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Abstract
The van der Pauw method is a well-known experimental technique in the applied sci-
ences for measuring physical quantities such as the electrical conductivity or the Hall
coefficient of a given sample. Its popularity is attributable to its flexibility: the same
method works for planar samples of any shape provided they are simply connected.
Mathematically, the method is based on the cross-ratio identity. Much recent work
has been done by applied scientists attempting to extend the van der Pauw method
to samples with holes (“holey samples”). In this article we show the relevance of
two new function theoretic ingredients to this area of application: the prime function
associated with the Schottky double of a multiply connected planar domain and the
Fay trisecant identity involving that prime function. We focus here on the single-hole
(doubly connected, or genus one) case. Using these new theoretical ingredients we
are able to prove several mathematical conjectures put forward in the applied science
literature.
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1 Introduction

One of the most prevalent and successful measurement techniques in the applied
sciences is the four-point probe method [1,2]. The van der Pauw method [3,4] is an
example of such a method used to measure the resistivity (or its inverse quantity, the
conductivity) of a conducting laminate sample. Van der Pauw’s name is associated to
thismethod because hewas the first to point out that, owing to the conformal invariance
of the underlying boundary value problem for the electrical voltage potential, the basic
idea of the four-point method works for determining the resistivity of uniform two-
dimensional samples of any shape provided the contacts are placed at the edges of the
sample [3,4]. Samples must have a flat shape of unit thickness, be isotropic of uniform
resistivity, and be simply connected. That is, they must not have holes.

Figure 1 shows a set-up for the original van der Pauw measurement: four electrical
contacts (�a,�b,�z,�w) are placed on the perimeter of a test sample. If �a and
�b represent a point source and sink of current Jab respectively, then the potential
difference Vzw between two other points�z and�w can bemeasuredwhile this current
is flowing. The resistance Rzw

ab = Vzw/Jab is then a measured quantity; a second
resistance Rzb

aw can be measured in exactly the same way. Van der Pauw [4] showed
that for any arrangement of four electrical contacts, and given these two resistance
measurements Rzw

ab and Rzb
aw, the specific resistivity σ can be found by solving the

non-linear equation

exp

(
− Rzw

ab

λ

)
+ exp

(
− Rzb

aw

λ

)
= 1 (1)

with

λ ≡ σ

πd
(2)

and where d is the uniform thickness of the two-dimensional sample. We will refer to
this as the classical van der Pauw equation and it provides the basis for the van der
Pauw method, the aim of which is to determine λ and, hence, the sample resistivity.
Because this method needs only two resistance measurements, the method is widely
applied for measuring the resistivity of superconductors or Hall coefficients of mate-
rials in laboratory experiments [3,5]. An efficient numerical method to determine λ is
discussed in [6].

While powerful, the van der Pauw technique is limited by its applicability only to
simply connected samples. In reality, a given sample may well have holes, and these
will affect the voltage measurements. Consequently, in recent years the van der Pauw
method for samples with a single hole, or several holes, has been studied extensively
[7–16]. It has been reported that the van der Pauw equation (1) is inaccurate in samples
with several holes [17]. This is not surprisinggiven that the formula (1) takes no account
of the presence of those holes.
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Fig. 1 The original van der Pauw set-up. The first measurement is the voltage difference between z and w

with a point source of current at a and a point sink of current at b. A second measurement is of the voltage
difference between z and b with a source a and a sink w. The associated resistances satisfy the van der
Pauw equation (1) which can be solved for the sought-after parameter λ

The present paper has been inspired by several conjectures in the literature that have
arisen in the aforementioned attempts to generalize the van der Pauw methodology to
holey samples. Given that the original van der Pauw method rests on the cross-ratio
identity, these conjectures represent an interesting challenge for function theorists.
As we show here, two new mathematical tools turn out to be relevant to the van
der Pauw problem as it pertains to holey samples: the theory of the so-called prime
function on the Schottky double of a multiply connected planar domain [18] and the
Fay trisecant identities also associated with those same compact Riemann surfaces
and which involve the prime function. This article focusses on the function theory
aspects. A companion article [19] explores some of the practical implications of our
results.

In this paper, we use these mathematical tools—both of which are new to this
application area—toprove two recent conjecturesmade in the applied science literature
[7,12]. These conjectures concern a sample with an isolated hole, which is the natural
first case to study. We now outline the nature of these conjectures.

It is a well-known consequence of an extension of the Riemann mapping theorem
due to Koebe (see [20]) that any 2D sample with a single isolated hole can be trans-
planted conformally into an annulus ρ < |ζ | < 1 in a complex ζ plane, say, where
the radius of the inner circle of the annulus depends on the shape of sample [18,21].
By conducting both numerical and actual experiments Szymański et al. showed [7]
that the van der Pauw equation (1) does not hold for a sample with a hole but they
conjectured that the data instead satisfies the inequality

exp

(
− Rzw

ab

λ

)
+ exp

(
− Rzb

aw

λ

)
≤ 1. (3)

The same inequality has been mentioned in a series of papers [8,9]. It is one of the
objectives of this paper to prove that (3) does indeed hold.

In [8] Szymański et al. also find that the pair of measured resistances (Rzw
ab , Rzb

aw)

satisfies another inequality which they dubbed a “lower envelope” and they proposed
a method to measure λ based on the existence of this envelope. To explain this, Fig. 2
shows the results of a repeat of the same numerical experiment conducted in [8]. It
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Fig. 2 (i) Evidence for the two “envelopes”. Numerical experiments for pairs (X , Y ) where X ≡
exp(−Rzw

ab /λ) and Y ≡ exp(−Rzb
aw/λ) following [8]. The point z = 1 is fixed, but (a, b, w) are picked at

random with the ordering 0 = arg[z] < arg[w] < arg[a] < arg[b] < 2π . When ρ = 0, all pairs (X , Y ) are
on the line X + Y = 1 which is (1). However, when ρ > 0, all points (X , Y ) lie in the gray-shaded region
bounded by the straight line X + Y = 1 and a “lower envelope” which is curved. As shown in the center
and right, the size of the gray-shaded area increases with ρ. (ii) The upper envelope (red line) and the lower
envelope (blue line). The envelope is defined by its set of tangents. The gray region is above the tangent line
for each point on the lower envelope. The figure to the left shows what we mean by the “symmetric” choice
of contact points in which the sector formed by the pair (a, b) subtends the same angle θ at the origin as
that formed by the pair (z, w)

shows the data from 40,000 pairs (X ,Y ), where

X ≡ exp(−Rzw
ab /λ), Y ≡ exp(−Rzb

aw/λ). (4)

Three different samples are used with ρ = 0, 0.2 and 0.5. The contact points z, w, a,
and b are chosen at random but always such that they retain the ordering 0 = arg[z] <

arg[w] < arg[a] < arg[b] < 2π . The data is found to fall in the gray-shaded regions
shown in Fig. 2. With no hole, which means ρ = 0, the pair satisfies X + Y = 1
which is just the original van der Pauw equation (1) in evidence. However, if ρ > 0,
this is no longer true and the data (X ,Y ) “fills in” a crescent-shaped domain shown
shaded in Fig. 2. Szymański et al. [8] conjecture that the data (X ,Y ) always lies in
such a domain bounded by the upper envelope X + Y ≤ 1 and some lower envelope
which depends only on the conformal modulus ρ. They also conjecture, again without
a rigorous mathematical proof, that the lower envelope might correspond to the pair of
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(Xθ ,Yθ ), where (Xθ ,Yθ ) are measurements with the four electrical contacts having
a certain symmetry shown on the lower left of Fig. 2(ii). The angle θ is defined as
θ ≡ arg[w/z] = arg[b/a]. In such a symmetric configuration the sector formed by the
pair (a, b) subtends the same angle θ at the origin as that formed by the pair (z, w).

If these conjectures hold then the form of the upper and lower envelopes can be
expressed mathematically as

X + Y ≤ 1, Y − Yθ ≥ ∂Yθ /∂θ

∂Xθ /∂θ
(X − Xθ ), for 0 < θ < π. (5)

Two examples of the tangent line (5) on the lower envelope are shown on the right of
Fig. 2(ii). These inequalities have been put forward in several papers [7–10], but no
rigorous proof of them has yet been obtained.

This paper aims to understand the envelope structure mathematically and to offer
proofs of the aforementioned conjectures. This is done by introducing, for the first
time, two important tools into this area of investigation: (i) use of the prime function,
denoted by ω(ζ, c), associated with the concentric annulus ρ < |ζ | < 1; (ii) use of
the Fay trisecant identity satisfied by this prime function. Using these tools we can
gain insights into the two envelopes associated with the resistance measurements (4).

2 The Van der Pauw Equation and the Cross Ratio Identity

While applied scientists are familiar with the van der Pauw equation (1) mathemati-
cians are perhaps more familiar with a similar-looking cross-ratio identity given by

p0(z, w; b, a) + p0(z, b;w, a) = 1, (6)

where the classical cross-ratio is defined by

p0(z, w; a, b) ≡ ω(z, a)ω(w, b)

ω(z, b)ω(w, a)
, (7)

and where, in a step usually not carried out, we introduce the prime function associated
with the unit disc [18] as the simple monomial function

ω(ζ, c) = ζ − c. (8)

Establishing the identity (6) is a simple exercise. In complex analysis the cross-ratio
[18,22] ismost commonly encountered in ageometrical context as theMöbiusmapping
that provides a conformal mapping, as a function of the variable z, between 3 arbitrary
complex points (a, w, b) in the complex z plane and the canonical choice of points
(0, 1,∞).

Concerning the prime function (8), it is so simple in this case that it is usually not
even given the designation “prime function”.However, a recentmonograph [18]makes
the case that recognizing it as the simplest instance of a more general notion of a prime
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function is important for generalizingmany known results for simply connected planar
geometries to multiply connected cases in a natural way. The van der Pauw problem
of interest here is no exception: it will be shown later that the natural way to extend
the classical van der Pauw method to multiply connected geometries is to treat the
problem using the prime function—that is, the multiply connected generalization of
(8)—and to make use of some important identities satisfied by those functions.

There is a connection between (1) and (6). It arises by considering the complex
potential H0(�) of the complex variable � = x + iy, where (x, y) denotes Cartesian
coordinates in the physical plane, whose real part is the harmonic voltage potential
V (x, y) in the sample:

H0(�) = V (x, y) + iχ(x, y), (9)

where we have introduced χ(x, y), the harmonic conjugate of V (x, y) in the physical
(x, y) plane. V (x, y) is harmonic in the sample and its normal derivative vanishes on
the sample boundary; equivalently, by the Cauchy-Riemann equations, the harmonic
conjugate χ(x, y) is constant on the boundary.

By the well-known Riemann mapping theorem, and the conformal invariance of
the boundary value problem for the potential V (x, y) driven by a source at �a and a
compensating sink at �b [22], the complex potential h0(ζ ) ≡ H0(�) is given by the
explicit formula

h0(ζ ) = σ Jab
πd

log

(
ω(ζ, a)

ω(ζ, b)

)
, (10)

where, once again, we notice the appearance of the prime function (8) and

�a = f (a), �b = f (b), (11)

where � = f (ζ ) is the conformal mapping between the unit disc D0 in the ζ plane
and the given laminate sample in the complex � plane. The potential difference Vzw
is therefore given by

Vzw ≡ Re[h0(z)] − Re[h0(w)] = λJab log

∣∣∣∣ω(z, a)ω(w, b)

ω(z, b)ω(w, a)

∣∣∣∣
= λJab log |p0(z, w; a, b)| ,

(12)

where z and w are the preimages of the two measurement contact points �z and �w:

�z = f (z), �w = f (w). (13)

It follows that

Rzw
ab ≡ Vzw

Jab
= λ log p0(z, w; a, b), (14)
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where we have removed the modulus symbols because the cross-ratio is real and
positive when all the points z, w, a, and b are on the unit circle in the ζ plane, and
0 ≤ arg[z] < arg[w] < arg[a] < arg[b] < 2π . On combining (14) with (6), we arrive
at the van der Pauw equation (1).

3 The Prime Function for the Annulus � < |�| < 1

Now consider the van der Pauw method for a doubly connected sample. Let D denote
a bounded sample with an isolated hole. Let ∂D0 be the outer boundary of the sample
and ∂D1 the boundary of the hole. Similar to the original van der Pauw method, we
assume that the sample thickness is d. We assume that the hole in the sample carries
no net charge. The set-up is illustrated in Fig. 3.

Suppose that 4 point contacts (�a,�b,�z,�w), of infinitesimal width, are placed
on ∂D0. It is known, by an extension of the Riemann mapping theorem [18,20], that
any such domain is conformally equivalent to a concentric annulus ρ < |ζ | < 1 with
circular boundaries C0 and C1 and 0 ≤ ρ < 1. The circle C0 is the unit circle; C1 is
the circle |ζ | = ρ. In other words, there exists an analytic function

� = f (ζ ) (15)

that transplants the annulus ρ < |ζ | < 1 to the domain D with C0 being transplanted
to ∂D0 and C1 to ∂D1.

Let the required complex potential, as a function of � = x + iy, be

H(�) = V (x, y) + iχ(x, y). (16)

We can still exploit the conformal invariance for the problem of determining the
potential V (x, y) in this doubly connected domain. Crowdy [18,23] has shown that
the complex potentials for any point source/sink driven harmonic field in a multiply
connected domain can be written down explicitly in terms of the prime function asso-
ciatedwith that domain. It is important to emphasize, for possible future generalization
of this work, that this fact holds for domains of any finite connectivity not just the
doubly connected case of interest here.

The prime function ω(ζ, c) for the annulus ρ < |ζ | < 1 can be defined explicitly
in this case by the formula [18]

ω(ζ, c) = − c

P̂(1)
P

(
ζ

c

)
, (17)

where

P(ζ ) ≡ (1 − ζ )P̂(ζ ), P̂(ζ ) ≡
∞∏
n=1

(1 − ρ2nζ )

(
1 − ρ2n

ζ

)
. (18)
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Fig. 3 The van der Pauw set-up for a sample with an isolated hole. The first measurement is the voltage
difference between z and w with a source of current a and a sink of current b. The second measurement is
the difference between z and b with a source a and a sink w. Similar to the original van der Pauw method,
the measured resistances are denoted by the logarithm of the Schottky–Klein prime function

It is easy to show, directly from these definitions via an infinite product, that

P(ζ−1) = −ζ−1P(ζ ), P(ρ2ζ ) = −ζ−1P(ζ ). (19)

These identities, which are the fundamental properties of the prime function in this
case (see [18, Ch. 5] which is devoted to this function and its properties), will be useful
later. For notational brevity, we write P(ζ ) even though this function also depends on
the parameter ρ as is clear from its definition (18). The reader should bear in mind
this additional parametric dependence.

It is important to mention that while, merely for convenience and brevity of exposi-
tion, we have here defined the prime function for the concentric annulus in terms of an
infinite product (18) the monograph [18] gives a more intrinsic derivation of the prime
function for multiply connected planar domains using the first-type Green’s function
as the starting point. Interested readers are encouraged to refer there for a much more
general mathematical perspective.

We will also need the functions K (ζ ) and L(ζ ) defined as

K (ζ ) ≡ ζ
∂

∂ζ
log P(ζ ), L(ζ ) ≡ ζ

∂K (ζ )

∂ζ
. (20)

The logarithmic derivative of the prime function K (ζ ) and its derivative L(ζ ) are also
important functions in the general function theory on multiply connected domains
[18]. For the concentric annulus it is easily shown, on use of (19), that these functions
satisfy the functional relations

K (ζ−1) = 1 − K (ζ ), K (ρ2ζ ) = K (ζ ) − 1,

L(ζ−1) = L(ζ ), L(ρ2ζ ) = L(ζ ).
(21)

Actually, the function K (ζ ) can be related to theWeierstrass zeta function and L(ζ ) to
the Weierstrass ℘-function [18] but those theoretical connections will not be needed
here and this remark is made merely as a point of interest.
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Following [18,23] the complex potential h(ζ ) ≡ H( f (ζ )) is given by

h(ζ ) = σ Jab
2πd

log

(
āb

|ab|
ω(ζ, a)ω(ζ, ā−1)

ω(ζ, b)ω(ζ, b̄−1)

)
= λJab log

(
a

b

P(ζ/a)

P(ζ/b)

)
, (22)

where the first equality is derived in [18,23] and follows from the general properties
of the prime function, and where we have used (17) in the second equality. The
relations (11) and (13) give the relationship between (a, b, z, w) and (�a,�b,�z,�w)

although it is understood that the mapping f (ζ ) is now the new mapping from the
concentric annulus to the holey sample. Note that, because two electrical contacts a
and b are on C0, ā = a−1 and b̄ = b−1.

The voltage difference between z and w is given by

V zw
ab ≡ Re[h(z)] − Re[h(w)] = λJab log

P(z/a)P(w/b)

P(z/b)P(w/a)
. (23)

Since all contacts are located on the same edge of the annulus, then Im[h(z)] −
Im[h(w)] = 0. The measured resistance Rzw

ab is defined as

Rzw
ab ≡ Vzw

Jab
= λ log

P(z/a)P(w/b)

P(z/b)P(w/a)
. (24)

In the same way,

Rzb
aw ≡ Vzb

Jaw

= λ log
P(z/a)P(b/w)

P(z/w)P(b/a)
. (25)

It is straightforward to check that the formulas (24) and (25) above are equivalent to
those given in [7]. More precisely, it can be checked that the function G(φ) used in
[7] is related to P(ζ )—and hence to the prime function for the concentric annulus
(17)—by the formula

P(eiφ) =
(
1 − eiφ

) ∞∏
n=1

(
1 + ρ4n − 2ρ2n cosφ

)
= −2ieiφ/2 P̂(i)G(φ), (26)

where the function G(φ) introduced in [7] is defined by

G(φ) ≡ sin
φ

2

∞∏
n=1

(
1 − cosφ

cosh h̃n

)
, h̃ ≡ 2 log ρ. (27)

Although (26) shows that our new expressions (24)–(25) coincide with those of
[7], which is reassuring, there is much significance in having recognized that the
resistances can be written in terms of this special transcendental function known as
the prime function [18] of the preimage concentric annulus.
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First, the notion of a prime function extends to a planar domain of any finite con-
nectivity [18] which means that we have already provided a route to generalizing all
the ideas in this paper presented here for the annulus to any higher connected domain,
that is, to a sample with more than one hole. Crowdy [23] was the first to show how
the complex potentials for source/sink driven harmonic fields in multiply connected
domains of arbitrary connectivity can be written explicitly in terms of the associated
prime functions. His treatment uses irrotational fluidmechanics as the physical context
but, mathematically, the problem is identical to the electrical conduction problems of
interest here.

Second, it is known [18] that prime functions, including those associated with
domains of connectivity higher than one, satisfy a so-called Fay trisecant identity.
This identity can be viewed as an analogue of the cross-ratio identity (6) on a higher
genus Riemann surface [24] and is the topic of the next section.

4 The Fay Trisecant Identity for the Annulus � < |�| < 1

It is useful to introduce the function

p(z, w; a, b) ≡ ω(z, a)ω(w, b)

ω(z, b)ω(w, a)
. (28)

This formula is identical to that defining the cross-ratio (6) but this quantity is no
longer a cross-ratio because the definition of the prime function has changed. On use
of (17) formula (28) can be written in terms of P(ζ ) as

p(z, w; a, b) = P(z/a)P(w/b)

P(z/b)P(w/a)
. (29)

From (29) and (24)–(25) we see that

exp(−Rzw
ab /λ) = p(z, w; b, a), exp(−Rzb

aw/λ) = p(z, b;w, a). (30)

The Fay trisecant identity associated with this prime function is

P(kz/w)P(ka/b)

P(kza/wb)
p(z, w; b, a) + P(kz/b)P(ka/w)

P(kza/wb)
p(z, b;w, a) = P(k), (31)

where k is an arbitrary complex number. This statement (31) of the genus-1 Fay
trisecant identity expressed purely in terms of the prime function of the concentric
annulus has been taken from Exercise 8.9 of Chapter 8 of the monograph [18] which
asks the reader to prove it using the properties of so-called loxodromic functions.
While (31) is a particular form of the more general Fay trisecant identity [24,25]
the authors have not found it written in the form (31) anywhere else in the literature
(besides [18]). This form (31) of the genus-one Fay trisecant identity will be a crucial
tool in what follows.
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Although it is well established [24,25] frommore general arguments it is instructive
to sketch a proof this form (31) of the genus-one Fay trisecant identity.

First we consider the left hand side of (31) as a function of z with all other quantities
being treated as parameters. Let

J (z) ≡ P(kz/w)P(ka/b)

P(kza/wb)
p(z, w; b, a) + P(kz/b)P(ka/w)

P(kza/wb)
p(z, b;w, a). (32)

The properties (19) of the function P(ζ ) can be used to show that

J (ρ2z) = J (z). (33)

Hence, since it is also meromorphic as a function of z, it is a loxodromic function of
z; see [18, Ch. 8]. A loxodromic function is the name of an automorphic function on
the Schottky double of the concentric annulus; it is a meromorphic function of that
surface satisfying the functional identity (33). If we write

J (z) = N (z)

P(kza/wb)P(z/a)P(w/b)
(34)

so that

N (z) = P(kz/w)P(ka/b)P(z/b)P(w/a)

− (w/b)P(kz/b)P(ka/w)P(z/w)P(b/a)
(35)

then, it can be verified, again using the properties (19) of P(ζ ), that

N (a) = N (wb/ka) = 0. (36)

Since J (z) is a loxodromic function with removable poles at z = a and z = wb/ka—
and, therefore, having no poles on the surface— it must be independent of z, which
means it is a constantwhen considered as a function of z.We are employing aLiouville-
type theorem on this genus-one Schottky double: any meromorphic function on it
having no poles must be constant. Such results will be used extensively throughout
this paper.

We can also consider the left hand side of (31) as a function for w and write

J̃ (w) ≡ P(kz/w)P(ka/b)

P(kza/wb)
p(z, w; b, a) + P(kz/b)P(ka/w)

P(kza/wb)
p(z, b;w, a). (37)

This can also be shown to be loxodromic, i.e.,

J̃ (ρ2w) = J̃ (w) (38)

and to have removable poles at w = b and w = kza/b. It is therefore independent of
w.
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By similar arguments, considering the left hand side of (31) successively as a
function of a and b it can be shown to be independent of those variables too. Putting
all these facts together, we conclude that

P(kz/w)P(ka/b)

P(kza/wb)
p(z, w; b, a) + P(kz/b)P(ka/w)

P(kza/wb)
p(z, b;w, a) = C(k), (39)

where C(k) is a function to be determined. It can be found by matching to the limit
of the left hand side of (39) in the double limit w → z and b → a which yields

C(k) = P(k). (40)

Thus we have established the Fay trisecant identity (31).
On substituting (24) and (25) into (31), we obtain

P(kz/w)P(ka/b)

P(k)P(kza/wb)
exp

(
− Rzw

ab

λ

)
+ P(kz/b)P(ka/w)

P(k)P(kza/wb)
exp

(
− Rzb

aw

λ

)
= 1 . (41)

When ρ → 0, so that there is no hole in a sample, it is straightforward to check that

P(kz/w)P(ka/b)

P(k)P(kza/wb)
= P(kz/b)P(ka/w)

P(k)P(kza/wb)
= 1 (42)

because P(ζ ) = 1−ζ when ρ = 0. The original van der Pauw equation (1) is therefore
retrieved from (41). All dependence on the new parameter k disappears in this simply
connected limit.

It is clear that (41) opens up new perspectives: that it reduces, as ρ → 0, to the
original van der Pauw equation (1) is tantalizing. It also makes it a natural candidate,
at least from the mathematical point of view, to find ways to extend the van der
Pauw method to holey samples. In contrast to the original van der Pauw equation, the
coefficients of exp(−Rzw

ab /λ) and exp(−Rzb
aw/λ) in (41) now depend not only on the

electrical contact locations z,w, a, b but also on a fifth complex parameter k. It should
be emphasized that (41) holds for arbitrary choices of a, b, z, w and k even though,
for present purposes, we will assume that a, b, z and w lie on C0. The freedom in
the choice of k will be exploited in the next section to gain insights into the envelope
structure evident in Fig. 2.

5 Analysis of the Envelopes: The Integrated Fay Identity

In Sect. 1 we discussed the existence of two envelopes, an “upper” and a “lower”
envelope with the mathematical definitions given in (5). It is now shown how the
new tools introduced in the previous two sections allow us to prove the conjecture
enshrined in (5).
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x

x

x

x

Fig. 4 Illustration of the complex coordinates. The parameters θ1 and θ3 are seen as displacements from
the symmetric points where z is fixed to 1

For arbitrary z, w, a, and b on C0 we can introduce new angular coordinates θ, θ1
and θ3:

z = 1, w = exp(i(θ1 + θ)), a = exp(i(θ1 + θ3)), b = exp(i(θ + θ3)). (43)

Because 0 < arg[w] < arg[a] < arg[b] < 2π , the range of θ1, θ, θ3 are given by

− θ < θ1 < θ, θ < θ3 < 2π − θ, 0 < θ < π. (44)

It is important to mention that the symmetry case shown in Fig. 2 corresponds to the
choices θ1 = 0 and θ3 = π . An illustration of the complex coordinates is shown in
Fig. 4. The parameters θ1 and θ3 are seen as displacements from the symmetric points
with parameter θ .

The Fay trisecant identity (41) can be written

A(θ1, θ, k̂)Xθ1,θ3,θ + B(θ3, θ, k̂)Yθ1,θ3,θ = 1, (45)

where

Xθ1,θ3,θ ≡ exp

(
− Rzw

ab

λ

)
= P(e−i(θ+θ3))P(ei(θ−θ3))

P(e−i(θ1+θ3))P(ei(θ1−θ3))
,

Yθ1,θ3,θ ≡ exp

(
− Rzb

aw

λ

)
= P(e−i(θ+θ1))P(ei(θ−θ1))

P(e−i(θ1+θ3))P(ei(θ3−θ1))
,

(46)
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and the coefficient functions are

A(θ1, θ, k̂) ≡ P(kz/w)P(ka/b)

P(k)P(kza/wb)
= P(ke−i(θ+θ1))P(kei(−θ+θ1))

P(k)P(ke−2iθ )

= P(k̂e−iθ1)P(k̂eiθ1)

P(k̂e−iθ )P(k̂eiθ )
,

B(θ3, θ, k̂) ≡ P(kz/b)P(ka/w)

P(k)P(kza/wb)
= P(ke−i(θ+θ3))P(kei(−θ+θ3))

P(k)P(ke−2iθ )

= P(k̂e−iθ3)P(k̂eiθ3)

P(k̂e−iθ )P(k̂eiθ )
,

(47)

and where we have set k = k̂eiθ because k is arbitrary. Notice that, with this choice,
the resistance measurements have the following symmetries:

Xθ1,2π−θ3,θ = X−θ1,θ3,θ = X−θ1,2π−θ3,θ = Xθ1,θ3,θ ,

Yθ1,2π−θ3,θ = Y−θ1,θ3,θ = Y−θ1,2π−θ3,θ = Yθ1,θ3,θ .
(48)

It is also important to note that A(θ1, θ, k̂) is independent of θ3 and B(θ3, θ, k̂) is
independent of θ1.

A crucial next step is to consider an integrated form of the Fay trisecant identity
(41). Consider integrals of A(θ1, θ, k̂) and B(θ3, θ, k̂) with respect to k̂ around the
circle |k̂| = ρ. From (45), we obtain

α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1, (49)

where

α(θ1, θ) ≡ 1

2π

2π∫
0

A(θ1, θ, ρeiφ)dφ = 1

2π

2π∫
0

P(ρei(φ−θ1))P(ρei(φ+θ1))

P(ρei(φ−θ))P(ρei(φ+θ))
dφ,

β(θ3, θ) ≡ 1

2π

2π∫
0

B(θ3, θ, ρeiφ)dφ = 1

2π

2π∫
0

P(ρei(φ−θ3))P(ρei(φ+θ3))

P(ρei(φ−θ))P(ρei(φ+θ))
dφ.

(50)

The integrated Fay’s trisecant identity (49) turns out to be essential for proving the
conjectures about the envelope structure. On taking a derivative of (49) with respect
to θ ,

∂α(θ1, θ)

∂θ
Xθ1,θ3,θ + ∂β(θ3, θ)

∂θ
Yθ1,θ3,θ

+ α(θ1, θ)
∂Xθ1,θ3,θ

∂θ
+ β(θ3, θ)

∂Yθ1,θ3,θ

∂θ
= 0.

(51)
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The sum of the first two terms is zero because

∂α(θ1, θ)

∂θ
Xθ1,θ3,θ + ∂β(θ3, θ)

∂θ
Yθ1,θ3,θ

= i

2π

2π∫
0

[A(θ1, θ, ρeiφ)Xθ1,θ3,θ + B(θ3, θ, ρeiφ)Yθ1,θ3,θ ]

× [K (ρei(φ−θ)) − K (ρei(φ+θ))]dφ

= i

2π

2π∫
0

[K (ρei(φ−θ)) − K (ρei(φ+θ))]dφ = 0,

(52)

where we used Fay’s identity (45) in the second equality. On use of (52) in (51), it is
found that

α(θ1, θ)
∂Xθ1,θ3,θ

∂θ
+ β(θ3, θ)

∂Yθ1,θ3,θ

∂θ
= 0. (53)

Suppose now that we fix the two parameters θ1 and θ3. Then (Xθ1,θ3,θ ,Yθ1,θ3,θ )

depends only on the single parameter θ and the tangent at (Xθ1,θ3,θ ,Yθ1,θ3,θ ) when
viewed as a function of θ is defined as the set of (X ,Y ) satisfying

Y − Yθ1,θ3,θ = ∂Yθ1,θ3,θ /∂θ

∂Xθ1,θ3,θ /∂θ
(X − Xθ1,θ3,θ ). (54)

If we now make use of both (53) and (49) the tangent line (54) is equivalent to

α(θ1, θ)X + β(θ3, θ)Y = 1. (55)

It is helpful to visualize this: Fig. 5 shows examples of these tangent lines. The red
line shows the collection of points (Xθ1,θ3,θ ,Yθ1,θ3,θ ) where both θ1 and θ3 are fixed
but where θ is varying; the blue lines in Fig. 5, given by (55), are tangent to those red
lines. Because of the angular conditions (44), θ varies between |θ1| and π − |π − θ3|.

The important point, however, is that because the symmetry case shown in Fig. 2
corresponds to θ1 = 0 and θ3 = π , the two inequalities in (5) are equivalent to the
two statements

X + Y ≤ 1, (56)

αθ X + βθY ≥ 1, αθ ≡ α(0, θ), βθ ≡ β(π, θ), (57)

for all pairs (X ,Y ) and 0 < θ < π . The first statement is that all pairs (X ,Y ) for ρ ≥ 0
lie on or below the line X + Y = 1 relevant to the classical van der Pauw case ρ = 0;
the second statement is that all pairs (X ,Y ) for ρ ≥ 0 lie above a θ -parametrized curve
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Fig. 5 The red lines are collections of data points (Xθ1,θ3,θ , Yθ1,θ3,θ ) with both θ1 and θ3 fixed and only
parameter θ changed. The blue lines, given by (55), are tangent to the red lines at (Xθ1,θ3,θ , Yθ1,θ3,θ ).
When θ1 = 0 and θ3 = π , the red line is a tangent to a lower envelope

defined for θ1 = 0 and θ3 = π where the parameter θ corresponds geometrically to
points arranged with the symmetry shown in Fig. 2.

The strategy is to prove (56) and (57) for all (X ,Y ) by considering the maximum
and minimum values of the coefficient functions α(θ1, θ) and β(θ3, θ) subject to the
condition (44). From the integrated Fay identity (49),

min−θ<θ1<θ
(α(θ1, θ))Xθ1,θ3,θ + min

θ<θ3<2π−θ
(β(θ3, θ))Yθ1,θ3,θ

≤ α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1, (58)

max−θ<θ1<θ
(α(θ1, θ))Xθ1,θ3,θ + max

θ<θ3<2π−θ
(β(θ3, θ))Yθ1,θ3,θ

≥ α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1. (59)

The idea is to show that (58) is equivalent to (56), and (59) is equivalent to (57).
To study the extrema of α(θ1, θ) and β(θ1, θ), we define the function

gθ (η) ≡ 1

2π

2π∫
0

P(ρei(φ−η))P(ρei(φ+η))

P(ρei(φ−θ))P(ρei(φ+θ))
dφ = 1

2π

2π∫
0

Gθ,η(ρe
iφ)dφ, (60)

where 0 ≤ η ≤ 2π and the integrand is defined as

Gθ,η(ζ ) ≡ P(ζ/μ)P(ζμ)

P(ζ/ν)P(ζν)
, μ ≡ eiη, ν ≡ eiθ . (61)
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Fig. 6 Visualizing the relationship between tangent lines and the function gθ (η) defined in (60). Red
lines show the curves produced by changing only θ , and blue lines are tangents to the envelope at
(Xθ1,θ3,θ , Yθ1,θ3,θ ).When α(θ1, θ) and β(θ3, θ) areminimised, the tangent line corresponds to X+Y = 1.
Whenα(θ1, θ) andβ(θ3, θ) aremaximised, the line becomes a tangent line to the lower envelope at (Xθ , Yθ ),
where Xθ ≡ X0,π,θ and Yθ ≡ Y0,π,θ
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From the definitions (50) it is clear that the two coefficients functions in (49) can be
written in terms of this single function:

α(θ1, θ) = gθ (θ1), β(θ3, θ) = gθ (θ3). (62)

Analysis of this function gθ (η) provides the key to the proofs of the conjectures.
Before presenting the details, the strategy explained in (58)–(59) is illustrated in

Fig. 6. By minimising both α(θ1, θ) and β(θ3, θ), the upper envelope X + Y = 1 is
obtained. In contrast, by maximising both α(θ1, θ) and β(θ3, θ), a tangent line to the
lower envelope is obtained.

It is important to mention that because of the definition of P(ζ ),

P(ρeiφ) =
∞∏
n=1

(
1 + ρ4n−2 − 2ρ2n−1 cosφ

)
> 0, (63)

which means Gθ,η(ρeiφ) is real and positive. By a log-sum and sum-log inequality, we
obtain

log gθ (η) = log

⎡
⎣ 1

2π

2π∫
0

P(ρei(φ−η))P(ρei(φ+η))

P(ρei(φ−θ))P(ρei(φ+θ))
dφ

⎤
⎦

≥ 1

2π

2π∫
0

log
P(ρei(φ−η))P(ρei(φ+η))

P(ρei(φ−θ))P(ρei(φ+θ))
dφ

= 1

2π

2π∫
0

[log(P(ρei(φ−η))) + log(P(ρei(φ+η)))

− log(P(ρei(φ−θ)) − log(P(ρei(φ+θ)))]dφ = 0.

(64)

Thus, we can conclude that gθ (η) ≥ 1 for all θ and η. We will use this in the next
section to analyse the behavior of the function gθ (η).

6 Analysis of the Functions g�(�) and
@g�
@�

This section studies the behavior of the function gθ (η). First, we propose an alternative
expression of gθ (η) to be:

gθ (η) = P(ν/μ)P(μν)

P̂(1)P(ν2)
[K (μ/ν) − K (μν)], (65)
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where we recall that μ = eiη and ν = eiθ . This expression is useful for the analysis
of gθ (η).

To explain the derivation of (65) we note that the integrand Gθ,η(ζ ) defined in (61)
has two simple poles at ζ = ν and ζ = 1/ν and is readily confirmed, on use of (19),
to be loxodromic. The function Gθ,η(ζ ) can therefore also be written as

Gθ,η(ζ ) = P(ζ/μ)P(ζμ)

P(ζ/ν)P(ζν)
= c1[K (ζ/ν) − K (ζν)] + c2, (66)

where c1, c2 ∈ C. Since K (ζ ) is a logarithmic derivative of P(ζ ) and has functional
properties (21), the right hand side of (66) is also a loxodromic function and has two
simple poles at ζ = ν and ζ = 1/ν. The coefficients c1 and c2 are determined by
considering the limits ζ → ν and ζ → μ,

c2 = −c1[K (μ/ν) − K (μν)], c2 = P(ν/μ)P(μν)

P̂(1)P(ν2)
[K (μ/ν) − K (μν)]. (67)

A Liouville-type argument then confirms the equivalence of the two expressions for
Gθ,η(ζ ) in (66). We therefore conclude by using (60) and (66) that

gθ (η) = 1

2π

2π∫
0

Gθ,η(ρe
iφ)dφ

= 1

2π

2π∫
0

(
c1[K (ρei(φ−θ)) − K (ρei(φ+θ))] + c2

)
dφ = c2,

(68)

which is precisely (65).
Now, we consider the behavior of the function gθ (η) by exploiting the derivative

of gθ (η):

∂gθ

∂η
= ∂μ

∂η

∂gθ

∂μ
= i

P(ν/μ)P(μν)

P̂(1)P(ν2)
(L(μ/ν) − L(μν)) + igθ [K (μν) − K (ν/μ)].

(69)

The function L(μ/ν) − L(μν) is a loxodromic function as a function of μ, and has
two second-order poles at μ = ν and μ = 1/ν. Similar to the expression of gθ (η), we
propose another expression of L(μ/ν) − L(μν) given by

L(μ/ν) − L(μν) = P̂(1)2P(μ2)P(ν2)

P(ν/μ)P(μ/ν)P(μν)2
. (70)
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To establish this expression, consider a new function

L(μ) ≡ L(μ/ν) − L(μν) − P̂(1)2P(μ2)P(ν2)

P(ν/μ)P(μ/ν)P(μν)2
. (71)

The function L(μ) is shown to be a loxodromic function by using the functional
properties (19) and (21) as follows:

L(ρ2μ) = L(ρ2μ/ν) − L(ρ2μν) − P̂(1)2P(ρ4μ2)P(ν2)

P(ν/ρ2μ)P(ρ2μ/ν)P(ρ2μν)2

= L(μ/ν) − L(μν) − P̂(1)2(ρ2μ4)−1P(μ2)P(ν2)

(ρ2μ/ν)−1P(ν/μ)(μ/ν)−1P(μ/ν)(μν)−2P(μν)2

= L(μ).

(72)

Furthermore, the asymptotic expansions of each term at μ = ν and μ = 1/ν are

L(μ/ν) − L(μν) ∼ − 1

(1 − μ/ν)2
+ 1

1 − μ/ν
+ O(1) at μ = ν,

L(μ/ν) − L(μν) ∼ 1

(1 − μν)2
− 1

1 − μν
+ O(1) at μ = 1/ν,

P̂(1)2P(μ2)P(ν2)

P(ν/μ)P(μ/ν)P(μν)2
∼ 1

(1 − ν/μ)(1 − μ/ν)
+ O(1)

= − 1

(1 − μ/ν)2
+ 1

1 − μ/ν
+ O(1) at μ = ν,

P̂(1)2P(μ2)P(ν2)

P(ν/μ)P(μ/ν)P(μν)2
∼ 1

(1 − μν)2
− 1

1 − μν
+ O(1) at μ = 1/ν.

(73)

Thus the two poles at ν and 1/ν are removable. We conclude that L(μ) is a constant
function, i.e., it is independent of μ. In addition, we define another function

L̃(ν) ≡ L(μ/ν) − L(μν) − P̂(1)2P(μ2)P(ν2)

P(ν/μ)P(μ/ν)P(μν)2
. (74)

By similar arguments, the function L̃(ν) can be seen to be a loxodromic function of
ν with removable poles ν = μ and ν = 1/μ. Thus, L(μ) is independent of both μ

and ν.
On use of the functional property (21) of L(ζ ), it can be verified that L(ρ) = 0,

which means L(μ) vanishes everywhere leading to expression (70).
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Fig. 7 Typical behavior of the function gθ (η), kθ (η), and ∂gθ /∂η. A local maximum of gθ (η) is obtained
when η = 0 or η = π . A local minimum of g(η) is obtained when η = θ or 2π − θ

Expression (70) can now be used to analyse the behaviour of gθ (η). By substituting
(70) into (69),

∂gθ

∂η
= i

[
P̂(1)P(μ2)

P(μ/ν)P(μν)
+ gθ (η)(K (μν) − K (ν/μ))

]

= i(K (μν) − K (ν/μ))

[
gθ (η) − 1

K (ν/μ) − K (μν)

P̂(1)P(μ2)

P(μ/ν)P(μν)

]

= i(K (μν) − K (ν/μ))

[
gθ (η) − 1

gη(θ)

]
.

(75)

Since, from (64), gθ (η) ≥ 1 and gη(θ) ≥ 1 then

gθ (η) − 1

gη(θ)
≥ 0. (76)

The sign of the derivative (75) is therefore determined by the function

kθ (η) ≡ i(K (μν) − K (ν/μ)). (77)

The derivative of kθ (η) with respect to η is

∂kθ

∂η
= −(L(μν) + L(ν/μ)). (78)

But it can also be shown that L(eiφ) for 0 < φ < 2π is real and positive—the proof
is given in Appendix A. This means that

∂kθ

∂η
< 0, 0 < η < 2π. (79)
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It is straightforward to check that kθ (0) = kθ (π) = 0 and consequently, using conti-
nuity arguments,

lim
η→θ−0

kθ (η) = −∞, lim
η→θ+0

kθ (η) = +∞, (80)

lim
η→2π−θ−0

kθ (η) = −∞, lim
η→2π−θ+0

kθ (η) = +∞. (81)

With this information we can determine the maxima and the minima of gθ (η). The
local minima occur when η = θ or η = 2π − θ . By the definition (60),

gθ (θ) = gθ (2π − θ) = 1. (82)

On the contrary, local maxima occur when η = 0 and η = π . Recall that this case
corresponds to the symmetric choice of points with parameter θ . Figure 7 shows the
typical behaviour of the function gθ (η) for a range of ρ values; recall that P(ζ ), and
hence gθ (η) and kθ (η) depend on the parameter ρ although this dependence is hidden
in our notation.

7 Proof of the Two Conjectures (56)–(57)

We will now prove the two conjectures (56) and (57) using what we have established
about the behavior of gθ (η). From (58) and (82), we can conclude that

Xθ1,θ3,θ + Yθ1,θ3,θ ≤ 1 (83)

for all (Xθ1,θ3,θ ,Yθ1,θ3,θ ). This is equivalent to the conjecture (56).
The maxima of α(θ1, θ) and β(θ3, θ) occur when θ1 = 0 and θ3 = π . Hence,

from (59), we conclude that

αθ Xθ1,θ3,θ + βθYθ1,θ3,θ ≥ 1. (84)

The inequality (84) is not, however, equivalent to the inequality (57). What has been
proven in (84) is that for 0 < θ < π , the pair (Xθ1,θ3,θ ,Yθ1,θ3,θ ) is above the tangent at
(X0,π,θ ,Y0,π,θ ) on the lower envelope. Thus, for the final step,we need to prove that for
another θ ′ 
= θ , the pair (Xθ1,θ3,θ ,Yθ1,θ3,θ ) lies above the tangent at (X0,π,θ ′ ,Y0,π,θ ′).
The condition is equivalent to

αθ ′ Xθ1,θ3,θ + βθ ′Yθ1,θ3,θ ≥ 1. (85)

Notice that because of the choice of angular coordinates (44) the range of θ1 and θ3
are related to θ , but θ ′ should be chosen independently of θ1 and θ3 since we need it
to parametrize the whole of the lower envelope.

The procedure to prove (85) can be divided into two steps.
In the first step (Step 1) we find a specific θ̃ such that αθ ′ ≥ α(θ1, θ̃ ) and βθ ′ ≥

β(θ3, θ̃ ). This step can be viewed as a movement from a point on the lower envelope

123



The Prime Function, the Fay Trisecant Identity... 729

(the set of 3 blue curves in Fig. 8) to a point on another curve (the red curve in Fig. 8)
on which the point (Xθ1,θ3,θ ,Yθ1,θ3,θ ) lies.

In the next step (Step 2) we make a use of a log-sum and sum-log inequality to
prove that

α(θ1, θ̃ )Xθ1,θ3,θ + β(θ3, θ̃ )Yθ1,θ3,θ ≥ 1. (86)

First let us explain Step 1. For an arbitrary value of θ ′ with 0 < θ ′ < π , there are
three possible cases for the set (θ ′, θ1, θ3). The three cases are illustrated in Fig. 8:
they can be understood as corresponding to the lower envelope being split into three
parts: the three blue curve segments sitting on the lower envelope in Fig. 8 as shown
in top, middle, and bottom of this figure. These will be called cases 1, 2a and 2b,
respectively. The red solid curve on each Fig. 8 is drawn by changing θ from |θ1| to
π − |π − θ3| while θ1 and θ3 are fixed. The range of θ comes from the condition of
angular coordinates (44). The reason for the separation into three cases is that when
θ ′ < |θ1| or π − |π − θ3| < θ ′, an auxiliary point (Xθ1,θ3,θ ′ ,Yθ1,θ3,θ ′) does not lie on
the red curve. Based on the argument above, we therefore assign a value θ̃ to a value
of θ ′ according to the following three conditions:

– Case 1: When |θ1| ≤ θ ′ ≤ π − |π − θ3|, which means that the point (Xθ ′ ,Yθ ′)
marked as “+” in the top right of Fig. 8 lies on the blue solid curve, an auxiliary point
(Xθ1,θ3,θ ′ ,Yθ1,θ3,θ ′) also lies on the red curve marked as “x”. From the behavior
of gθ ′(η), we can see that αθ ′ ≥ α(θ1, θ

′) and βθ ′ ≥ β(θ3, θ
′). In this case, we

choose θ̃ = θ ′.
– Case 2a: When θ ′ < |θ1| as shown in the middle of Fig. 8, an auxiliary point

(Xθ1,θ3,θ ′ ,Yθ1,θ3,θ ′)does not lie on the red curve. In this case, the endpoint of the red
curve is chosen, that is, wemake the choice θ̃ = |θ1|. From the behavior of gθ (η), it
is apparent that αθ ′ ≥ α(θ1, |θ1|) = 1. Because of the angular condition (44) such
that |θ1| < θ3 < 2π − |θ1| and because βθ is a monotonically decreasing function
with respect to θ for 0 < θ < π (Appendix B), βθ ′ > β|θ1| = β(π, |θ1|) ≥
β(θ3, |θ1|).

– Case 2b: This is the same as case 2a but refers to the other end of the red curve.
Whenπ−|π−θ3| < θ ′ as shown in the bottomofFig. 8, a point (Xθ1,θ3,θ ′ ,Yθ1,θ3,θ ′)
does not lie on the red curve (cf: Case 2a). In this case, the opposite boundary point
of the red curve is now chosen, whichmeans that we choose θ̃ = π−|π−θ3|. From
the behavior of gθ (η), it is apparent that βθ ′ ≥ β(θ3, π − |π − θ3|) = 1. Because
π−|π−θ3| < θ ′, |θ1| < π−|π−θ3|, and becauseαθ is amonotonically increasing
function with respect to θ for 0 < θ < π (Appendix B), αθ ′ > απ−|π−θ3| ≥
α(θ1, π − |π − θ3|).
In all cases, it is possible to find a specific θ̃ such that αθ ′ ≥ α(θ1, θ̃ ) and βθ ′ ≥

β(θ3, θ̃ ). Thus, we obtain the important result that

αθ ′ Xθ1,θ3,θ + βθ ′Yθ1,θ3,θ ≥ α(θ1, θ̃ )Xθ1,θ3,θ + β(θ3, θ̃ )Yθ1,θ3,θ . (87)

This facilitates Step 2 where we use a log-sum and sum-log inequality for the right
hand side of (87) as follows:
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Fig. 8 Three possible cases for the set (θ ′, θ1, θ3). (i) Case 1: αθ ′ ≥ α(θ1, θ
′) and βθ ′ ≥ β(θ3, θ

′). (ii) Case
2a:Because |θ1| > θ ′,we choose θ̃ = |θ1|.Wecan see thatαθ ′ ≥ α(θ1, |θ1|) = 1 andβθ ′ > β(θ3, |θ1|). (iii)
Case 2b: Because |π −θ3| > π −θ ′, we choose θ̃ = π −|π −θ3|. We can see that αθ ′ ≥ α(θ1, π −|π −θ3|)
and βθ ′ > β(θ3, π − |π − θ3|) = 1

log
[
α(θ1, θ̃ )Xθ1,θ3,θ + β(θ3, θ̃ )Yθ1,θ3,θ

]

= log

⎡
⎣ 1

2π

2π∫
0

(A(θ1, θ̃ , ρeiφ)Xθ1,θ3,θ + B(θ3, θ̃ , ρeiφ)Yθ1,θ3,θ )dφ

⎤
⎦
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≥ 1

2π

2π∫
0

log
[
A(θ1, θ̃ , ρeiφ)Xθ1,θ3,θ + B(θ3, θ̃ , ρeiφ)Yθ1,θ3,θ

]
dφ. (88)

However the right hand side can be written

1

2π

2π∫
0

log

[
Xθ1,θ3,θ + B(θ3, θ̃ , ρeiφ)

A(θ1, θ̃ , ρeiφ)
Yθ1,θ3,θ

]
dφ + 1

2π

2π∫
0

log A(θ1, θ̃ , ρeiφ)dφ

= 1

2π

2π∫
0

log

[
Xθ1,θ3,θ + B(θ3, θ, ρeiφ)

A(θ1, θ, ρeiφ)
Yθ1,θ3,θ

]
dφ + 1

2π

2π∫
0

log A(θ1, θ, ρeiφ)dφ

= 1

2π

2π∫
0

log
[
A(θ1, θ, ρeiφ)Xθ1,θ3,θ + B(θ3, θ, ρeiφ)Yθ1,θ3,θ

]
dφ = 0,

(89)

where we used the fact that the integral of log A(θ1, θ, ρeiφ) is

1

2π

2π∫
0

log A(θ1, θ, ρeiŒ)dφ = 1

2π

2π∫
0

log

(
P(ρei(φ−θ1))P(ρei(φ+θ1))

P(ρei(φ−θ))P(ρei(φ+θ))

)
dφ

= 1

2π

2π∫
0

[log P(ρei(φ−θ1)) + log P(ρei(φ+θ1))

− log P(ρei(φ−θ)) − log P(ρei(φ+θ))]dφ = 0
(90)

and the fact that

B(θ1, θ̃ , ρeiφ)

A(θ3, θ̃ , ρeiφ)
= B(θ1, θ, ρeiφ)

A(θ3, θ, ρeiφ)
= P(ρei(φ−θ3))P(ρei(φ+θ3))

P(ρei(φ−θ1))P(ρei(φ+θ1))
(91)

is independent of θ and θ̃ . In the last line, we have used the Fay trisecant identity (45).
Putting all this together it has been shown that

log
[
α(θ1, θ̃ )Xθ1,θ3,θ + β(θ3, θ̃ )Yθ1,θ3,θ

]
≥ 0. (92)

From (92) it follows that

αθ ′ Xθ1,θ3,θ + βθ ′Yθ1,θ3,θ ≥ 1, (93)

which means for 0 < θ < π , αθ X + βθY ≥ 1 for all (X ,Y ). We have proved all the
conjectured features of the envelope structure observed by previous authors.
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We now summarize steps 1 and 2 geometrically with the aid of Fig. 8. In step 1
we found a choice of an auxiliary tangent line (the red line) to the pink curve on
which (Xθ1,θ3,θ ,Yθ1,θ3,θ ) sits (and which corresponds to a fixed θ1 and θ3) above the
tangential line on the lower envelope (the blue line) for the three segments of the lower
envelope intowhich it naturally divides for any fixed θ1 and θ3 (i.e., cases 1, 2a and 2b).
In step 2 the point (Xθ1,θ3,θ ,Yθ1,θ3,θ ) is then shown to be above that red tangent line
by using the log-sum and sum-log inequalities. We thus prove that (Xθ1,θ3,θ ,Yθ1,θ3,θ )

is above any point on the lower envelope.

8 Discussion

By introducing the prime function on the Schottky double of a conformally equivalent
concentric annulus to any given doubly connected sample with a single uncharged
hole, and by using an integrated form of an associated Fay trisecant identity expressed
in terms of that prime function, we have shown how to prove some conjectures made
in the literature on an observed envelope structure associated with pairs of 4-point
resistance measurements in a van der Pauw procedure. More practical implications of
our results are discussed elsewhere [19].

The van der Pauw method for a sample with two or more holes is, of course, of
interest and several studies have recently appeared [9,11]. The theory of the prime
function on domains of general finite connectivity has been expounded in a recent
monograph [18] and the relevance of the prime function to expressing the complex
potential for source/sink flows in such domains is already known [23]. At the same
time, the Fay trisecant identity also carries over to higher genus Riemann surfaces,
where the Fay identity can be written down in terms of the so-called prime form on
those surfaces and associated theta functions [24]. Therefore, while we have focused
here on what is the simplest non-trivial case of a holey sample, we expect all the ideas
to be extendible to the case of a sample with any finite number of holes. The details,
however, remain to be worked out and constitute an interesting future challenge.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


The Prime Function, the Fay Trisecant Identity... 733

Appendix

A The Positiveness of L(ei�) for 0 < � < 2�

First, we consider the derivative of L(ζ ) defined in (20) as follows:

M(ζ ) ≡ ζ
∂L

∂ζ
. (94)

Because we have another representation of L(μ/ν) − L(μν) as stated in (70), we can
consider a limit of each side:

lim
ν→1

L(μ/ν) − L(μν)

1 − ν
= μ lim

ν→1

(
1

ν

L(μ/ν) − L(μ)

μ/ν − μ
+ L(μ) − L(μν)

μ − μν

)
= 2M(μ).

(95)

The right hand side is, from the definition in (18),

lim
ν→1

1

1 − ν

P̂(1)2P(μ2)P(ν2)

P(ν/μ)P(μ/ν)P(μν)2
= 2

P̂(1)3P(μ2)

P(1/μ)P(μ)3
. (96)

We therefore find an alternative representation of M(ζ ):

M(ζ ) = P̂(1)3P(ζ 2)

P(1/ζ )P(ζ )3
. (97)

Consequently M(eiφ) is found to be

M(eiφ) = P̂(1)3P(e2iφ)

P(1/eiφ)P(eiφ)3
= i

8
C(φ)

sin φ

sin4
φ

2

, (98)

where

C(φ) = P̂(1)3
∞∏
n=1

(1 + ρ4n − 2ρ2n cos 2φ)

(1 + ρ4n − 2ρ2n cosφ)4
> 0. (99)

Therefore, because ∂L/∂φ(eiφ) = iM(eiφ), L(eiφ) decreases when 0 < φ < π , and
L(eiφ) increases when π < φ < 2π . The minimum of L(eiφ) is L(eiπ ) = L(−1)
where L(−1) can be calculated explicitly to be

L(−1) = 1

4
+ 2

∞∑
n=1

ρ2n

(1 + ρ2n)2
> 0. (100)

Therefore L(eiφ) is positive over this range of φ.
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B Proof of the Properties of ˛� and ˇ�

Here we will prove that for 0 < θ < π , αθ is a monotonically increasing function and
βθ is a monotonically decreasing function with respect to θ , that is,

∂αθ

∂θ
> 0,

∂βθ

∂θ
< 0. (101)

We will prove it using the integrated Fay trisecant identity. From (52),

∂αθ

∂θ
X0,π,θ + ∂βθ

∂θ
Y0,π,θ = 0, (102)

which means the sign of ∂αθ/∂θ is opposite to ∂βθ/∂θ . By a log-sum and sum-log
inequality,

log[αθ ′ X0,π,θ + βθ ′Y0,π,θ ]

≥ 1

2π

∫ 2π

0
log[A(0, θ ′, ρeiφ)X0,π,θ + B(π, θ ′, ρeiφ)Y0,π,θ ]dφ

= 1

2π

∫ 2π

0
log[A(0, θ, ρeiφ)X0,π,θ + B(π, θ, ρeiφ)Y0,π,θ ]dφ = 0,

(103)

where we used (90) and (91). This means

αθ ′ X0,π,θ + βθ ′Y0,π,θ ≥ 1. (104)

From the Fay trisecant identity, αθ X0,π,θ + βθY0,π,θ = 1, so

(αθ ′ − αθ )X0,π,θ + (βθ ′ − βθ )Y0,π,θ ≥ 0 (105)

for 0 < θ ′ < π . Hence, together with (102), we can obtain an inequality for the second
derivatives of αθ and βθ as follows:

∂2αθ

∂θ2
X0,π,θ + ∂2βθ

∂θ2
Y0,π,θ ≥ 0. (106)

When we take the derivative of (102) with respect to θ , we get

∂αθ

∂θ

∂X0,π,θ

∂θ
+ ∂βθ

∂θ

∂Y0,π,θ

∂θ
+ ∂2αθ

∂θ2
X0,π,θ + ∂2βθ

∂θ2
Y0,π,θ = 0. (107)

Thus, from (106),

∂αθ

∂θ

∂X0,π,θ

∂θ
+ ∂βθ

∂θ

∂Y0,π,θ

∂θ
= −∂2αθ

∂θ2
X0,π,θ − ∂2βθ

∂θ2
Y0,π,θ ≤ 0. (108)
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The signs of ∂X0,π,θ /∂θ and ∂Y0,π,θ /∂θ can be determined for 0 < θ < π , that is,

∂X0,π,θ

∂θ
= iX0,π,θ [K (−eiθ ) − K (−e−iθ )] = iX0,π,θ [2K (−eiθ ) − 1] < 0,

∂Y0,π,θ

∂θ
= iY0,π,θ [K (eiθ ) − K (e−iθ )] = iY0,π,θ [2K (eiθ ) − 1] > 0,

(109)

where we used the positiveness of L(eiφ) to state that the imaginary part of K (eiφ) is
monotonically increasing and K (eiπ ) = 1/2. Because the sign of ∂αθ/∂θ is opposite
to ∂βθ/∂θ as deduced from (102), we can conclude that

∂αθ

∂θ
> 0,

∂βθ

∂θ
< 0. (110)
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