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Abstract
We provide several inequalities between eigenvalues of some classical eigenvalue problems
on compact Riemannian manifolds with C2 boundary. A key tool in the proof is the gen-
eralized Rellich identity on a Riemannian manifold. Our results in particular extend some
inequalities due to Kuttler and Sigillito from subsets of R

2 to the manifold setting.
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Rèsumè
On donne plusieurs inégalités concernant les valeurs propres dans certains problèmes clas-
siques des valeurs propres sur des variétés riemanniennes compactes à bord C2. Comme
méthode centrale de la preuve, on utilise l’identité généralisée de Rellich sur une variété
riemannienne. En particulier, nos résultats étendent au cas des variétés certaines inégalités
établies par Kuttler et Sigillito sur des sous-domaines de R

2.

1 Introduction

The objective of this manuscript is to establish several inequalities between eigenvalues of
the classical eigenvalue problemsmentioned below. Let (Mn, g) be a compact and connected
Riemannian manifold of dimension n ≥ 2 with nonempty C2 boundary ∂M . The eigenvalue
problems we consider include the Neumann and Dirichlet eigenvalue problems on M :{

�u + λu = 0 in M,

u = 0 on ∂M,
Dirichlet eigenvalue problem , (1.1)

{
�u + μu = 0 in M,

∂νu = 0 on ∂M,
Neumann eigenvalue problem , (1.2)
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126 A. Hassannezhad, A. Siffert

where � = div∇ is the Laplace–Beltrami operator, ν is the unit outward normal vector
on ∂M , and ∂ν denotes the outward normal derivative. The Dirichlet eigenvalues describe
the fundamental modes of vibration of an idealized drum, and for n = 2, the Neumann
eigenvalues appear naturally in the study of the vibrations of a free membrane; see e.g. [3,6].

We also consider the Steklov eigenvalue problem, which is an eigenvalue problem with
the spectral parameter in the boundary conditions:

{
�u = 0 in M,

∂νu = σu on ∂M,
Steklov eigenvalue problem . (1.3)

The Steklov eigenvalues encode the squares of the natural frequencies of vibration of a thin
membrane with free frame, whose mass is uniformly distributed at the boundary; see the
recent survey paper [11] and references therein.

The last set of eigenvalue problems we consider are the so-called Biharmonic Steklov
problems:

{
�2u = 0 in M,

u = �u − η∂νu = 0 on ∂M,
Biharmonic Steklov problem I; (1.4)

{
�2u = 0 in M,

∂νu = ∂ν�u + ξu = 0 on ∂M,
Biharmonic Steklov problem II. (1.5)

The eigenvalues problems (1.4) and (1.5) for example play an important role in elastic
mechanics. We refer the reader to [5,9,17,18] for some recent results on eigenvalue estimates
of problem (1.4). Moreover, a physical interpretation of problem (1.4) can be found in [9,17].
Problem (1.5) was first studied in [12,13] where the main focus was on the first nonzero
eigenvalue, which appears as an optimal constant in a priori inequality; see [12] for more
details.

It is well-known that the spectra of the eigenvalue problems (1.2)–(1.5) are discrete and
non-negative, see e.g. [2,6,9,10,12,17].We thus arrange their eigenvalues in increasing order,
where we repeat an eigenvalue as often as its multiplicity requires. The k-th eigenvalue of
one of the above eigenvalue problems will be denoted by the corresponding letter for the
eigenvalue with a subscript k, e.g. the k-th Neumann eigenvalue will be denoted by μk . Note
that μ1 = σ1 = ξ1 = 0.

There is a variety of literature on the study of bounds on the eigenvalues of each problem
mentioned above in terms of the geometry of the underlying space [11,15,17,22]. However,
instead of studying each eigenvalue problem individually, it is also interesting to explore
relationships and inequalities between eigenvalues of different eigenvalue problems. Among
this type of results, one canmention the relationships between the Laplace and Steklov eigen-
values studied in [14,21,24], and various inequalities between the first nonzero eigenvalue
of problems (1.2)–(1.5) on bounded domains of R

2 obtained by Kuttler and Sigillito in [13];
see Table1 (Note that there was a misprint in Inequality VI in [13]. The correct version of
the inequality is stated in Table1.).

We extend Kuttler–Sigillito’s results in two ways. Firstly, we consider compact manifold
M with C2 boundary of any dimension n ≥ 2. Secondly, we also prove inequalities between
higher-order eigenvalues.

Our first theorem provides lower bounds for ξk in terms of Neumann and Steklov eigen-
values.

Theorem 1.1 Let (Mn, g) be a compact manifold of dimension n ≥ 2 with C2 boundary. For
every k ∈ N we have (a) μkσ2 ≤ ξk , and (b) μ2σk ≤ ξk .
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Table 1 Inequalities obtained by Kuttler and Sigillito in [13]

Inequalities Conditions on M ⊂ R
2 Special case of

μ2σ2 ≤ ξ2 Theorem 1.1

μ2hmin/(1 + μ
1/2
2 rmax) ≤ 2σ2 Star-shaped with respect to a point Theorem 1.3

η1 ≤ 1
2λ1hmax Star-shaped with respect to a point Theorem 1.4 (i)

λ
1/2
1 ≤ 2η1rmax/hmin Star-shaped with respect to a point Theorem 1.4 (i)

ξ2 ≤ μ2
2hmax Star-shaped with respect to its centroid Theorem 1.4 (i i)

Compared to inequality (b), inequality (a) gives a better lower bound for ξk for large k. For
k = 2 and M ⊂ R

2, Theorem1.1 was previously proved in [13]. Kuttler in [12] also obtained
an inequality between some higher order eigenvalues ξk and μk for a rectangular domain in
R
2 using symmetries of the eigenfunctions.
In order to state our next results, we need to introduce some notation first. For any given

p ∈ M, consider the distance function

dp : M → [0,∞), dp(x) := d(p, x),

and one half of the square of the distance function,

ρp(x) := 1

2
dp(x)

2.

Furthermore, we set

rmax := max
x∈M dp(x) = max

x∈∂M
dp(x),

hmax := max
x∈∂M

〈∇ρp, ν〉, and hmin := min
x∈∂M

〈∇ρp, ν〉,

where we borrowed the notation from [13].

Remark 1.2 Note that ρp is not necessarily differentiable on the cut locus of p. However, the
direction derivative denoted by 〈∇ρp(x), ζ 〉, ζ ∈ TxM always exists and is given by

〈∇ρp(x), ζ 〉 := inf{−〈v, ζ 〉 : v ∈ TxM is the unit tangent vector of a geodesic joining x to p}.
We shall see that under the assumption of a lower Ricci curvature bound, there exists a lower
bound on the first nonzero Steklov eigenvalue σ2 in terms of μ2 on star shaped manifolds.
A manifold M with C2 boundary is called a star shaped manifold if there exist p ∈ M and
a star shaped domain � in R

n ∼= TpM such that expp is defined on � and expp(�) = M .
This implies that 〈∇ρp(x), ν(x)〉 ≥ 0 for every x ∈ ∂M .

Theorem 1.3 Let (Mn, g) be a compact, star shaped Riemannian manifold whose Ricci
curvature Ricg satisfies Ricg ≥ (n − 1)κ . Then we have

σ2 ≥ hminμ2

2rmaxμ
1/2
2 + C0

, (1.6)

where C0 := C0(n, κ, rmax) is a positive constant depending only on n, κ and rmax.

When M is a subdomain of R
n , inequality (1.6) was stated in [13] with C0 = 2.
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In the following theorem we provide several inequalities for eigenvalues of (1.2)–(1.5)
on star shaped manifolds under the assumption of bounded sectional curvature. Here and
hereafter, we make use of the notation

A ∨ B := max{A, B} for all A, B ∈ R,

and the convention c/0 = +∞, c ∈ R � {0}.

Theorem 1.4 Let (Mn, g) be a compact, star shaped Riemannian manifold of dimension n
whose sectional curvature Kg satisfies κ1 ≤ Kg ≤ κ2. Moreover, assume that there exists
p ∈ M such that M is star shaped with respect to p and the cut locus of p in M is the
empty set. Then there exist constants Ci := Ci (n, κ1, κ2, rmax), i = 1, 2, depending only on
n, κ1, κ2 and rmax and C3 = C3(n, κ1, rmax) such that

(i) C1ηm/hmax ≤ λk ≤ (
4r2maxη

2
k − 2C2hminηk

)
/h2min,

(ii) ξm+1 ≤ hmaxμ
2
k/

(
(C3 − n−1vol(M)−1μk

∫
M d2p dvg) ∨ 0

)
, provided κ2 ≤ 0.

Here, m is the multiplicity of λk .

Note that the constants Ci , i = 1, 2, 3 are not positive in general. However, there exists
r0 := r0(n, κ1, κ2) > 0 such that for rmax ≤ r0 these constants are positive; see Sect. 4 for
details. In inequality (i i), we have a non trivial upper bound only if

μk < nC3vol(M)

(∫
M
d2p dvg

)−1

.

When M is a domain inR
n , the quantity

∫
M d2pdvg is called the second moment of inertia;

see Example 4.2. The proof of Theorem 1.4 also leads to a non-sharp lower bound on η1

η1 ≥ hminC2

r2max
.

This in particular shows that the right-hand side of the inequality in part i) is always
positive.

The proof of Theorem 1.1 is based on using the variational characterization of the eigen-
values and alternative formulations thereof. Apart from the Laplace and Hessian comparison
theorems, and the variational characterization of the eigenvalues, the key tool in the proof
of Theorems1.3 and 1.4 is a generalization of the classical Rellich identity to the manifold
setting. This is the content of the next theorem. Let us denote M \ ∂M by M◦.

Theorem 1.5 (Generalized Rellich identity) Let F : M → T M be a Lipschitz vector field
on M. Then for every w ∈ C2(M◦) ∩ C1(M) we have

∫
M

(�w + λw)〈F,∇w〉dvg =
∫

∂M
∂νw〈F,∇w〉dsg − 1

2

∫
∂M

|∇w|2〈F, ν〉dsg

+λ

2

∫
∂M

w2〈F, ν〉dsg + 1

2

∫
M
divF |∇w|2dvg −

∫
M
DF(∇w,∇w)dvg

−λ

2

∫
M

w2divF dvg,

where ν denotes the outward pointing normal and 〈 · , · 〉 = g( · , · ).
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The classical Rellich identitywas first stated byRellich in [23].A special case of Theorem3.1,
called the generalized Pohozaev identity, was proved in [21,25] in order to get some spectral
inequalities between the Steklov and Laplace eigenvalues.

The paper is structured as follows. In Sect. 2, we recall tools needed in later sections,
namely theHessian and Laplace comparison theorems.Moreover, we give variational charac-
terizations and alternative representations for the eigenvalues of problems (1.2)–(1.5). Sect. 3
contains the deduction of the Rellich identity on manifolds, as well as several applications
thereof. Finally, we prove the main theorems in Sect. 4.

2 Preliminaries

In this section we provide the basic tools needed in later sections. Namely, we give the
variational characterizations and alternative representations of the eigenvalues of prob-
lems (1.2)–(1.5) in the first subsection. In the second subsection, we recall the Hessian
and Laplace comparison theorems.

2.1 Variational characterization and alternative representations

Below, we list the variational characterization of eigenvalues of (1.1)–(1.5) and their alter-
native representations. We refer to [2,6] for the variational characterization of (1.1)–(1.3),
and to Appendix for (1.4) and (1.5). For the special case of the first nonzero eigenvalues of
(1.1)–(1.5), their alternative representations are contained in [13]. The general proofs of their
alternative representations follow along the same lines of the proofs in [13] and are therefore
omitted.
Dirichlet eigenvalues:

λk = inf
V⊂H1

0 (M)

dim V=k

sup
0 �=u∈V

∫
M |∇u|2 dvg∫
M u2 dvg

= inf
V⊂H2(M)∩H1

0 (M)

dim V=k

sup
u∈V∇u �=0

∫
M (�u)2 dvg∫
M |∇u|2 dvg

. (2.1)

Neumann eigenvalues:

μk = inf
V⊂H1(M)
dim V=k

sup
0 �=u∈V

∫
M |∇u|2 dvg∫
M u2 dvg

= inf
V⊂H2(M)

∂νu=0 on ∂M
dim V=k

sup
u∈V∇u �=0

∫
M (�u)2 dvg∫
M |∇u|2 dvg

. (2.2)

Steklov eigenvalues:

σk = inf
V⊂H1(M)
dim V=k

sup
0 �=u∈V

∫
M |∇u|2 dvg∫
∂M u2 dvg

= inf
V⊂H(M)
dim V=k

sup
u∈V∇u �=0

∫
∂M (∂νu)2 dsg∫
M |∇u|2 dvg

, (2.3)

where H(M) is the space of harmonic functions on M .
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130 A. Hassannezhad, A. Siffert

Biharmonic Steklov I eigenvalues:

ηk = inf
V⊂H2(M)∩H1

0 (M)

dim(V /H2
0 (M))=k

sup
u∈V

u∈V \H2
0 (M)

∫
M |�u|2 dvg∫

∂M (∂νu)2 dsg
. (2.4)

Biharmonic Steklov II eigenvalues:

ξk = inf
V⊂H2

N (M)

dim V=k

sup
0 �=u∈V

∫
M |�u|2 dvg∫
∂M u2 dsg

, (2.5)

where H2
N (M) := {u ∈ H2(M) : ∂νu = 0 on ∂M}.

2.2 Hessian and Laplace comparison theorems

The idea of comparison theorems is to compare a given geometric quantity on a Riemannian
manifold with the corresponding quantity on a model space. Below we recall the Hessian
and Laplace comparison theorems. For more details we refer the reader to [4,7,20].

For any κ ∈ R, denote by Hκ : [0,∞) → R the function satisfying the Riccati equation

H ′
κ + H2

κ + κ = 0, with lim
r→0

r Hκ (r)

n − 1
= 1.

Clearly, we have

Hκ (r) =

⎧⎪⎨
⎪⎩

(n − 1)
√

κ cot(
√

κr) κ > 0,
n−1
r κ = 0,

(n − 1)
√|κ| coth(√|κ|r) κ < 0.

With this preparation at hand we can now state the Hessian comparison theorem.

Theorem 2.1 (Hessian comparison theorem) Let (Mn, g) be a complete Riemannian mani-
fold. Let γ : [0, L] → M be a minimizing geodesic starting from p ∈ M, such that its image
is disjoint from the cut locus of p. Assume furthermore that

κ1 ≤ Kg(X , γ̇ (t)) ≤ κ2

for all t ∈ [0, L] and X ∈ Tγ (t)M perpendicular to γ̇ (t). Then

(a) dp satisfies the inequalities

∇2dp(X , X) ≤ Hκ1(t)

n − 1
g(X , X), ∀t ∈ [0, L], X ∈ 〈γ̇ (t)〉⊥ ⊂ Tγ (t)M,

∇2dp(X , X) ≥ Hκ2(t)

n − 1
g(X , X), ∀t ∈

[
0, L ∧ π

2
√

κ2 ∨ 0

]
, X ∈ 〈γ̇ (t)〉⊥ ⊂ Tγ (t)M .

Furthermore, we have

∇2dp(γ̇ (t), γ̇ (t)) = 0, ∀t ∈ [0, L].
Here A ∧ B := min{A, B} and A ∨ B := max{A, B} for A, B ∈ R.
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(b) ρp satisfies the inequalities

∇2ρp(X , X) ≤ t Hκ1(t)

n − 1
g(X , X), ∀t ∈ [0, L], X ∈ 〈γ̇ (t)〉⊥ ⊂ Tγ (t)M,

∇2ρp(X , X) ≥ t Hκ2 (t)

n − 1
g(X , X), ∀t ∈

[
0, L ∧ π

2
√

κ2 ∨ 0

]
, X ∈ 〈γ̇ (t)〉⊥ ⊂ Tγ (t)M,

and

∇2ρp(γ̇ (t), γ̇ (t)) = 1, ∀t ∈ [0, L].

Next, we state the Laplace comparison theorem.

Theorem 2.2 (Laplace comparison theorem) Let (Mn, g) be a complete Riemannian mani-
fold. The distance function dp and the squared distance function satisfy the following.

(a) Let Ricg ≥ (n − 1)κ , κ ∈ R. Then for every p ∈ M the inequalities

�dp(x) ≤ Hκ (dp(x)), and �ρp(x) ≤ 1 + dp(x)Hκ (dp(x))

hold at smooth points of dp. Moreover the above inequalities hold on the whole manifold
in the sense of distribution.

(b) Under the same assumption and notations of Theorem 2.1, the following inequalities
hold.

(i) For every t ∈ [0, L]
�dp(γ (t)) ≤ Hκ1(t), and �ρp(γ (t)) ≤ 1 + t Hκ1(t) ;

(ii) For every t ∈ [0, L ∧ π

2
√

κ2∨0 ]

�dp(γ (t)) ≥ Hκ2(t), and �ρp(γ (t)) ≥ 1 + t Hκ2(t).

Notice that part (b) in the above theorems is an immediate consequence of part (a), since
the distance function dp and one half of the square of the distance function ρp satisfy

∇2ρp = dp∇2dp + ∇dp ⊗ ∇dp, �ρp = |∇dp|2 + dp�dp.

Remark 2.3 Theorems 2.1 and 2.2 hold for a star shaped manifold M , when M is star shaped
with respect to the point p given in these theorems.

3 Generalized Rellich identity

An important identitywhich is used in the study of eigenvalue problems is theRellich identity.
To our knowledge it was first stated and used by Rellich [23] in the study of the Dirichlet
eigenvalue problem. Some versions of the Rellich identity are also referred to as the Pohozaev
identity; see [8,21,25] for more details and its applications. In this section, we provide the
generalized Rellich identity on Riemannian manifolds, i.e. Theorem1.5, and its higher order
version. Some applications of this result can be found in the last subsection and in Sect. 4.
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3.1 Rellich identity onmanifolds

The next theorem states the Rellich identity on Riemannian manifolds.

Theorem 3.1 (Generalized Rellich identity for manifolds) Let (M, g) be a compact Rieman-
nian manifold with C2–smooth boundary. Let F : M → T M be a Lipschitz vector field on
M. Then for every w ∈ C2(M◦) ∩ C1(M) we have∫

M
(�w + λw)〈F,∇w〉dvg =

∫
∂M

∂νw〈F,∇w〉dsg − 1

2

∫
∂M

|∇w|2〈F, ν〉dsg

+λ

2

∫
∂M

w2〈F, ν〉dsg + 1

2

∫
M
divF |∇w|2dvg −

∫
M
DF(∇w,∇w)dvg

−λ

2

∫
M

w2divF dvg,

where ν denotes the outward pointing normal and 〈 · , · 〉 = g( · , · ).
In [21,25], the authors proved the above identity when w is harmonic and λ = 0. The proof
of the general version follows the same line of argument. For the sake of completeness we
give the whole argument.

Proof of Theorem 3.1 We calculate
∫
M �w〈F,∇w〉dvg and

∫
M λw〈F,∇w〉dvg separately.

In order to calculate the latter, we apply the divergence theorem to obtain∫
∂M

w2〈F, ν〉 dsg =
∫
M
div(w2F)dvg =

∫
M

(
2w〈F,∇w〉 + w2divF

)
dvg.

Thus, we get∫
M

λw〈F,∇w〉dvg = λ

2

(∫
∂M

w2〈F, ν〉dsg −
∫
M

w2divF dvg

)
.

For the other term, using integration by parts, we obtain∫
M

�w〈F,∇w〉dvg =
∫

∂M
〈F,∇w〉∂νwdsg −

∫
M

〈∇〈F,∇w〉,∇w〉dvg

=
∫

∂M
〈F,∇w〉∂νwdsg −

∫
M

〈∇∇wF,∇w〉dvg

−
∫
M

〈∇∇w∇w, F〉dvg

=
∫

∂M
〈F,∇w〉∂νwdsg −

∫
M
DF(∇w,∇w)dvg

−
∫
M

∇2w(∇w, F)dvg. (3.1)

For further simplification, we observe that

2
∫
M

∇2w(∇w, F)dvg =
∫
M
div(F |∇w|2)dvg −

∫
M
divF |∇w|2dvg

=
∫

∂M
|∇w|2Fdsg −

∫
M
divF |∇w|2dvg.

Plugging this identity into (3.1) we get
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∫
M

�w〈F,∇w〉dvg =
∫

∂M
∂νw〈F,∇w〉dsg − 1

2

∫
∂M

|∇w|2〈F, ν〉dsg

+ 1

2

∫
M
divF |∇w|2dvg −

∫
M
DF(∇w,∇w)dvg.

This completes the proof. ��

3.2 Higher order Rellich identities

In this section, we provide a higher order Rellich identity. Throughout the section, M is a
compact Riemannian manifold with nonempty C2 boundary.

The following preparatory lemma is a simple consequence from Theorem3.1. For the
special case M ⊂ R

n , the identity stated in the lemma was first proven by Mitidieri in [19].

Lemma 3.2 For v,w ∈ C2(M◦) ∩ C1(M) we have
∫
M

�w〈F,∇v〉 + �v〈F,∇w〉dvg =
∫

∂M
{∂νw〈F,∇v〉 + ∂νv〈F,∇w〉}dsg

−
∫

∂M
〈∇w,∇v〉〈F, ν〉dsg +

∫
M
divF〈∇w,∇v〉dvg − 2

∫
M
DF(∇w,∇v)dvg.

Proof Replacing w by w + v in Theorem3.1 and set λ = 0 we get the identity. ��

The following theorem states the higher order Rellich identity.

Theorem 3.3 Let the boundary of M be C2 smooth. Then for w ∈ C4(M◦) ∩ C3(M) we
have∫

M
(�2w + λ�w)〈F,∇w〉dvg = 1

2

∫
M
divF(�w)2dvg − 1

2

∫
∂M

(�w)2〈F, ν〉dvg

+
∫

∂M
{∂νw〈F,∇�w〉 + ∂ν�w〈F,∇w〉}dsg −

∫
∂M

〈∇w,∇�w〉〈F, ν〉dsg

+
∫
M
divF〈∇w,∇�w〉dvg − 2

∫
M
DF(∇w,∇�w)dvg + λ

∫
∂M

∂νw〈F,∇w〉dsg

−λ

2

∫
∂M

|∇w|2〈F, ν〉dsg + λ

2

∫
M
divF |∇w|2dvg − λ

∫
M
DF(∇w,∇w)dvg.

Proof If we choose v = �w in Lemma3.2, we obtain
∫
M

�2w〈F,∇w〉dvg = −
∫
M

�w〈F,∇�w〉dvg

+
∫

∂M
{∂νw〈F,∇�w〉 + ∂ν�w〈F,∇w〉}dsg

−
∫

∂M
〈∇w,∇�w〉〈F, ν〉dsg +

∫
M
divF〈∇w,∇�w〉dvg

−2
∫
M
DF(∇w,∇�w)dvg.

By the divergence theorem we have
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∫
M

�w〈F,∇�w〉dvg = 1

2

∫
M

〈F,∇(�w)2〉dvg

= −1

2

∫
M
divF(�w)2dvg + 1

2

∫
∂M

(�w)2〈F, ν〉dvg,

which together with Theorem3.1 establishes the claim. ��
For the special case M ⊂ R

n and λ = 0, the statement of Theorem3.3 is contained in
[19].

3.3 Applications of the Rellich identities

In 1940, Rellich [23] dealt with the Dirichlet eigenvalue problem on sets M ⊂ R
n . For this

special case he used the identity derived in Theorem3.1 to express the Dirichlet eigenvalues
in terms of an integral over the boundary. One decade ago, Liu [16] extended Rellich’s result
to the Neumann eigenvalue problem, the clamped plate eigenvalue problem and the buckling
eigenvalue problem, each on sets M ⊂ R

n . In the latter two cases Liu (implicitly) applied
the higher order Rellich identity.

Recall that for any compact Riemannian manifold M with C2 boundary ∂M , the clamped
plate eigenvalue problem and the buckling eigenvalue problem are given by{

�2u + ��u = 0 in M,

u = ∂νu = 0 on ∂M; Buckling problem , (3.2)

{
�2u − �2u = 0 in M,

u = ∂νu = 0 on ∂M; Clamped plate, (3.3)

respectively.
Below we reprove the result of Liu for the case of the buckling eigenvalue problem. Note

there is no new idea for the proof, however, our proof is shorter and clearer since we do not
carry out the calculations in coordinates. One can proceed similarly for the clamped plate
eigenvalue problem.

Lemma 3.4 ([16]) Let M ⊂ R
n be a bounded domain with C2 smooth boundary.

(i) Let w be an eigenfunction corresponding to the eigenvalue � of the buckling eigenvalue
problem. Then we have

� =
∫
∂M (∂2ννw)2∂ν(r2)dsg

4
∫
M |∇w|2dvg

,

where r2 = x21 + · · · + x2n and xi are Euclidean coordinates.
(ii) Let w be an eigenfunction corresponding to the eigenvalue � of the clamped plate

eigenvalue problem. Then we have

� =
∫
∂M (∂2ννw)2∂ν(r2)dsg

8
∫
M w2dvg

.

Proof In order to prove (i) we apply Theorem3.3 for the special case M ⊂ R
n and where F

is given by the gradient of the distance function. In this case we have DF( · , · ) = g( · , · )
and divF = n. Note furthermore that w|∂M = 0 implies ∇w = ∂νwν on ∂M . Since we have
∂νw|∂M = 0 by assumption, ∇w vanishes along the boundary of M .
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Plugging the above information into Theorem 3.3 we get

0 =
∫
M

(�2w + λ�w)〈F,∇w〉dvg = n

2

∫
M

(�w)2dvg − 1

2

∫
∂M

(�w)2〈F, ν〉dvg

+ (n − 2)
∫
M

〈∇w,∇�w〉dvg + �
(n
2

− 1
) ∫

M
|∇w|2dvg.

Applying the divergence theorem once more, we thus obtain

�
(n
2

− 1
) ∫

M
|∇w|2dvg = 1

2

∫
∂M

(�w)2〈F, ν〉dsg −
(
2 − n

2

) ∫
M

(�w)2dvg.

The variational characterization of � asserts that for an eigenfunction w corresponding to �

we have ∫
M

(�w)2dvg − �

∫
M

|∇w|2dvg = 0. (3.4)

Furthermore, the identities

〈F, ν〉 =
n∑

i=1

xi∂νxi = 1

2
∂ν(r

2)

and �w = ∂2ννw hold on the boundary of M . Thus the claim is established.
The proof of (i i) is omitted since it is similar to the one of (i). ��

Remark 3.5 In Lemma3.4 (i), when normalizing the eigenfunctionw such that
∫
M |∇w|2dvg

= 1, we obtain

� = 1

4

∫
∂M

(∂2ννw)2∂ν(r
2)dsg;

i.e. � is expressed in terms of an integral over the boundary. A similar remark holds for
Lemma3.4 (i i).

Finally we use the Rellich identities to get some estimates on eigenvalues. Note that from
now on we do not assume anymore that M is a subset of the Euclidean space. However,
we assume that M is a manifold with C2 smooth boundary and that there exists a Lipschitz
vector field F on M satisfying the following properties:

(A) There exist some positive constants c1, c2 ∈ R+ such that

0 < c1 ≤ divF ≤ c2,

wherever F is differentiable.
(B) There exists a positive constant α ∈ R+ such that

DF(X , X) ≥ αg(X , X),

wherever F is differentiable.

Remark 3.6 Domains in Hadamard manifolds, and free boundary minimal hypersurfaces in
the unit ball in R

n+1 provide examples for which conditions A and B for the gradient of the
distance function on M are satisfied. For the latter, see Example 4.3 in which condition A
with c1 = c2 holds.
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The following lemma is an easy consequence of Theorems3.1 and 3.3, respectively. It
establishes upper estimates for eigenvalues in terms of integrals over the boundary ∂M and
α.

Lemma 3.7 Let M be a manifold with C2 smooth boundary. Assume that there exists a
Lipschitz vector field F on M satisfying properties A and B above. Then

(i) the eigenvalue λ corresponding to eigenfunction w of the Dirichlet eigenvalue problem
satisfies

λ ≤
∫
∂M (∂νw)2〈F, ν〉dsg

(2α + c1 − c2)
∫
M w2dvg

;

(ii) the eigenvalue � corresponding to eigenfunction w of the buckling eigenvalue problem
satisfies ∫

∂M (�w)2〈F, ν〉dvg

2α
∫
M |∇w|2dvg

≤ �

provided c1 = c2 =: c in property A.

Proof We start by proving (i). Theorem3.1 and Condition A imply

0 =
∫
M

(�w + λw)〈F,∇w〉dvg ≤
∫

∂M
∂νw〈F,∇w〉dsg − 1

2

∫
∂M

|∇w|2〈F, ν〉dsg

+c2
2

∫
M

|∇w|2dvg −
∫
M
DF(∇w,∇w)dvg − λc1

2

∫
M

w2 dvg.

Since w ≡ 0 on ∂M we have ∇w = ∂νwν on ∂M . Combining this with ConditionB we
obtain

λc1
2

∫
M

w2dvg ≤ 1

2

∫
∂M

(∂νw)2〈F, ν〉dsg +
(

λc2
2

− αλ

) ∫
M

w2 dvg.

The latter inequality implies the claim.
Below, we prove (i i). Theorem3.3 implies

0 ≤ c

2

∫
M

(�w)2dvg − 1

2

∫
∂M

(�w)2〈F, ν〉dvg + c
∫
M

〈∇w,∇�w〉dvg

−2
∫
M
DF(∇w,∇�w)dvg + c�

2

∫
M

|∇w|2dvg − �

∫
M
DF(∇w,∇w)dvg

≤
(
2α − c

2

) ∫
M

(�w)2dvg − 1

2

∫
∂M

(�w)2〈F, ν〉dvg +
(
c�

2
− �α

) ∫
M

|∇w|2dvg.

Here, we made use of ∫
M

〈∇w,∇�w〉dvg = −
∫
M

(�w)2dvg,

which is a consequence of the divergence theorem. Applying (3.4) yields

0 ≤ −1

2

∫
∂M

(�w)2〈F, ν〉dvg + �α

∫
M

|∇w|2dvg,

and thus the claim is established. ��
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4 Proof of theMain Theorems

In this section, we prove the main theorems. The key ingredients of the proof are the com-
parison theorems and the Rellich identity.

Proof of Theorem 1.1 Inequalities (a) and (b) are an immediate consequence of the varia-
tional characterizations of μk , σk and ξk given in (2.2), (2.3) and (2.5). Indeed, let V be
the space generated by eigenfunctions associated with ξ2, . . . , ξk . Then by the variational
characterization (2.2) we get

μk ≤ sup
0 �=u∈V

∫
M (�u)2 dvg∫
M |∇u|2 dvg

≤ ξk sup
0 �=u∈V

∫
∂M u2 dvg∫

M |∇u|2 dvg

= ξk

(
inf

0 �=u∈V

∫
M |∇u|2 dvg∫
∂M u2 dvg

)−1

≤ ξk

σ2
.

The proof of part (b) is similar. Let V be given as in part (a). By the variational charac-
terization, we obtain

σk ≤ sup
0 �=u∈V

∫
M |∇u|2 dvg∫
∂M u2 dvg

≤ ξk sup
0 �=u∈V

∫
M |∇u|2 dvg∫
M |�u|2 dvg

= ξk

(
inf

0 �=u∈V

∫
M |�u|2 dvg∫
M |∇u|2 dvg

)−1

≤ ξk

μ2
.

This completes the proof. ��
Proof of Theorem 1.3 Let p ∈ M be a point such that M is star shaped centered at p. We use
the following identity

1

2

∫
∂M

w2〈ν,∇ρp〉dsg =
∫
M

w〈∇w,∇ρp〉dvg + 1

2

∫
M

w2�ρpdvg

which follows easily from integration by parts. Using the Laplace comparison theorem, we
thus get

1

2

∫
∂M

w2〈ν,∇ρp〉dsg ≤
∫
M

w〈∇w,∇ρp〉dvg + 1

2
max
x∈M(1 + dp(x)Hκ1(dp(x)))

∫
M

w2dvg.

(4.1)

The Cauchy Schwarz inequality yields
(∫

M
w〈∇w,∇ρp〉dvg

)2

≤ r2max

∫
M

w2dvg

∫
M

|∇w|2dvg.

Assuming
∫
M wdvg = 0 and using the variational characterization of μ2 we get∫

M
w〈∇w,∇ρp〉dvg ≤ rmaxμ

−1/2
2

∫
M

|∇w|2dvg.

Thus, from inequality (4.1), we get

1

2

∫
∂M

w2〈ν,∇ρp〉dsg ≤
(
rmaxμ

−1/2
2 + 1

2
max
x∈M(1 + dp(x)Hκ (dp(x)))μ

−1
2

) ∫
M

|∇w|2dvg.

(4.2)
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Let u be an eigenfunction associated to the eigenvalue σ2 and choose w to be

w := u − vol(M)−1
∫
M
udvg.

Then we have∫
M

|∇w|2dvg =
∫
M

|∇u|2dvg = σ2

∫
∂M

u2dsg ≤ σ2

∫
∂M

w2dsg.

Combining this inequality with (4.2), we finally get

1

2
hmin

∫
∂M

w2dsg ≤ 1

2

∫
∂M

w2〈ν,∇ρp〉dsg

≤
(
rmaxμ

−1/2
2 + 1

2
max
x∈M(1 + dp(x)Hκ (dp(x)))μ

−1
2

) ∫
M

|∇w|2dvg

≤
(
rmaxμ

−1/2
2 + 1

2
max
x∈M(1 + dp(x)Hκ (dp(x)))μ

−1
2

)
σ2

∫
∂M

w2dsg.

Setting

C0 := max
x∈M(1 + dp(x)Hκ (dp(x)))

establishes the claim. ��
Proof of Theorem 1.4 Throughout the proof we repeatedly use the Hessian and Laplace com-
parison theorems as well as the generalized Rellich identity, i.e. Theorem3.1.

(i) We start by proving the first inequality in (i), namely C1ηm/hmax ≤ λk . Let Ek be the
eigenspace associated with λk and let u1, . . . , um be an orthonormal basis for Ek .
We first show that ∂νu1, . . . , ∂νum are linearly independent functions on ∂M . We prove
it by contradiction. Let assume that there exists u ∈ Span(∂νu1, · · · , ∂νum) such that
∂νu = 0. Let M̃ be a Riemannian manifold such that M admits an isometric embedding.
Let N be aRiemannianmanifold obtained bydoubling M̃ along its boundary (if ∂ M̃ �= ∅),
endowed with the induced metric from M̃ . More precisely, N ∼= M̃ � M̃/ ∼, where ∼
identifies the two boundaries by the identity map. We smooth out the metric along the
image of ∂ M̃ without changing the metric on the two copies of M in N . Then we define

v(x) =
{
u(x) if x ∈ M,

0 if x ∈ N \ M .

Clearly, we have v ∈ C1(N ). Furthermore, v satisfies the identity �v = λkv on N in the
distribution sense, i.e. v is the weak of solution of �v = λkv on N . Therefore, it is also
a strong solution. Since v ≡ 0 on N \ M , we get v ≡ 0 on N by the unique continuation
theorem. This in particular shows that dim(Ek/H2

0 (M)) = k. Thus, we can consider Ek

as a test functional space in (2.4).
Let hmax = supx∈∂M 〈∇ρp, ν〉. Since 0 < 1

hmax
〈∇ρp, ν〉 ≤ 1, we get

ηm ≤ sup
u∈Ek

∫
M |�u|2 dvg∫

∂M (∂νu)2 dsg
≤ hmaxλ

2
k sup
u∈Ek

∫
M u2 dvg∫

∂M 〈∇ρp, ν〉(∂νu)2 dsg
.

Next we bound the denominator from below. Applying Theorem 3.1 with λ = 0 and
F = ∇ρp yields
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∫
∂M

〈∇ρp, ν〉(∂νu)2 dsg = 2
∫
M

�u〈∇ρp,∇u〉dvg −
∫
M

�ρp|∇u|2dvg

+2
∫
M

∇2ρp(∇u,∇u)dvg,

for any u ∈ Ek . Using integration by parts we get

2
∫
M

�u〈∇ρp,∇u〉dvg = −λk

∫
M

〈∇ρp,∇u2〉dvg = λk

∫
M
u2�ρpdvg.

Consequently, we have∫
∂M

〈∇ρp, ν〉(∂νu)2 dsg = λk

∫
M
u2�ρpdvg −

∫
M

�ρp|∇u|2dvg

+2
∫
M

∇2ρp(∇u,∇u)dvg

≥ λk

(
1 + min

x∈M dp(x)Hκ2(dp(x))

) ∫
M
u2dvg

−
(
1 + max

x∈M dp(x)Hκ1(dp(x))

) ∫
M

|∇u|2dvg

+2 min
x∈M

dp(x)Hκ2(dp(x))

n − 1

∫
M

|∇u|2dvg

= λkC1

∫
M
u2dvg.

In the second line we used the Hessian and Laplace comparison theorems; see Sect. 2.
Here C1 is

C1 :=
(
1 + 2

n − 1

)
min

r∈[0,rmax)
r Hκ2(r) − max

r∈[0,rmax)
r Hκ1(r). (4.3)

Therefore, we get

C1ηm ≤ hmaxλk .

We conclude the proof of the first inequality with a remark on the sign ofC1. The function
r Hκ (r) is constant if κ = 0, increasing on [0,∞) if κ < 0, and decreasing on [0,∞) if
κ > 0. Thus we calculate C1 considering the following different cases:

(a) If κ1 = κ2 = 0, then C1 = 2.
(b) If κ1 ≤ κ2 ≤ 0, then C1 = n + 1 − rmaxHκ1(rmax).

(c) If 0 ≤ κ1 ≤ κ2, then C1 =
(
1 + 2

n−1

)
rmaxHκ2(rmax) − (n − 1).

(d) If κ1 ≤ 0 ≤ κ2, then C1 =
(
1 + 2

n−1

)
rmaxHκ2(rmax) − rmaxHκ1(rmax).

Of course when C1 ≤ 0, we only get a trivial bound. However, depending on κ1 and κ2, in
all cases, there exists r0 ∈ (0,∞] such that for rmax < r0, C1 is positive.

We proceed with the proof of the second inequality of part (i). Let u1, . . . , uk ∈ H2(M)

be a family of eigenfunctions associated to η1, . . . , ηk . We can choose u1, . . . , uk such that
∂νu1, . . . , ∂νuk are orthonormal in L2(∂M). Then, due to (2.1) and (2.4), we have

λk ≤ ηk sup
u∈Ek

∫
∂M (∂νu)2 dsg∫
M |∇u|2 dvg

, (4.4)
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where Ek := Span(u1, . . . , uk). Applying Theorem 3.1 with λ = 0 and F = ∇ρp we get∫
∂M

〈∇ρp, ν〉(∂νu)2 dsg = 2
∫
M

�u〈∇ρp,∇u〉dvg −
∫
M

�ρp|∇u|2dvg

+2
∫
M

∇2ρp(∇u,∇u)dvg

≤ 2max
x∈M |∇ρp|

(∫
M

(�u)2dvg

∫
M

|∇u|2dvg

)1/2

+
(

−1 − min
x∈M dp(x)Hκ2(dp(x)) + 2max

x∈M
dp(x)Hκ1(dp(x))

n − 1

)

×
∫
M

|∇u|2dvg

≤ 2rmaxη
1
2
k

(∫
∂M

(∂νu)2 dsg

∫
M

|∇u|2dvg

)1/2

− C2

∫
M

|∇u|2dvg,

where

C2 := 1 + min
x∈M dp(x)Hκ2(dp(x)) − 2max

x∈M
dp(x)Hκ1(dp(x))

n − 1
. (4.5)

Let A2 :=
∫
∂M (∂νu)2 dsg∫
M |∇u|2dvg

. From the above inequality, A satisfies

hminA
2 ≤ 2rmaxη

1
2
k A − C2.

This implies

r2maxηk − hminC2 ≥ 0.

Remark that since this is true for every k, we get in particular

η1 ≥ hminC2

r2max
. (4.6)

We now obtain the following upper bound on A2

A2 ≤

(
rmaxη

1
2
k + √

r2maxηk − C2hmin

)2

h2min

≤ 4r2maxηk − 2C2hmin

h2min

.

Replacing in (4.4) we conclude

λk ≤ 4r2maxη
2
k − 2C2hminηk

h2min

.

Remark 4.1 The function r Hκ (r) is constant if κ = 0, increasing on [0,∞) if κ < 0, and
decreasing on [0,∞) if κ > 0. We calculate C2 considering different cases:

(a) If κ1 = κ2 = 0, then C2 = n − 2.

(b) If κ1 ≤ κ2 ≤ 0, then C2 = n − 2
rmaxHκ1 (rmax)

n−1 .
(c) 0 ≤ κ1 ≤ κ2. Then C2 = rmaxHκ2(rmax) − 1.

(d) κ1 ≤ 0 ≤ κ2. Then C2 = 1 + rmaxHκ2(rmax) − 2
rmaxHκ1 (rmax)

n−1 .

Depending on κ1 and κ2, in all cases , there exists r0 ∈ (0,∞] so that when rmax < r0, then
C2 is positive.
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ii) Let φ > 0 be a continuous function on ∂M . For every l ∈ N set

ξl+1(φ) := inf
V⊂H̃2

N ,φ(M)

dim V=l

sup
u∈V

∫
M |�u|2 dvg∫
∂M u2φ dsg

, ξ1(φ) = 0,

where H̃2
N ,φ(M) := {u ∈ H2(M) : ∂νu = 0 on∂Mand

∫
∂M φudsg = 0}. The following

relation between ξl and ξl(φ) holds:

ξl ≤ ‖φ‖∞ξl(φ). (4.7)

Indeed, let V = Span(v1, · · · , vl) be a subspace of H̃2
N ,φ(M) of dimension l. The

functional space W = Span(w1, · · · , wl), where w j = v j − 1
vol(∂M)

∫
v j dsg , is an l-

dimensional subspace of H̃2
N (M) := {u ∈ H2(M) : ∂νu = 0 on∂Mand

∫
∂M udsg = 0}

since 1 /∈ V . It is easy to check that for every v ∈ H̃2
N ,φ(M) andw = v− 1

vol(∂M)

∫
v dsg

we have ∫
M |�w|2 dvg

‖φ‖∞
∫
∂M w2 dsg

≤
∫
M |�v|2 dvg∫
∂M v2φ dsg

,

and inequality (4.7) follows. Later on we take φ := 〈∇ρp, ν〉. Thus, it is enough to show
that

ξm+1(φ) ≤ μ2
k

(C3 − n−1μkr2in) ∨ 0
,

for some constants C3. Let Ek be the eigenspace associated with μk , k ≥ 2, and
u1, · · · , um be an orthonormal basis for Ek . Let F be a vector field on M satisfying
properties A and B on page 10. Consider

v j := u j − 1∫
M divF dvg

∫
∂M

u j 〈F, ν〉dsg, j = 1, · · · ,m.

The functional space V = Span(v1, . . . , vm) forms an m-dimensional subspace of
H̃2
N ,φ(M), where φ := 〈F, ν〉.

ξm+1(φ) ≤ sup
v∈V

∫
M |�v|2 dvg∫

∂M v2〈F, ν〉 dsg
= sup

u∈Ek

μ2
k

∫
M u2 dvg∫

∂M u2〈F, ν〉 dsg − (
∫
M divF dvg)−1

(∫
∂M u〈F, ν〉dsg

)2 .

By the Green formula and Theorem 3.1, we get
∫

∂M
u2〈F, ν〉 dsg = 2

∫
M
u〈∇u, F〉dvg +

∫
M
u2divFdvg

= 2μ−1
k

∫
M

�u〈∇u, F〉dvg +
∫
M
u2divFdvg

= μ−1
k

(∫
∂M

|∇u|2〈F, ν〉dsg −
∫
M
divF |∇u|2dvg + 2

∫
M
DF(∇u,∇u)dvg

)

+
∫
M
u2divFdvg
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≥ μ−1
k

∫
∂M

|∇u|2〈F, ν〉dsg + (c1 − c2 + 2α)

∫
M
u2 dvg

≥ (c1 − c2 + 2α)

∫
M
u2 dvg .

We also have(∫
∂M

u〈F, ν〉dsg
)2

=
(∫

M
〈F,∇u〉 dvg

)2

≤
∫
M

|F |2 dvg

∫
M

|∇u|2 dvg

= μk

∫
M

|F |2 dvg

∫
M
u2 dvg.

Therefore,

ξm+1(φ) ≤ μ2
k

((c1 − c2 + 2α) − c−1
1 vol(M)−1μk

∫
M |F |2 dvg) ∨ 0

.

Thanks to the Laplace and Hessian comparison theorem, the vector field F = ∇ρp satisfies
properties A and B (see page 10) on M with α = 1, and

c1 = n, c2 = 1 + max
r∈[0,rmax)

r Hκ (r) = 1 + rmaxHκ (rmax).

Taking

C3 := n + 1 − rmaxHκ (rmax), (4.8)

we get

ξm+1(φ) ≤ μ2
k

(C3 − n−1vol(M)−1μk
∫
M d2p dvg) ∨ 0

which completes the proof. ��
Finally, we provide examples for Theorem 1.4 (i i) in which vector fields satisfying con-

ditions A and B arise naturally. The first example is just a special case of Theorem 1.4 (ii).

Example 4.2 Let M be a star-shaped domain in R
n with respect to the origin. Thus F(x) = x

satisfies properties A and B on M for α = 1 and c1 = c2 = n. Then by Theorem 1.4 (ii) we
have

ξm+1 ≤ maxx∈∂M 〈x, ν〉μ2
k

(2 − n−1vol(M)−1μk I2(M)) ∨ 0
,

where m is the multiplicity of μk and I2(M) = ∫
M |x |2 dvg is the second moment of inertia.

If in addition the origin is also the centroid of M , i.e.
∫
M xdvg = 0, then we have

ξm0+1 ≤ max
x∈∂M

〈x, ν〉μ2
2,

where m0 denotes the multiplicity of μ2. Combining this inequality with Theorem1.1 (b)
we get

σm0+1 ≤ max
x∈∂M

〈x, ν〉μ2.

These two last inequalities has been previously obtained in [13] for the special case n = 2.
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Example 4.3 Let Bn+1 be the unit ball in R
n+1 centered at the origin, and M be a free

boundary minimal hypersurface in Bn+1. Consider F(x) = x , or equivalently ρ0(x) =
ρ(x) = |x |2

2 . It is well-known that the coordinate functions of R
n+1 are harmonic on M .

Hence

divF = �ρ = n.

Thus, condition A on page 10 is satisfied. Also, by the definition of a free boundary minimal
hypersurface, we have 〈∇ρ, ν〉 = 1 on ∂M . To verify condition B, one can show that the
eigenvalues of ∇2ρ at point x ∈ M are given by 1− κi 〈x, N (x)〉, i = 1, . . . , n, where N (x)
is the unit normal to the M such that N |∂M = ν, and κi are principal curvatures. Indeed, let
X , Y ∈ TxM . Then we have

∇2ρ(x)(X , Y ) = X · (Y · ρ(x)) − ∇XY · ρ(x)

= X〈x, Y 〉 − 〈x,∇XY 〉
= 〈X , Y 〉 + 〈x, DXY 〉 − 〈x,∇XY 〉
= 〈X , Y 〉 − 〈x, 〈S(X), Y 〉N (x)〉
= 〈X − S(X), Y 〉〈x, N (x)〉,

where 〈·, ·〉 is the Euclidian inner product, ∇ is the induced connection on M , D is the
Euclidean connection (or simply the differentiation) onR

n+1, and S(x) is the shape operator

S : TxM → TxM, X �→ ∇X N .

Then the eigenvalues of ∇2ρ(x) are of the form 1 − κi (x)〈x, N (x)〉, i = 1, . . . , n. Define

α := min
i=1,...,n
x∈M

(1 − κi 〈x, N (x)〉).

When α > 0, then M with vector field F as above satisfies properties A and B on page 10.
Moreover, 〈F, ν〉 = 1. Thus, following the proof of Theorem1.4 i i , we get

ξm+1 ≤ μ2
k

(2α − n−1vol(M)−1μk
∫
M |x |2 dvg) ∨ 0

.

In dimension two, α > 0 is equivalent to |κi |〈x, N (x)〉 < 1. By results in [1], if
|κi |〈x, N (x)〉 < 1 then 〈x, N (x)〉 ≡ 0 on M , and M is the equilateral disk. Hence, there is
no nontrivial 2-dimensional minimal surface satisfying Properties A and B. It is an intriguing
question whether there are non-trivial minimal hypersurfaces with α > 0 in higher dimen-
sions.
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Appendix

In this section, we prove the variational characterization for the biharmonic Steklov problems.
It directly follows from the results in [9,10]. Since we could not locate a detailed proof of the
variational characterization for the biharmonic Steklov problems in the literature, we include
a proof for the reader’s convenience.

We start by providing the variational characterization for the eigenvalues ηk of the bihar-
monic Steklov problem I, see (1.4).

Theorem 4.4 For every k ∈ N, we have

ηk = inf
V⊂H2(M)∩H1

0 (M)

dim(V /H2
0 (M))=k

sup
u∈V

u∈V \H2
0 (M)

∫
M |�u|2 dvg∫

∂M (∂νu)2 dsg
.

Denote by V the completion of the space

Z := {
v ∈ C∞(M) : �2v = 0, in M and v = 0 on ∂M

}
,

with respect to the inner product

( f , g) =
∫
M

� f �g. (4.9)

Observe that Z is a subspace of the Hilbert space H2(M) ∩ H1
0 (M).

Theorem 4.5 [10, Theorem 3.18] Let M be amanifold1 withC2 boundary. Then the spectrum
of eigenvalue problem (1.4) consists of a countable set of non-negative eigenvalues {ηk} with
finite multiplicities, and the corresponding eigenfunctions {φk} form a complete orthogonal
system for V .
One can consider another inner product on Z as follows:

( f , g)W :=
∫

∂M
∂ν f ∂νg dsg. (4.10)

Let W be the completion of Z with respect to this new inner product. Then V ⊂ W and
the embedding is compact, see [10, Page 85]. We now assume that {φk} is an orthonormal
system of V with respect to the inner product (4.10). Notice that the orthogonality of the
eigenfunctions is preserved when changing the inner product from(4.9) to (4.10).
We need the following key lemma for the proof of Theorem 4.4.

Lemma 4.6 For every k ∈ N we have

ηk = inf
V⊂V

dim V=k

sup
0 �=v∈V

∫
M |�v|2 dvg∫

∂M (∂νv)2 dsg
. (4.11)

Proof Let {φ1, . . . , φk−1} be the first k−1 eigenfunctionswhich are chosen to be orthonormal
with respect to inner product (4.10). Further, let 0 �= v ⊥ φi , i = 1, . . . , k − 1. Then we
have

v =
∞∑
i=k

αiφi ,

1 Note that [10, Theorem 3.19] is stated for domains in R
n . But the proof can be extended to the manifold

setting.

123



A note on Kuttler–Sigillito’s inequalities 145

where αi = (v, φi )W . Note that for every N ∈ N we have

0 ≤
∫
M

∣∣∣∣∣�
(

v −
N∑
i=k

αiφi

)∣∣∣∣∣
2

=
∫
M

|�v|2 −
N∑
i=k

ηiα
2
i .

Thus, the sum
∑∞

i=k α2
i ηi is finite and we get

ηk

∞∑
i=k

α2
i ≤

∞∑
i=k

α2
i ηi ≤

∫
M

|�v|2.

Therefore, we obtain the inequality

ηk ≤
∫
M |�v|2 dvg∫

∂M (∂νv)2 dsg
.

This in particular proves that

ηk = inf
v∈V

v⊥span(Œ1,··· ,Œk−1)

∫
M |�v|2 dvg∫

∂M (∂νv)2 dsg
. (4.12)

Let V be a k-dimensional subspace of V . It is easy to show that there exists v ∈ V such that
v ⊥ span(Œ1, . . . ,Œk−1). Therefore, by (4.12), for every k-dimensional subspace of V we
have

ηk ≤ sup
0 �=v∈V

∫
M |�v|2 dvg∫

∂M (∂νv)2 dsg
.

This completes the proof. ��
We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4 By Lemma 4.6, it is clear that

ηk ≥ Ak := inf
V⊂H2(M)∩H1

0 (M)

dim(V /H2
0 (M))=k

sup
u∈V

u∈V \H2
0 (M)

∫
M |�u|2 dvg∫

∂M (∂νu)2 dsg
.

It remains to prove the reverse inequality. By [10, Theorem 3.19], the space H2(M) ∩
H1
0 (M) admits the following orthogonal decomposition with respect to inner product (4.9).

H2(M) ∩ H1
0 (M) = V ⊕ H2

0 (M).

Hence, for every v ∈ V and w ∈ H2
0 (M) we have∫

M
|�(v + w)|2 dvg =

∫
M

|�v|2 dvg +
∫
M

|�w|2 dvg.

Therefore, for every subspace V ⊂ H2(M) ∩ H1
0 (M), we have

sup
0 �=v∈V̄

∫
M |�v|2 dvg∫

∂M (∂νv)2 dsg
≤ sup

u∈V
u∈V \H2

0 (M)

∫
M |�u|2 dvg∫

∂M (∂νu)2 dsg
,

where V̄ ⊂ V is the projection of V on V . This finally gives us ηk ≤ Ak . ��
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We proceed with a discussion on the proof of the variational characterization for bihar-
monic Steklov problem II, see (1.5).

Theorem 4.7 For every k ∈ N we have

ξk = inf
V⊂H2

N (M)

dim V=k

sup
0 �=u∈V

∫
M |�u|2 dvg∫
∂M u2 dsg

, (4.13)

where H2
N (M) := {u ∈ H2(M) : ∂νu = 0 on ∂M}.

Toprove this theorem,wefirst need to state a counterpart of Theorem4.5 for the eigenvalue
problem (1.5). Although the argument is classic and standard, for the sake of completeness,
we state the theorem and we include a brief discussion on its proof. Consider

Z1 := {
v ∈ C∞(M) : �2v = 0, in M and ∂νv = 0 on ∂M

}
,

and let Z1/R be the subspace of Z1 orthogonal to the constants with respect to the following
inner product

( f , g)W1 =
∫

∂M
f g dsg. (4.14)

We denote byV1/R the completion of Z1/Rwith respect to inner product (4.9) and byW1 the
completion of Z1 with respect to inner product (4.14). The Hilbert space V1/R is a subspace
of H2

N (M)/R and V1 ⊂ H2
N (M) is

V1 = V1/R ⊕ R.

Since, for every f ∈ W1, we have

( f , f )W1 = ‖ f ‖L2(∂M) ≤ ξ−1
2 ‖� f ‖L2(M),

the embedding i : V1/R → W1 is continuous. Then by the compactness of the trace embed-
ding, H1/2(∂M) ↪→ L2(∂M), we conclude that the embedding is compact. Let

L : V1 → V ′
1,

f �→ ( f , ·),
where V ′

1 is the dual space, and let

i1 : W1 → V ′
1

f �→ ( f , g)W1 .

The linear map L is an isomorphism. Thus, the linear operator K = π ◦ L−1 ◦ i1 ◦ i :
V1/R → V1/R is a positive compact self-adjoint operator with strictly positive eigenvalues.
Here π : V1 → V1/R is the orthogonal projection onto V1/R. The inverse of eigenvalues of
K give the positive eigenvalues of (1.5), and the eigenfunctions are the same. We summarize
this discussion in the following theorem.

Theorem 4.8 Let M be a manifold with C2 boundary. Then the spectrum of eigenvalue
problem (1.5) consists of a countable set of non-negative eigenvalues

0 = ξ1 < ξ2 ≤ · · · ≤ ξk ≤ · · ·
with finite multiplicities, and the corresponding eigenfunctions {ψk} form a complete orthog-
onal system for V1.

Now, the proof of Theorem 4.7 is similar to that of Theorem 4.6. We leave the details of
the proof to the interested reader.
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