modular curve X1(Ny, p) of level I'i (N ) N To(p) over Q, and set

V(f.g,h)=V(f)®q, V(g)®L V(h).

Section 2 of [6] constructs a canonical Garrett—Nekovdr p-adic height pairing

(D pauny : SI"(Q V£, g, h) ®L Sel"(Q, V(f, g ) — 7|57 @)

on the naive extended Selmer group of V(f, g, h) over Q, defined as the direct sum of
the Bloch—Kato Selmer group Sel(Q, V(f, g, h)) of V(f, g, h) over Q and the module
HO Q. V(f,g,h)7)of GQp -invariants of the maximal p-unramified quotient V (f, g, h)~
of V(f, g, h). (The definition of (-, -) s, } is briefly recalled in Sect. 3.2.3 below.) Fix a
modular parametrisation o, : X{(Ny, p) —> A, under which one identifies V(f) and
V), (A). The embeddings y, and yj and the global Kummer map on A(K,) then induce
an embedding yg, : A"'(KQ)Q — SelT(Q, V(f, g, h)). The pairing (2) is defined to be
composition of the canonical Garrett—Nekovdr height and yﬁz . The pairings (2) and (4)

are skew-symmetric, and the discriminant of (2) in (ﬂ’#(A’Q)/ﬂﬁ(A’Q)"‘l)/Q(Q)*z, where
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rT(A, 0) = dimg() AT(K,)?, is independent of the choice of oo, g and y,. We refer to
[6] for more details.

If & denotes either g or &, then the restriction to GQp of the Artin representation V (§) is
the direct sum of the submodules V (§), and V (§)g on which an arithmetic Frobenius acts
as multiplication by oz and f; respectively (cf. Assumption 1.1.3). The Gq,,-representation
V(f, g, h)~ then decomposes as the direct sum of the subspaces

V(i = V() ®q, V(g)i®LVh);,

where (i, j) is a pair of elements of {«, B}. If &€ denotes either g or i, Sect. 3.1.1 below recalls
the definition of canonical weight-one differentials

we, € (V(E)y ®g, Q)% and ne, € (V(E)p ®q, Q1) . ®)

where Ql;r is the maximal unramified extension of Q. If A is multiplicative at p, set

q(f) = 90 (q(A) € V().

where one denotes again by oo : V(f)™ 2~ V,(A)~ the isomorphism arising form the fixed
modular parametrisation oo : X{(Nf, p) —> A.

Under the running assumptions, the Q(g)-module Q,(A, @) (resp., the L-module
H°Q »» V([ g h)7)) is non-zero precisely A is multiplicative at p and

af=ag-ap or ay=f,-ay,

in which case it has dimension 2 and one says that (A, o) is exceptional at p. More precisely,
note that oy # B, by Assumptions 1.1.3, hence only one of the previous identities can be
satisfied. Moreover ay = oy - o (resp., oy = Bg - ay) if and only if ay = B, - By (resp.,
ay = ag - ) by Assumption 1.1.1. Fix an auxiliary integer m , such that p splits (resp., is
inert) in Q [\/nTp] ifay = +1 (resp., ay = —1), so that GQp acts trivially on ,/m;, - q(f)
inV(f)~ ®q, Q;‘. If oy = oty -, then GQp acts trivially on V (f)_, and V(f)lgﬂ, hence
the p-adic periods

Goa = /mp - q(f) @ wg, @ wp, and qpg = /mp - q(f) @ ng, @ Nn,
can naturally be viewed as elements of V(f),, and V(f )Eﬂ respectively, which generate
H(Q,. V(f,g.h)7). Similarly, if a y = B, - oy, then the periods

dap = /Mp 'Q(f)®0)gm Q Ngy, and qBa = /Mp 'Q(f)®77ga Q wp,

can naturally be viewed as generators of H O(Qp, V(f,g, h)).
Equation (1) shows that the value of the square-root Garrett-Hida L-function .Z7* (A, 0)
at w, is a non-zero multiple of

(-2 (-2) (- 2) - 22) sire
af

af ar ar
where L(A,0,5) = L(f ® g ® h,s). The previous discussion then shows that (A, o) is
exceptional at p precisely if one of the Euler factors which appear in the previous expression
is zero, id est if f,‘j‘“ (A, o) (or L‘;‘,‘)‘ (A, 0)) has an exceptional zero in the sense of Mazur—
Tate—Teitelbaum [13]. In this case Lemma 9.8 of [7] proves that the restriction .,2”;‘“ (A, 0)|L
of ZJ¥(A, o) to the improving line L defined by the equations m = 1 and k =/ + 1 admits
the factorisation

LEAL QI = Ef - & LA )
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in the ring O(L) of analytic functions on L, where

. ap(f)
ap(ga) . ap(ha) L

ap(goz)
ap(f) 'ap(hot) |_.

Moreover, the value at w, of the improved p-adic L-function £/“(A, 0)* is an explicit
algebraic number in Q(p), equal to zero precisely if L(A, g, s) vanishes at s = 1. We refer
to the proof of Proposition 8.3 of [12] for details.

The following is the main result of this note.

éaf: and épg: 1_Xh(]7)'

Theorem 2.1 Assume that (A, ) is exceptional at p. Let (q», qy) denote either the pair

(Gaa- app) o (qup, 4pa), depending on whether oy = ag - o or ay = Bg - ay respectively.

Then the following equality holds in % | %% up to sign.

deg(poo) - (1 — Bpn/an)
mp -ord,(qa)

Z2(A,0) (mod #7) = Ly (A ) (Wo) - (5. 42) pg i,

Theorem 2.1 is proved in Sect. 4 below. More precisely, Sects. 3.3 and 3.4 below prove
that the following equality holds in .# /.#2 up to sign:

2 - deg(poo) _ { qan an an an
e (45 a2) ron, = (zf —sga) (—D+e- (sf —Sha).(m — 1),
(6)
where e = +1ifay =y -apand e = —1if ay = B¢ - By, and where
I
- E L = legap(E)u:uO @)

is the value at the centre u,, of Uy of the logarithmic derivative of the p-th Fourier coefficient
of the Hida family & = f, g, hy. In Sect. 4 we then deduce Theorem 2.1 from Eq. (6) and
the study carried out in [7, Section 9] of the linear term of fl‘j“" (A, o) at w, in the exceptional
case.

It should be possible to extend Theorem 2.1 (and Conjecture 2.3 below) to the case of
p-new eigenforms of even weight £ > 2 and trivial character (cf. Section 1.1 of [6]). We
have not checked the details.

2.1 The rank-zero exceptional case of [6, Conjecture 1.1]

Assume in this section that (A, o) is exceptional at p, and that the Garrett complex L-function
L(A,0,5)=L(f ® g ®h,s) does not vanish at s = 1:

L(A,0,1) #0.
According to the main result of [8] (see also Theorem B of [3]), one has
A(K,)° =0,
hence A"'(K@)Q = Qp(A, 0). The Garrett— NekovdF p-adic regulator R3*(A, @), viz. the
discriminant of the p-adic height (-, -) g ha ON AT(K,)®, is then given by
R3(A, 0) = det ((gi.q; >>fgaha )151',]‘52 = {1, qz»?‘gaha

in (#2/.73)/Q(0)*?, where (g1, g2) is a Q(o)-basis of Q, (A, o).
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On exceptional zeros of Garrett-Hida... 309

Let ygn : V(A,0)~ = V(f, g, h)~ be the Gg-equivariant embedding defined by the
tensor product of the isomorphism V), (A)™ =~ V(f)~ induced by g, ¥, and y;, (cf. Eq. (3)).
The normalisation imposed on the embeddings y, and y;, (and described in Sect. 3.1.1 below)
implies that the matrix M in GL, (L) defined by the identity (gy g;) - M = (ygn(q1) Ven(q2))
has determinant in Q(o)*. In light of the above discussion, Theorem 2.1 then proves the
following corollary, which together with Eq. (6) establishes [6, Conjecture 1.1] in the present
setting.

Corollary 2.2 If L(A, o, s) does not vanish at s = 1, then AT(KQ)Q = Q,(A, 0) and the
following equality holds in the quotient of .#2].73 by the action of Q(0)*>.

L% (A, 0) (mod .#7) = R%%(A, o)

2.2 Exceptional zeros and rational points (cf. [14])

Assume in this section that (A, o) is exceptional at p, and that the Garrett complex L-function
L(A, o, s) vanishes at the central critical point s = 1:

L(A,0,1)=0.
Set {b, i} = {aw, BB} of {b, 1} = {@B, Ba}, depending on whether
af =g -aporay = Bg - ay.

The p-adic L-function .,2”12“" (A, o) belongs to .# 2 (cf. Theorem 2.1) and Conjecture 2.3 of
(6] predicts that its image in (.#2/.#3)/Q(0)* equals

(v qt»fgaha (P, Q»fgaha — (. P»fgaha (gs. Q»fgaha + (. Q»fgaha (a1, P>>fgah

for two rational points P and Q in A(K,)?. (Recall that the p-adic height (-, ) ;o 5, is
skew-symmetric, hence the previous expression is a square root of its discriminant on the
Q(o)-submodule of AT(KQ)Q generated by ¢y, gy, P and Q.) One has

(av. a1) g n, k:1.1) =0
by Eq. (6). Moreover, Sect. 3.5 below proves that

o

1
(42 g, (e 1. 1) = 5 - log, (resy () - (k —2) ®)
for each Selmer class x in Sel(Q, V(f, g, h)), where
log, = (log, (), ¢z} gn = Hyy(Qp, V(f, & 1)) — L.

Here 10gp : Hﬁln(Qp, V(f,g, h) ~Dr(V(f,g, h))/Fil0 is the Bloch—Kato p-adic loga-
rithm (cf. Lemma 9.1 of [7]), and (-, ) rop, : Dar(V ([, &, h)®? — Listhe pairing induced
by the natural Kummer duality 7 ¢e, : V(f, g, h)®2 —> L(1) defined in Sect. 3.1.1 below
(cf. Eq. (11)). We are then led to the following

Conjecture 2.3 Assume that A(K,)? is a 2-dimensional Q(g)-vector space. Then for any
Q(o)-basis (P, Q) of A(K,)?, the equality
2
82.25%(A, 0)
k>

holds in L up to multiplication by a non-zero scalar in Q(o)*.

(wo) = log, (P) - log,(Q) —log;(P) - log,(Q)
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Asexplained in [5], the main result of [ 1] can be used to prove cases of Conjecture 2.3 when
g and h are theta series associated with certain ray class characters of the same imaginary
quadratic field in which p is inert (and P and Q are Heegner points). By combining this
with an extension of the height computations carried out in [16,17], the article [4] proves
instances of Conjecture 1.1 of [6] in this setting.

Remark 2.4 1n light of the aforementioned results of [5], Rivero proposes in [14, Conjecture

4.5] a variant of Conjecture 2.3. He also asks (cf. Question 5.3 of [14]) if one can expect

- o 2L (A, . .
a similar description of %(u)(}) when A has good reduction at p. The previous

discussion places Rivero’s conjecture within a conceptual framework and sheds some light
on this question.

3 Height computations

Throughout the rest of this note we assume that (A, p) is exceptional at p. In particular A
has multiplicative reduction at p, id est p divides exactly N .

3.1 Setting and notations

This subsection briefly recalls the needed definitions and notations from our previous articles
[6,7].

3.1.1 Galois representations

Set N = Iem(Ny, Ng, Nj) and let Gg,n be the Galois group of the maximal extension
of Q contained in Q and unramified outside Noo. If & denotes one of f, g, and hg, let
V(&) be the big Galois representation associated with & (cf. Section 5 of [7]). It is a free
Og-module of rank two, equipped with a continuous linear action Gq,n. For each u in
Ug N Z> the base change V (§) ®, L of V(&) along evaluation at u on 0 is canonically
isomorphic to the homological p-adic Deligne representation of &, with coefficients in L (cf.
loco citato for more details). In particular if € = f and u = 2 there is a natural specialisation
isomorphism py : V(f) @2 L =V (f).1f§ = g,, hgyandu = 1set V() = V(&) ® L (cf.
Sect. 1). It is a two-dimensional L-vector space affording the dual of the p-adic Deligne—
Serre representation of £ = g, h with coefficients in L. In order to have a uniform notation,
in this case one defines p; : V(&) ® L —> V(&) to be the identity.

The restriction of V(&) to GQp (via the embedding i, fixed at the outset) fits into a short
exact sequence of 0¢[Gq, ]-modules V(&) — V(&) — V()™ with V(&) free of rank
one over 0. More precisely, let ycye : Go — Z; be the p-adic cyclotomic character, and
leta,(§) : Gq, — ﬁg be the unramified character sending an arithmetic Frobenius to the
p-th Fourier coefficients a,(§) of §. Then

VE©T > 0 (xS xeap®7") and V(E)T ~ Gpp(E)), ©)

where XC"YEI 1 Gg — ﬁg satisfies X;’ygl(o)(u) = chc(a)“*1 for each u in Ug N Z.
(The freeness of V (&)* is guaranteed by Assumption 1.1.3, cf. Section 5 of [7].) If £ = f
and u = 2 the specialisation isomorphism p; identifies V(f)~ ®; L with the maximal

unramified quotient V(f)~ of V(f).1f&§ = g,, hg andu =1 weset V(§)g = VET® L
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and V(£)a = V (&)~ ®1 L.Onehas V(§) = V(§)a ® V(). where V (£),, = V (£)F00r=r%
for y = a, B is the submodule of V(§) on which an arithmetic Frobenius Frob, acts as
multiplication by ye = o, Be (cf. Assumption 1.1.3).

There is a natural Gg-equivariant skew-symmetric perfect pairing

g V(E) Qo V(E) — Og(xs - x&e )
inducing perfect dualities ¢ : V(E* Qe V()T — Op(xs -XC”yzl). (See Section 5 cf. [7]

for the definitions).
(4—k—I—m)/2

Denote by E fgn = Xeye :Gog — ﬁ;g ,, the character whose composition with
evaluation at (k, [, m) in Uy x Ug x U N Z3 on Ofgn equals Xc(;fc_k_l_m)/z. If - denotes one

of the symbols @, + and —, define
V =V()OLV(g)®V (he) s,y Efgh

Then V =V (f, g4 ha), resp. VE = V(f, 8q hDé)i is a free Oy gp-module of rank 8, resp.
4, equipped with a continuous action of G, v, resp. GQp .As xg-xn = 1(cf. Assumption 1.1),
the product of the perfect dualities 7¢, for § = f, g, h, yields a perfect skew-symmetric
Kummer duality 7 : V ®g,,, V —> Ofgn(1), inducing a perfect local Kummer duality
w:VE ®0ygn VT —> Ofgn(1). After setting

Vi=V(f. 8. ) =V({) &L V()L V(h)
and w, = (2, 1, 1), the product p,,, = P2Rp1®p1 gives natural isomorphisms
Pw, : V @y, L=V’ (10)
(where - ®y, L denotes the base change along evaluation at w, on Uggp). Let
Tpen: V&LV — L) (11)
be the specialisation of & via p,,,, and define 7 : V@, VF — L(1) similarly.
Weight one differentials Define D(§)~ = H(Q,. V()" ®q,Q,). where Q) is the
p-adic completion of the maximal unramified extension of Q,, (and as usual § denotes one of
S> &y and hy). For each u in Ug N Z; there is a natural comparison isomorphism between
D(&)” ®, L and the & ,-isotypic component of the space of cuspidal modular forms of weight
u, level I'1 (Ng p) and Fourier coefficients in L. Assumption 1.1.3 guarantees that D(§)~ is
free (of rank one) over &, and admits a basis wg whose image in D(§)™ ®, L corresponds
to &, under the aforementioned comparison isomorphism, for each u in Ug N Z>5. (We refer

to Section 3.1 of [6] and the references therein for more details.)
For & = g, h, the holomorphic weight-one differential

ws, € (V(E)y ®, Q1)

mentioned in Eq. (5) is defined to be the weight-one specialisation of wg, viz. the image of wg
in the quotient D(§)™ ®1 L = D(&),. The weight-one specialisation of ¢ yields a perfect
G @-equivariant skew-symmetric pairing

me 1 V(E) ®L V(E) — Lxe)-
Let ¢ be the common conductor of x¢ and xj,, and identify (L(x¢) ®q, Q‘;)GQP with L via

the Gaull sum G(x¢) = (—c)i ZaE(Z/cZ)* Xt (a)~' @ €274/ where ig =0andi, =1 (so

@ Springer



312 M. Bertolini et al..

that G(xg) - G(xxn) = 1 by Assumption 1.1.1). The pairing 7 then induces a perfect duality

()¢ : D)o ®L D(E)g —> L, where D(§), = (V(§), ®q, Q). One defines the
antiholomorphic weight-one differential (cf. Eq. (5))

ne, € (V(E)g ®g, Q1)

to be the dual of wg, under (-, -)¢, viz. the element satisfying <a)ga, g, )E =1.

The embeddings ¥y, and y;,  With the notations of Sect. 1, set V, = V,,; and V}, = V,,,.
Let & denote either g or /. As recalled above, the Artin representation V(§) = V(&) ® L
affords the dual of the p-adic Deligne representation of & with coefficients in L, id est
is isomorphic to Vi ®q(e) L. Enlarging L if necessary, we normalise the Gq-equivariant
embedding y: : V¢ —> V(&) (introduced in Eq. (3)) by requiring that the composition
e o (Ve ® ye) takes values in the number field Q(o) (via the embedding i, : Q —> Q »
fixed at the outset).

3.1.2 Selmer complexes

Let Rf‘f(Q, V) be the Nekovdr Selmer complex associated with (V, V) (cf. Section 2.2 of
[6]). It is an element of the derived category ch’t(L) of cohomologically bounded complexes
of L-modules with cohomology of finite type over L, sitting is an exact triangle

pores -~ -
Rleont(Go.v, V) —" RTcont(Gq,. V™) —> RI'£(Q, V)[1], (12)

where RI¢oni(G, -) is the complex of continuous non-homogeneous c_ochains _of G with
values in -, res, is the restriction map (induced by the embedding i), : Q —> Q,, fixed at
the outset) and p~ is the map induced by the projection V. — V™. Denote by

H;(Q,V) = H' (R[;(Q, V))

the cohomology of RI'(Q, V), let Sel(Q, V) be the Bloch-Kato Selmer group of V over
Q,andleti™ : VT — V be the natural inclusion. Then there is a commutative and exact
diagram of L-vector spaces (cf. loc. cit.)

00— HQ,. V") ——= H}Q.V) ——=Sel(Q.V) —=0  (13)

,+\L lresp
+

H'(Q,, V") ——= H'@Q,, V)

where the first line arises from the exact triangle (12). In addition there is a unique section
r - Sel(Q,V) — H }(Q, V) of the above projection such that 7,(x)* belongs to the

Bloch—Kato finite subspace Hﬁln Q,, V1) for each x in Sel(Q, V). We often use j and 1y, to
identify Nekovdr’s extended Selmer group H } (Q, V) with the naive extended Selmer group

Self(Q, V) = HO(QP, V=) @ Sel(Q, V) (cf. Sect. 1).
One similarly associates with (V, V) a Selmer complex

R/ (Q, V) € D4(Gren)

sitting in an exact triangle analogous to (12). (We refer to loc. cit. for more details.)
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3.2 Preliminary lemmas

This section gives a concrete description of the functionals (g, -) s p, Sel’(Q, V) — L
for ¢ in H° (Qp, V™) (cf. Lemma 3.4 below).

3.2.1 Bockstein maps

Let (C, C) denote one of the pairs
(RT,(V7),RT,(V7)), (R[(V),RI(V)) and (RT;(Q, V), R /(Q,V)),

where RI',(-) and RI'(-) are shorthands for RI‘COm(QI,,-) = RFCOm(GQp,~) and
RTcont(GQ,n, -) respectively (cf. Sect. 3.1.2). The specialisation maps p,,, (cf. Eq. (10))
induce isomorphisms

Pu, €O, L=C and py, ®id:C®p I/ I =COLI/I 1] (14)

Applying C ®{5’fgh - to the exact triangle

F)I* —> Opgn) I* — L — 7/7[1]
(arising from evaluation on w,) then yields a derived Bockstein map

Bejc:C— CoL 771,
which in turn induces in cohomology a Bockstein map
Beje i HI(C) — HY Q) @1 7/.57.
If no risk of confusion arises, we simply write 8 for B¢/c. Let
) H(Q, V) — HMQ. V)

be the maps arising from the exact triangle (12).

Lemma 3.1 The following diagram commutes.

H(Q,, V") — = H'(Q,, V) &, 5.5

J\L \L]@f/ﬂz

H{Q,V) - H} Q. V)®L I/5?

Proof For M = V, V one has an exact triangle (cf. Equation (12))

pores _ J ~
Ayt Rleon(Go.v, M)[—1]1"—" RTeont(Q,,. M7)[—1] = RI£(Q, M).

Moreover Ay is obtained by applying - ®](5>fgh. w, L to Ay (cf. Eq. (14)). It follows from

the definition of the derived Bockstein maps B~ and B on RI'cont(Q,,, V™) and RI(Q, V)
respectively that j, ® % /.7 2[1]o B~ isequal to B o Jv- Since by definition the maps j are
the ones induced in cohomology by jy, the lemma follows. O

The following lemma gives a concrete description of B¢/c.
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Lemma 3.2 Let (C, C) be as above, let 7 be a 1-cocycle in C, let Z be a 1-cochain in C, and
let Zy, Z; and Z 4, be 2-cochains in C such that

pw,(Z)Y=z and dZ =Zy -k —=2)+Z;- (I = 1)+ Zp - (m — 1).
Then z. = py,(Z.) is a 2-cocycle for - = k, [, m, and one has the equality
—Beyclel(@) =cl(zx) - (k=2) +cl(z) - = 1) + cl(zm) - (n — 1)
in H>(C) ® % |92, where cl(-) is the class in H' (C) represented by the i-cocycle -.

Proof The proof is very similar to that of [16, Lemma 5.5]. We omit it. O
3.2.2 Local and global duality

Nekovdr’s generalised Poitou-Tate duality associates with the perfect duality 7 ¢, introduced
in Eq. (11) a global cup-product pairing (cf. Section 2.4 of [6])

(. Inek t HFQ. V) ®L H}(Q. V) — L. (15)

The pairing 7 74, induces a Kummer duality V™~ ® V+ — L(1) and we denote by

() mate : HYQ,, V) ®L H' (Q,, V) — L (16)
the induced local Tate duality pairing. Recall finally the map

FLHQV) — HYQ, V)
introduced in diagram (13).
Lemma 3.3 Foreach ¢ in Hl(Qp, V7)and & in fI}(Q, V) one has
(1(8)s Edner = (¢, $+)Tate-

Proof This is proved as in [16, Lemma 5.7]. O
3.2.3 The Garrett-Nekovdf p-adic height pairing

Set
ﬁfgaha = ,BRf‘f(Q’V)/Rf‘f(Q,V) : I:I}(Q, V) — I:Ifz(Q’ V) ®L f/fz-

After identifying FI}(Q, V) with Sel’(Q, V) (cf. Sect. 3.1.2), the canonical height
() Fguha introduced in Sect. is defined by (cf. [6, Section 2])

(3D reune = (Breuhe @), Y)nek

for each x and y in HL(Q, V), where we write again (-, -)nek for the .7 /.7 2_base change of
Nekovdr’s cup-product (15). Lemmas 3.1 and 3.3 give the following

Lemma 3.4 For each q in HO(QP, V™) one has

€1@:-) roune = Brgung @ e

as .7 | 9% -valued maps on I:I} (Q,V), where ﬂ;go,ha = PBrr,(v-)/Rr,v-) (and we write
again (-, )y, for the 5 | #*-base change of the local Tate pairing (16)).
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3.3 Computation of <<q/3ﬁ, ¢Iaa>> feaha

Assume in this subsection oy = a, - ay, so that H 0(Qp, V™) is generated over L by the

periods

Gaa = /Mp - q(f) @ wg, @ wp, and qpp = J/mp - q(f) @ ng, @ np,,-

Recall that xcye : G — Z’;, denotes the p-adic cyclotomic character. Fix a lift g gg in
V™ of ggg under py,. Since (cf. Sect. 3.1.1)

qpp € V(f)~ ®q, V(&)p ®L V(h)p —> V™
and V(&) = V(§a)+ ®1 L for & = g, h, we can choose qpp in the GQP—submodule
V() QLY@ TRLV()T ®ppy Efgn —> V™
(cf. Sect. 3.1.1). By Eq. (9) one has

dqﬁﬁ =D -qpg, (7
where d denotes the differentials of the complex RI'cont(Q),, V™) and
ap(f) I+m—k)/2
=" GO — 11 Go, — Opgn.

- ép(goz) : ép(ha)

The assumption oy = o - ¢, implies that ® takes value in .#, and that its composition
&’ with the projection .# —> .#/.#2 is of the form

D =g k=2)+¢ - (I = 1)+ ¢@m-(m—1)
with ¢, in H'(Q,,, Q) foru = k, [, m. Identify Hl(Qp, Q,) with the Q,,-vector space
Hom (Q;‘,, Q,,) of continuous morphisms of groups from Q;‘, to Q,, via the local reciprocity
map rec, : Q; — GaQb7, normalised by requiring rec,, (p~1) to be an arithmetic Frobenius.
By local class field theory, for each p-adic unit u one has
o) = = (b2 1)
where (-) : Z;‘, —> 1+ pZ, denotes the projection to principal units, and

d ap(ga) 'ap(h(x) )
= — | —F -1
vk (p) < ar(f)

ok
(cf. Eq. (7)). As a consequence —2 - ¢, is equal to

1
=3 log , (u),

Wo

1 an

Wo

]()gf = logp — 6}1‘1 . Ordp € Hl(pr Qp)

(where the p-adic valuation ord), : Q’,’; — Q,, is normalised by ord,(p) = 1). Similarly
one shows that 2 - ¢ and 2 - ¢, are equal to the logarithms log, = log, —22‘; -ord, and
logy,, = log, —£5" - ord,. It then follows from Eq. (17) and Lemma 3.2 that

2 B gn, @pp) = (logs -k = 2) ~logg (L= 1)~ logy, -m— 1)) ®qps  (18)

in H'(Q V) ®L I/ I 2 where (with the notations introduced in Sect. 3.2.1) one writes
ﬂ;g hy for the Bockstein map f¢/c associated with C = RI",,(V ™). Note that

V(s = V() ®q, V(g ®L V()
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is an L[Gq,]-direct summand of V™ on which Gq, acts trivially, so that loge ®q¢gg (for
&= f, g, hy) belongs to the direct summand

H'(Q,, V(f)pp) = H'(Q,. Q) ®q, V(N
of the local cohomology group H ' (Qp, V7). Similarly
V(i = V(O ®0, V(e ®L V(h)a

is an L[GQP]—direct summand of VT isomorphic to Q »(1), hence

H'(Q,, V(i) = H'(Q,. Q,(1) ®q, V()i (—1 (19)

is a direct summand of H'(Q s V). The local Tate pairing (-, -) 1 introduced in Sect. 3.2.2
induces a perfect duality (denoted by the same symbol) between H ](Qp, V(f )Eﬂ) and

Hl(Qp, V(f)(;"a), and identifying Hl(Qp, Z,(1)) with the p-adic completion Q; of Q;
via the local Kummer map, local class field theory gives

PV, u®v ) ue = o) - Trn(—DT @ V) (20)
for each ¢ in Hl(Qp, Q,), uin Hl(Qp, Q, (1), v~ in V(f)44 and vt in V(f)],. Here

Tpegh(=1) : V(a1 ®L V(f)gs —> L

is the composition of 7 ¢, ® Q,,(—l) with the evaluation pairing L(1) ®7 L(—1) — L.
Recall that we identify H%(Q p» V) with a submodule of H } (Q, V) via the embedding
J introduced in Diagram (13). Lemma 3.4 and Eqgs. (18) and (20) give

Lemma3.8 —
2 Qapp- 2 pon, = 2 Brg e @8) T ) rue
E i 18
quation (18) D (=1 - (loge ®qpp, 2 )T - (1 — 1)
£
Equation (20) Z(_])ug . IOgE (Z;Fa) (U —u,) (21)
£

for each z in I:I}(Q, V), where § = f, g,. ho, u, =2, 1, 1 is the centre of Ug, and

2y € H'(Q,.Q,(1) =Q, ®z, Q,

is defined as follows. Let pr,,, denote the projection onto the direct summand H' (Q e V(HE)
of the local cohomology group H'(Q P> V), and let q;ﬂ be the generator of V ()1, (—1)
dual to ggg under 7 yg5 (—1), namely satisfying

7 ren(—1)(a)p ® qpp) = 1.
Then z]},, is defined (via the natural isomorphism (19)) by the identity
Ploe (27) = 28, ® qjp- (22)
‘We now determine z;{a for z = j(quw)- By definition j (gqq) is represented by

- - ~1
Caa = (07 d%xou QOwt) € Cf(Q7 V)7
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where Gy in V is a lift of g, under the the projection V.— V™, and where
dGua - GQp — vt

is its image under the differential in RT¢on(Q p» V). By construction dgy, represents the
class g}, = J(qaa)™ in Hl(Qp, V). Since V (§) is the direct sum of V (§) and V (§)g for
& = g, h, we can (and will) choose Gy of the form

oo = Mp . q(f) Q wg, ® wp,
for a lift g(f) of ¢(f) under the projection V(f) —> V(f)~, so that dgy, represents the
image of go, under the connecting morphism
Saa : V([lgg — H'(Q,. V()

arising from the short exact sequence of G q,-modules
0— V(Naw — V(Haa —> V(oo — 0,

where V (f),, is the L[GQp]-direct summand V (f)’ ®q, V(g)a ®L V(h)y of V'. Let g4
in pZ, be the Tate period of AQp' Tate’s theory gives a rigid analytic isomorphisms between
the base change EQ?: of the Tate curve E = G:rfti], /q % to the quadratic unramified extension
sz of Q, and AQ,,Z' Set V,(E) = HKlt(EQp’ Q, (1)) and let pruee : Vp(E) = Vj(A) be the
isomorphisms of GQp2 -modules induced by the Tate uniformisation. There is a short exact
sequence of Q p[GQp]-modules

0— Q,(1) - V,(E) 2> Q, — 0, (23)

where a(¢pe) = (§pn -qf)nzl for each compatible system {00 = ({pn)p>1 of p”-th roots
of unity, and b is the Q,-linear extension of the inverse limit of (canonical) maps

bn: EQp)pn = (Q,/a5) — Z/p"Z

" .ord
defined by b, (x "I%) = %(qpix))

is the composition of gy and the projection V,(A) —> V,(A)™ onto the maximal GQp'
unramified quotient, and

+ p" - Z. By definition g (A) = g, (1), where pp, . 0 b

G(f) = 9 © PTae("V/qa)

is the image of a compatible system r%/ga of p"-th roots of the Tate period g4 under the
composition of gy and the inverse of the isomorphism o, : V(f) >~ V,(A) induced by
the fixed modular parametrisation oo : X1(Nys) —> A. As aconsequence 1in Q p Maps to
¢a®1 under the connecting map Q, — H'(Q,.Q,(1)) = Q;,®Q,, associated with the
short exact sequence (23), hence

J(Qaa)+ = cl(dGue) = Saa(Gua) = My - (Boc:o]* o @Tate)i_(QA®1) ® wg, @ wp, (24)

H'(Q,. V() = H*(Gal(Q,2/Q), H'(Q,2, V(/)") ®q, V(8)a ®L V (M),

where

(P 0 Tae)y : Q®Q, = H'(Q2, V(NH™)
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is the map induced in cohomology by the composition of 3! and
@ﬁte = §Tate © d.
If A denotes either A or E, denote by
74 VoA (=1) ®q, Vp(h) — Q,

the composition of the evaluation pairing Q,,(1) ®q, Q,(—=1) — Q,, with the base change
of the Weil pairing on V),(A) by Q,(—1). Set

G(A) = Pl (Epe) ® Lo € Vyp(A)H(=1),
where ¢, is a generator of Q,(1) and (Z;oc in Q,(—1) is its dual basis, and set
q(f)* = deg(poo) - 95 (@A) € V(T (=1).

As g((a(y) ® 2) ® x) = b(x) - z(y) foreach x in V), (E), y in Q,, (1) and z in Q,(—1), the
functoriality of the Poincaré duality under finite morphisms yields

7@ (f)* ©q(f)) = malq(A)* ® q(A)) = mE((a(Cpe) ® L) ®73/qa) =1,
then (by the definition of the weight-one differentials ne,, cf. Sect. 3.1.1)

1
* *
qgp = “q(f)* @ wg, ® wp,.
e
Together with Eq. (24) this gives
m N
J(Gae)t = —L— - (qa81) ® g}, (25)
«“ deg(go0) pe
id est m
e ———— ) 26
7 (Gaa) gu deg (o) qga® (26)
According to Theorem 3.18 of [9] 2‘}" = L?gi EZ’;;, so that

2. deg(éooo)

- =2 . o — (gan _ gany g | an __ any 1
mp -ord,(qa) (asp. 9o >>fguhut (Ef £:ga) a )+(£f ShD,) (m )

27)
by Egs. (21) and (26).

3.4 Computation of (qqg, 4ga)) feoha

Assume in this subsection ay = B, - oy, so that H %Q p» V) is generated by the p-adic
periods

qap = /Mp ~q(f) Q wg, & Np, and qpa = /Mp q(f)® Ngy @ Why,-
For y§ = a8, Ba and - = @, &, define V(f)izs =V(f) ®q, V(g)y ® V(h)s. Then

HYQ,, V) =V(f)gs @ V(py

GQp acts on V(f );rﬁ and V(f );a via the p-adic cyclotomic character, and the local Tate
pairing (-, -)1ye introduced in Sect. 3.2.2 induces a perfect duality (denoted by the same

@ Springer



On exceptional zeros of Garrett-Hida... 319

symbol) between H! Q. V(f);ﬂ) and H! (O V(f)ga). The argument of the proof of Eq.
(25) shows that

1(Gpa)” (ga®1) ® g (28)

mp,
~ deg(poo)
in the direct summand H! Q,, V(f) o) = Q*®V(f)ﬁa( 1)of H! Q. V1), where
* 1 * . *
dop = \/?p “q(f)" ®ng, ® wp, satisfies 7 rgn(—1)(qep @ qap) = 1. (29)

Let Prg : H‘(Qp, V7o) — H‘(Q,,, Q) ®q, V(f);ﬂ denote the projection, and write

Prop ® I/ I 01y 4 (Gap) = ) Vu ® qup - (w0 — up) (30)
u

with y, in H! Q.. Q) = Hom (Q*, Q) foru = k, [, m, where (with the notations intro-
duced in Sect. 3.2.1) ﬂ;g he is a shorthand for

ﬂRFcont(QpaVﬁ)/RFcom(prvi) : HO(QP’ Vﬁ) - Hl(QP’ Vﬁ) L j/jz’
andu, =2 ifu = k and u, = 1if u = I, m. Then (cf. Eq. (21))

Lemma3 4
<<ql¥ﬁ7 qBa >>fgo(ha <'3fg e (‘I(xﬂ) J (‘]ﬁa) >Tate

Eqgs. (28)_and (30) mp

-5 . off s Al . : - Yo
deg(m) D Vu ® qap. (qa®1) ® g ) Tate - (4 — )

u

m ZVu(CIA) (u —uy,), 3D

where the last equality follows from Eq. (29) and the analogue of Eq. (20) obtained by
replacing «a and BB with S and af respectively. It then remains to compute y;, for u equal
tok,! and m.

For & = f, g,. hy, fix Og-bases bgt of V(&)*. After identifying V (£) with g ® U via

the O¢-basis 7, bg_), the action of GQp on V(&) is given by (cf. Eq. (9))

Xe - apE) xS e
: GQP —> GL2(G%)
0 ap(é)

for a continuous map ¢ : G, —> 0. Without loss of generality, assume that
Qop = b, @by, &by ®1
in V- =V(f) " ®LV(g)RLY (he) ®,y, Efgn maps to
qap € V(e = V()" ®q, V(&a ®L V(h)p

under p,, : V- —> V7. (Recall that V(§) = V(§,) ®; L is the direct sum of the modules
V€)=V, @ Land V(£)g =V (E,)" ® L for& = g, h, cf. Sect. 3.1.1.) Then

dqaﬁ=anﬂ+Aqﬁﬁ, (32)
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where g g3 = b ®b;ﬂ ®b;{a ® 1, where
r— ép(f) ~cvlp(ga) - (m—k—1+2)/2 _ 4
ap(hy) e
and where
A= ‘vlp(f) 'le(hot)_l *Xh Xc(}’z'é_k_l+2)/2 ‘Cg,-

The exceptional zero condition o f = B, - o, and the self duality condition x, - x5, = 1 imply
that I" takes values in .#. Moreover, since the GQp—module V(g) = V(g,) ®1 L splits as
the direct sum of V(g)g = V(g,)T ® Land V(g)y = V(g,)~ ®; L, the map cg, takes
values in (! — 1) - Og, hence A takes values in .#. Because by construction ¢ gg maps to an

element of V(f) 44 under the specialisation map py,, : V- —> V=, Lemma 3.2 and Egs.
(30) and (32) yield the identities

Vu = ==L ()W),

hence (as in the previous subsection) a direct computation gives

1 1 1
V=5 logs, yi=logg, and yu=—=log, . (33)
Recalling that log ¢ (g4) = 0 by [9, Theorem 3.18], Eq. (31) finally proves

2 - deg(o0)

m, -ord,(qa) (qap apa) pg n, = (€ = Lg,) - U =D = (LF = Ly) - (m —1).

(34)

3.5 Proof of equation (8)

Assume in this subsection that (A, o) is exceptional at p, and fix a Selmer class x in
Sel(Q, V(f, g, h)). Let

X =14(x) € FI}(Q, V(f,g M)

be the corresponding extended Selmer class (cf. Sect. 3.1.2). By construction ¥+ belongs
to the finite subspace of H 1(Qp, V'), and its image under the natural map i™

Hﬁln(Qp, V) — Hﬁln(Qp, V) equals the restriction of x at p:
res,(x) =it (F7). (35)
The Galois group GQ[, actson V(f ); via the p-adic cyclotomic character, hence
H(Q,. V(N =2 @z, V(T (=)

by Kummer theory. If ¢} in V (f ); denotes (as in the previous subsections) the dual basis of

g inV(f )y under the pairing 7 75, and if one writes
pr, 1) =% ® g € H, (Q,, V()
for some %" in Z% ®z, L, then Eq. (35) yields the equality

log,(res, (x)) = (logy (1), @) ren = (log,(51) ® ¢, @) fen = log,, (£, (36)
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where log]’,L : Hﬁln(Qp, V*+) ~ Dgr(V7T) is the Bloch—-Kato logarithm and (with a slight
abuse of notation) we denote again by log, : Z;", ®z, L —> L the L-linear extension of
the p-adic logarithm. In the previous equation we used the functoriality of the Bloch—Kato
logarithm and the fact that (by construction) the linear form ( qb) o ON Dgr (V) factors
through the projection onto Dar (V (£);) = V (/)T (=1).

Assume (ay = o, - ap and) g, = ggg. According to Egs. (21) and (36)

2 (aps: x) g n, =10840esp(x)) - (k =1 —m), 37

thus proving Eq. (8) in this case.
Assume g, = qqg. Since (with the notations of Section 3.4) A takes valuesin (I —1)-Opgp,
it follows from Lemma 3.2 and Eqgs. (32) and (33) that

2 B, (Gop) =) 65+ 108 o - (w0 — up) + - (1 = 1) (38)
H
for some cohomology class ¥ in Hl(Qp, V(f)/;ﬂ), where e, = —1 and ¢ = +1 for
& = f, g, One has then
(Gaps X)) 5y g (K, 1, 1) 34 (g e (k1,1
qap> X)) fg n, o 1o ) = 'Bfgaha(qaﬁ)’x Tate > L5
Equation (38) 1

B (lng ®Gap ig_oz ® qzﬂ)Tatc <(k—=2)

1 - *
=5 logf(x;rﬂ) T fgh(qap @ dop) - (k —2)

i 1
Equall&n (36) 5 . 10gaﬂ (resp(x)) -(k—2), (39)

thus proving Eq. (8) when g, = gqg. Switching the roles of the Hida families g, and A,
this also proves Eq. (8) when g, = ggq.
Assume finally g, = gqq. With the notations of Sect. 3.4, let 7, bg) be Og-bases

of V(&) such that ¢, = b; ®b§u ®b,;y ® 1 is a lift of g4 under the specialisation map
Puw, : V7~ —> V7. Since c¢ takes values in (u — u,) - O¢ for § = g, hy, one has

dqaa = (X(Séc_k_l_m)/z ’ l_lép(g) - 1) o (mOd (I—1,m—1) 'Céom(Qp’ V_))’
H

hence Lemma 3.2 and a direct computation give
2. ’Bfgaha (Goa) = Ing Ofua - k—=2)+9 - (I =1+ - (m—1) (40)

for some local cohomology classes ¢ and ¢ in H! (Qp; V7). As in (39) one deduces Eq.
(8) for g, = guo from Lemma 3.4 and Egs. (36) and (40).

4 Proof of theorem 2.1
Let I, I, and Iy, be the improving planes in Uy x Ug x Uy, defined respectively by the
equationsk =l +m,k=1—m+2andk =m — [ +2.For& = f, g, h define

ap(s)

& =1—x:(p)- Wy &) -a,&)
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in Ofgn, where (£, &', &'} = {f, g4. ho}. Lemma 9.8 of [7] implies that
Zy%(A, 0)In, = &ln, - £ (A, 0); 41

for an improved p-adic L-function .ffl‘,"“ (A, Q)g in O(Ig). Indeed loc. cit. (together with its
analogue obtained by switching the roles of g and /) proves that the meromorphic function
Zy%(A, )} on Ilg defined by the previous equation is (bounded, hence) regular at w,.
Shrinking the discs Uy if necessary, we then conclude that the improved p-adic L-function
.ff;}“ (A, Q)g is analytic on Ilg, as claimed.

Assume first &y = o - @y, so that

2-&f (mod .#%) = z}”-(k—Z)—Sg‘;-(l—l)—SZ’;-(m—l). (42)

According to Theorem A and Proposition 9.3 of [7], the partial derivative of £/* (A, o) with
respect to k vanishes at w,, hence

2. £8%(A, @) (mod .#7)
is equal to
((EF =& - U =D+ (LF = L) - m = 1)) - Z54(A, ) (wy)

by Egs. (41) and (42). Moreover, with the notations introduced before the statement of
Theorem 2.1, one has L = ITy N I1g and & = £, thus

LA, 0V (wo) = E¢(wo) - LE(A, 0)" (w).

Noting that & (w,) = 1 — B /oy, (When oy = o - ap,), the previous discussion and Eq. (27)
conclude the proof of Theorem 2.1 when oy = o - ay.
Assume now oy = B, - oy In this case, for & = g, h, one has

2-& (modf2)=£gg~(u—l)— ‘}“~(k—2)—£2“

’
3

L =), (43)

Where {(Eo(! u), (S:yv u/)} = {(go(s l)v (hou m)}’ and
— LEUA, 0 (o) = LA, 005 (W) = EF(w,) - LA, 0) (o). (44)

The second equality in the previous equation follows as above from the definitions, according
towhichL = IT NI, and & = &|L. The first equality follows by noting that the restrictions
of & and &, to the line I, N IT, satisfy

 Xe(p)ap(g)

&l
ap(f) . ap(ha) M Mg NITy

Eglnnm, =

(as a,,(f)lngmnh =ay = ozj?l and x, - x» = 1 by Assumption 1.1.1) with

_ Xg(p) -ap(gq)

ap(f) : ap(hot)

(In other words & |1 NI, and —& | <N, have the same leading term at w,, which together

with the equality &, -f;j“" (A, Q)z,lngmnh =&, ~$[‘j‘“(A, o)} Ir,nr, implies the first identity
in Eq. (44).) Write

(w()) =-1

2-Z3%(A, 0) mod #Y) =a-k—2)+b-(U—1)+c-(m—1)
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with a, b and c in L. Equations (41) and (43) with £ = g and Eq. (44) give
a+b=Epwy) - (L5 —LF) - Zy(wy) and ¢ —a = Ep(wy) - (LF — L) - L5 (wy),
where 02”; is a shorthand for ;’fl‘,"“(A, 0)*. Similarly
b—a=2&r(w) - (22‘; — £?) 'fg(wo) and a +c = &r(wy) - (26}" — 22‘;) ~_2”;‘(w0)
by Eqgs. (41) and (43) with & = h and Eq. (44). As a consequence
~2- £%*(A,0) (mod .#7)

equals

Ep(wo) - (S — £) - (= 1) — (8 — 8) - (m — 1)) - Z2(A, 0)* (wy).

Noting that & (w,) = 1 — B (when ay = B, - ay), the previous discussion and Eq. (34)

«,
prove Theorem 2.1 when af " Bg - ap.
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