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Abstract We give a generalisation of Shimizu’s lemma to complex or quaternionic
hyperbolic space in any dimension for groups of isometries containing an arbitrary
parabolic map. This completes a project begun by Kamiya (HiroshimaMath J 13:501–
506, 1983). It generalises earlier work of Kamiya, Inkang Kim and Parker. The
analogous result for real hyperbolic space is due to Waterman (Adv Math 101:87–
113, 1993).

Keywords Quaternionic hyperbolic space · Shimizu’s lemma · Screw parabolic
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1 Introduction

1.1 The Context

The hyperbolic spaces (that is rank 1 symmetric spaces of non-compact type) are
Hn

F
, where F is one of the real numbers, the complex numbers, the quaternions or
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160 W. Cao, J. R. Parker

the octonions (and in the last case n = 2); see Chen and Greenberg [5]. A map in
Isom(Hn

F
) is parabolic if it has a unique fixed point and this point lies on ∂Hn

F
. Parabolic

isometries of H2
R
and H3

R
, that is parabolic elements of PSL(2,R) and PSL(2,C), are

particularly simple: they are (conjugate to) Euclidean translations. In all the other
cases, there are more complicated parabolic maps, which are conjugate to Euclidean
screw motions.

Shimizu’s lemma [23] gives a necessary condition for a subgroup of PSL(2,R)

containing a parabolic element to be discrete. If one normalises so that the parabolic
fixed point is ∞, then Shimizu’s lemma says that the isometric sphere of any group
element not fixing infinity has bounded radius, the bound being the Euclidean transla-
tion length. Equivalently, it says that the horoball with height the Euclidean translation
length is precisely invariant (that is elements of the group either map the horoball to
itself or to a disjoint horoball). Therefore, Shimizu’s lemma may be thought of as an
effective version of the Margulis lemma in the case of cusps. Shimizu’s lemma was
generalised to PSL(2,C) by Leutbecher [17] and to subgroups of Isom(Hn

R
) contain-

ing a translation by Wielenberg [25]. Ohtake gave examples showing that, for n ≥ 4,
subgroups of Isom(Hn

R
) containing a more general parabolic map can have isometric

spheres of arbitrarily large radius, or equivalently there can be no precisely invariant
horoball [19]. Finally, Waterman [24] gave a version of Shimizu’s lemma for more
general parabolic maps, by showing that each isometric sphere is bounded by a func-
tion of the parabolic translation length at its centre. Recently, Erlandsson and Zakeri
[6,7] have constructed precisely invariant regions contained in a horoball with better
asymptotics than those of Waterman; see also [22].

It is then natural to ask for versions of Shimizu’s lemma associated to other rank
1 symmetric spaces. The holomorphic isometry groups of Hn

C
and Hn

H
are PU(n, 1)

and PSp(n, 1), respectively. Kamiya generalised Shimizu’s lemma to subgroups of
PU(n, 1) or PSp(n, 1) containing a vertical Heisenberg translation [13]. For subgroups
of PU(n, 1) containing a general Heisenberg translation, Parker [20,21] gave versions
of Shimizu’s lemma both in terms of a bound on the radius of isometric spheres
and a precisely invariant horoball or sub-horospherical region.This was generalised
to PSp(n, 1) by Kim and Parker [16]. Versions of Shimizu’s lemma for subgroups of
PU(2, 1) containing a screw parabolic map were given by Jiang et al. [10,14]. Kim
claimed the main result of [10] holds for PSp(2, 1) [15]. But in fact, he failed to
consider all possible types of screw parabolic map (in the language below, he assumed
μ = 1). Our result completes the project begun byKamiya [13] by giving a full version
of Shimizu’s lemma for any parabolic isometry of Hn

C
or Hn

H
for all n ≥ 2.

Shimizu’s lemma is a special case of Jørgensen’s inequality [12], which is among
the most important results about real hyperbolic 3-manifolds. Jørgensen’s inequality
has also been generalised to other hyperbolic spaces. Versions for isometry groups of
H2

C
containing a loxodromic or elliptic map were given by Basmajian and Miner [1]

and Jiang et al. [9]. These results were extended toH2
H
byKim and Parker [16] andKim

[15]. Cao and Parker [3] andCao andTan [4] obtained generalised Jørgensen’s inequal-
ities in Hn

H
for groups containing a loxodromic or elliptic map. Finally, Markham and

Parker [18] obtained a version of Jørgensen’s inequality for the isometry groups of
H2

O
with certain types of loxodromic map.
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Shimizu’s Lemma for Quaternionic Hyperbolic Space 161

1.2 Statements of the Main Results

The purpose of this paper is to obtain a generalised version of Shimizu’s lemma for
parabolic isometries of quaternionic hyperbolic n-space, and in particular for screw
parabolic isometries. In order to state our main results, we need to use some notation
and facts about quaternions and quaternionic hyperbolic n-space.

We will show in Sect. 2.3 that a general parabolic isometry of quaternionic hyper-
bolic space Hn

H
can be normalised to the form

T =
⎛
⎝

μ −√
2τ ∗μ (−‖τ‖2 + t)μ

0 U
√
2τμ

0 0 μ

⎞
⎠ , (1)

where τ ∈ H
n−1, t is a purely imaginary quaternion, U ∈ Sp(n − 1) and μ is a unit

quaternion satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uτ = μτ, U∗τ = μτ, μτ �= τμ if τ �= 0 and μ �= ±1,

Uτ = μτ, U∗τ = μτ if τ �= 0 and μ = ±1,

μt �= tμ if τ = 0 and μ �= ±1,

t �= 0 if τ = 0 and μ = ±1.

(2)

We call a parabolic element of form (1) a Heisenberg translation if μ = ±1 and
U = μIn−1, and we say that it is screw parabolic otherwise. We remark that even for
n = 2 it is possible to find screw parabolic maps with μ �= ±1 and τ �= 0. This is the
point overlooked by Kim [15].

If μ is a unit quaternion and ζ ∈ H
n−1, the map ζ 	−→ μζμ is linear. For U and

μ as above, consider the following linear maps:

BU,μ : ζ 	−→ Uζ − ζμ, Bμ : ζ 	−→ μζ − ζμ.

Define NU,μ and Nμ to be their spectral norms, that is

NU,μ = max{‖BU,μζ‖: ζ ∈ H
n−1 and ‖ζ‖ = 1}, (3)

Nμ = max{‖Bμζ‖: ζ ∈ H
n−1 and ‖ζ‖ = 1} = 2|Im(μ)|. (4)

Note thatU∗ζ − ζμ = U∗ζμμ−U∗Uζμ = −U∗(Uζ − ζμ)μ. Therefore, NU∗,μ =
NU,μ. We remark that Nμ = 0 if and only if μ = ±1, and NU,μ = 0 if and only if
both μ = ±1 and U = μIn−1, that is NU,μ = 0 if and only if T is a Heisenberg
translation.

We may identify the boundary of Hn
H

with the 4n − 1-dimensional generalised
Heisenberg group with 3-dimensional centre, which isN4n−1 = H

n−1 × Im(H) with
the group law

(ζ1, v1) · (ζ2, v2) = (ζ1 + ζ2, v1 + v2 + 2Im(ζ ∗
2 ζ1)).
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162 W. Cao, J. R. Parker

There is a natural metric called, the Cygan metric, on N4n−1. Any parabolic map T
fixing ∞ is a Cygan isometry of N4n−1. The natural projection from N4n−1 to H

n−1

given by � : (ζ, v) 	−→ ζ is called vertical projection. The vertical projection of T is
a Euclidean isometry of Hn−1.

An element S of Sp(n, 1) not fixing ∞ is clearly not a Cygan isometry. However,
there is a Cygan sphere with centre S−1(∞), called the isometric sphere of S, that
is sent by S to the Cygan sphere of the same radius, centred at S(∞). We call this
radius rS = rS−1 . Our first main result is the following theorem relating the radius of
the isometric spheres of S and S−1, the Cygan translation length of T at their centres
and the Euclidean translation length of the vertical projection of T at the vertical
projections of the centres.

Theorem 1.1 Let� be a discrete subgroup of PSp(n, 1) containing the parabolic map
T givenby (1). Let� : N4n−1 	−→ H

n−1 be vertical projection givenby� : (ζ, v) 	−→
ζ . Suppose that the quantities NU,μ and Nμ defined by (3) and (4) satisfy Nμ < 1/4
and NU,μ < (3 − 2

√
2 + Nμ)/2. Define

K = 1

2

(
1 + 2NU,μ +

√
1 − 12NU,μ + 4N 2

U,μ − 4Nμ

)
. (5)

If S is any other element of � not fixing ∞ and with isometric sphere of radius rS,
then

r2S ≤ �T (S−1(∞))�T (S(∞))

K

+4‖�T S−1(∞) − �S−1(∞)‖ ‖�T S(∞) − �S(∞)‖
K (K − 2NU,μ)

. (6)

If μ = 1 then Theorem 1.1 becomes simpler and it also applies to subgroups of
PU(n, 1).

Corollary 1.2 Let � be a discrete subgroup of PU(n, 1) or PSp(n, 1) containing the
parabolic map T given by (1)withμ = 1. Suppose NU = NU,1 defined by (3) satisfies
NU < (

√
2 − 1)2/2. Define

K = 1

2

(
1 + 2NU +

√
1 − 12NU + 4N 2

U

)
.

If S is any other element of � not fixing∞ and with isometric sphere of radius rS then

r2S ≤ �T (S−1(∞))�T (S(∞))

K

+4‖�T S−1(∞) − �S−1(∞)‖ ‖�T S(∞) − �S(∞)‖
K (K − 2NU )

.

As we remarked above, T is a Heisenberg translation if and only if NU,μ = 0,
which implies Nμ = 0 and K = 1. In this case
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Shimizu’s Lemma for Quaternionic Hyperbolic Space 163

‖�T S−1(∞) − �S−1(∞)‖ = ‖�T S(∞) − �S(∞)‖ = ‖τ‖

and so Theorem 1.1, or Corollary 1.2, is just Theorem 4.8 of Kim–Parker [16]. If in
addition τ = 0 then �T (S−1(∞)) = �T (S(∞)) = |t |1/2, and we recover Kamiya [13,
Thm. 3.2].

For a parabolic map T of the form (1), consider the following sub-horospherical
region:

UT =
{
(ζ, v, u) ∈ Hn

H
: u >

�T (z)2

K − Nμ

+ 4(2K − Nμ)‖�T (z) − �(z)‖2
(K − Nμ)((K − Nμ)(K − 2NU,μ) − 2NU,μK )

}
. (7)

Also, using the definitions of NU,μ, Nμ and K one may check

(K − Nμ)(K − 2NU,μ) − 2NU,μK = (K − 4NU,μ)2NU,μ + K (K − 2NU,μ)2,

which is positive since K − 4NU,μ > (1 − 6NU,μ)/2 > 0. Note that when μ = ±1,
including the case of PU(n, 1), then we have the much simpler formula, generalising
[21, eq. (3.1)]:

UT =
{
(ζ, v, u) ∈ Hn

H
: u >

�T (z)2

K
+ 8‖�T (z) − �(z)‖2

K (K − 4NU,μ)

}
.

If H is a subgroup of G, then we say a set U is precisely invariant under H in G if
T (U) = U for all T ∈ H and S(U)∩U = ∅ for all S ∈ G−H . Our secondmain result
is a restatement of Theorem 1.1 in terms of a precisely invariant sub-horospherical
region.

Theorem 1.3 Let G be a discrete subgroup of PSp(n, 1). Suppose that G∞ the sta-
biliser of ∞ in G is a cyclic group generated by a parabolic map of the form
(1). Suppose that NU,μ and Nμ defined by (3) and (4) satisfy Nμ < 1/4 and
NU,μ < (3 − 2

√
2 + Nμ)/2 and let K be given by (5). Then the sub-horospherical

region UT given by (7) is precisely invariant under G∞ in G.

1.3 Outline of the Proofs

All proofs of Shimizu’s lemma, and indeed of Jørgensen’s inequality, follow the same
general pattern; see [10,13,16]. One considers the sequence S j+1 = S j T S−1

j . From
this sequence one constructs a dynamical system involving algebraic or geometrical
quantities involving S j . The aim is to give conditions under which S0 is in a basin of
attraction guaranteeing S j tends to T as j tends to infinity.

The structure of the remaining sections of this paper is as follows. In Sect. 2, we give
the necessary background material for quaternionic hyperbolic space. In Sect. 3, we

123



164 W. Cao, J. R. Parker

prove that Theorem 1.3 follows fromTheorem 1.1. In Sect. 4, we construct our dynam-
ical system. This involves the radius of the isometric spheres of S j and S−1

j and the
translations lengths of T and its vertical projection at their centres. We establish recur-
rence relations involving these quantities for S j+1 and the same quantities for S j . This
lays a foundation for our proof of Theorem 1.1 in Sects. 5 and 6. In Sect. 5, we rewrite
the condition (6) in terms of this dynamical system (Theorem 5.1), and show that it
means we are in a basin of attraction. Finally, in Sect. 6, we show this implies S j con-
verges to T as j tends to infinity. Thus, our proof follows the existing structure; but it is
far from easy to construct a suitable dynamical system and to find a basin of attraction.

2 Background

2.1 Quaternionic Hyperbolic Space

We give the necessary background material on quaternionic hyperbolic geometry in
this section. Much of the background material can be found in [5,8,16].

We begin by recalling some basic facts about the quaternionsH. Elements ofH have
the form z = z1+z2i+z3j+z4k ∈ Hwhere zi ∈ R and i2 = j2 = k2 = ijk = −1. Let

z = z1 − z2i − z3j − z4k be the conjugate of z, and |z| = √
zz =

√
z21 + z22 + z23 + z24

be the modulus of z. We define Re(z) = (z + z)/2 to be the real part of z, and
Im(z) = (z − z)/2 to be the imaginary part of z. Two quaternions z and w are similar
if there is a non-zero quaternion q so that w = qzq−1. Equivalently, z and w have
the same modulus and the same real part. Let X = (xi j ) ∈ Mp×q be a p × q matrix

over H. Define the Hilbert–Schmidt norm of X to be ‖X‖ =
√∑

i, j |xi j |2. Also the

Hermitian transpose of X , denoted X∗, is the conjugate transpose of X in Mq×p.
LetHn,1 be the quaternionic vector space of quaternionic dimension n+1 with the

quaternionic Hermitian form

〈z, w〉 = w∗Hz = w1zn+1 + w2z2 + · · · + wnzn + wn+1z1, (8)

where z and w are the column vectors in H
n,1 with entries z1, . . . , zn+1 and

w1, . . . , wn+1, respectively, and H is the Hermitian matrix

H =
⎛
⎝
0 0 1
0 In−1 0
1 0 0

⎞
⎠ .

Following [5, Sec. 2], let

V0 = {z ∈ H
n,1 − {0} : 〈z, z〉 = 0}, V− = {z ∈ H

n,1 : 〈z, z〉 < 0}.

We define an equivalence relation ∼ on H
n,1 by z ∼ w if and only if there exists

a non-zero quaternion λ so that w = zλ. Let [z] denote the equivalence class of z.
Let P : Hn,1 − {0} −→ HP

n be the right projection map given by P : z 	−→ [z]. If
zn+1 �= 0 then P is given by
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Shimizu’s Lemma for Quaternionic Hyperbolic Space 165

P(z1, . . . , zn, zn+1)
T = (z1z

−1
n+1, . . . , znz

−1
n+1)

T ∈ H
n .

We also define

P(z1, 0, . . . , 0, 0)
T = ∞.

The Siegel domainmodel of quaternionic hyperbolic n-space is defined to beHn
H

=
P(V−) with boundary ∂Hn

H
= P(V0). It is clear that ∞ ∈ ∂Hn

H
. The Bergman metric

on Hn
H
is given by the distance formula

cosh2
ρ(z, w)

2
= 〈z, w〉〈w, z〉

〈z, z〉〈w, w〉 , where z, w ∈ Hn
H
, z ∈ P

−1(z), w ∈ P
−1(w).

This expression is independent of the choice of lifts z and w.
Quaternionic hyperbolic space is foliated by horospheres based at a boundary point,

which we take to be ∞. Each horosphere has the structure of the 4n − 1-dimensional
Heisenberg groupwith three-dimensional centreN4n−1.Wedefine horospherical coor-
dinates onHn

H
−{∞} as z = (ζ, v, u), where u ∈ [0,∞) is the height of the horosphere

containing z and (ζ, v) ∈ N4n−1 is a point of this horosphere. If u = 0 then z is in
∂Hn

H
− {∞} which we identify withN4n−1 by writing (ζ, v, 0) = (ζ, v). Where nec-

essary, we lift points of Hn
H
written in horospherical coordinates to V0 ∪ V− via the

map ψ : (N4n−1 × [0,∞)) ∪ {∞} −→ V0 ∪ V− given by

ψ(ζ, v, u) =
⎛
⎝

−‖ζ‖2 − u + v√
2ζ
1

⎞
⎠ , ψ(∞) =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ .

The Cygan metric on the Heisenberg group is the metric corresponding to the norm

|(ζ, v)|H = |‖ζ‖2 + v|1/2 = (‖ζ‖4 + |v|2)1/4.

It is given by

dH ((ζ1, v1), (ζ2, v2)) = |(ζ1, v1)−1(ζ2, v2)|H
= |‖ζ1 − ζ2‖2 − v1 + v2 − 2Im(ζ ∗

2 ζ1)|1/2.

As in [16, p. 303], we extend the Cygan metric to Hn
H

− {∞} by

dH ((ζ1, v1, u1), (ζ2, v2, u2)) = |‖ζ1 − ζ2‖2 + |u1 − u2| − v1 + v2 − 2Im(ζ ∗
2 ζ1)|1/2.

2.2 The Group Sp(n, 1)

The group Sp(n, 1) is the subgroup of GL(n + 1,H) preserving the Hermitian form
given by (8). That is, S ∈ Sp(n, 1) if and only if 〈S(z), S(w)〉 = 〈z, w〉 for all z and
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w in Hn,1. From this we find S−1 = H−1S∗H . That is S and S−1 have the form:

S =
⎛
⎝
a γ ∗ b
α A β

c δ∗ d

⎞
⎠ , S−1 =

⎛
⎝
d β∗ b
δ A∗ γ

c α∗ a

⎞
⎠ , (9)

where a, b, c, d ∈ H, A is an (n − 1) × (n − 1) matrix over H, and α, β, γ, δ are
column vectors in Hn−1.

Using the identities In+1 = SS−1 we see that the entries of S must satisfy:

1 = ad + γ ∗δ + bc, (10)

0 = ab + ‖γ ‖2 + ba, (11)

0 = αd + Aδ + βc, (12)

In−1 = αβ∗ + AA∗ + βα∗, (13)

0 = αb + Aγ + βa, (14)

0 = cd + ‖δ‖2 + dc. (15)

Similarly, equating the entries of In+1 = S−1S yields:

1 = da + β∗α + bc,

0 = dγ ∗ + β∗A + bδ∗,
0 = db + ‖β‖2 + bd,

0 = δa + A∗α + γ c,

In−1 = δγ ∗ + A∗A + γ δ∗,
0 = ca + ‖α‖2 + ac.

An (n − 1) × (n − 1) quaternionic matrix U is in Sp(n − 1) if and only if UU∗ =
U∗U = In−1. Using the above equations, we can verify the following lemma.

Lemma 2.1 (cf. [16, Lem. 1.1]) If S is as above then A − αc−1δ∗ and A − βb−1γ ∗
are in Sp(n − 1). Also we have

β − αc−1d = −(A − αc−1δ∗)δc−1,

γ − δc−1a = −(A − αc−1δ∗)∗αc−1,

α − βb−1a = −(A − βb−1γ ∗)γ b−1
,

δ − γ b
−1

d = −(A − βb−1γ ∗)∗βb−1.

It is obvious that V0 and V− are invariant under Sp(n, 1). This means that if we
can show that the action of Sp(n, 1) is compatible with the projection P, then we can
make Sp(n, 1) act on quaternionic hyperbolic space and its boundary. The action of
S ∈ Sp(n, 1) on Hn

H
∪ ∂Hn

H
is given as follows. Let z ∈ V− ∪ V0 be a vector that

projects to z. Then

S(z) = PSz.
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Note that if z̃ is any other lift of z, then z̃ = zλ for some non-zero quaternion λ. We
have

PS̃z = PSzλ = PSz = S(z),

and so this action is independent of the choice of lift. The key point here is that the
group acts on the left and projection acts on the right, hence they commute.

Let S have the form (9). If c = 0 then from (15) we have ‖δ‖ = 0 and so δ is the zero
vector in H

n−1. Similarly, α is also the zero vector. This means that S (projectively)
fixes ∞. On the other hand, if c �= 0 then S does not fix ∞. Moreover, S−1(∞) and
S(∞) in N4n−1 = ∂Hn

H
− {∞} have Heisenberg coordinates

S−1(∞) = (δc−1/
√
2, Im(dc−1)), S(∞) = (αc−1/

√
2, Im(ac−1)).

For any r > 0, it is not hard to check (compare [21, Lem. 3.4]) that S sends the
Cygan sphere with centre S−1(∞) and radius r to the Cygan sphere with centre S(∞)

and radius r̃ = 1/|c|r . The isometric sphere of S is the Cygan sphere with radius
rS = 1/|c|1/2 centred at S−1(∞). It is sent by S to the isometric sphere of S−1, which
is the sphere with centre S(∞) and radius rS . In particular, if r and r̃ are as above,
then r̃ = r2S/r .

We define PSp(n, 1) = Sp(n, 1)/{±In+1}, which is the group of holomorphic
isometries ofHn

H
. FollowingChen andGreenberg [5], we say that a non-trivial element

g of Sp(n, 1) is:

(i) elliptic if it has a fixed point in Hn
H
;

(ii) parabolic if it has exactly one fixed point, and this point lies in ∂Hn
H
;

(iii) loxodromic if it has exactly two fixed points, both lying in ∂Hn
H
.

2.3 Parabolic Elements of Sp(n, 1)

The main aim of this section is to show that any parabolic motion T can be normalised
to the form given by (1). We use the following result, which we refer to as Johnson’s
theorem.

Lemma 2.2 (Johnson [11])Consider the affinemap onH given by T0 : z 	−→ νzμ+τ

where τ ∈ H − {0} and μ, ν ∈ H with |μ| = |ν| = 1.

(i) If ν is not similar to μ then T0 has a fixed point in H.
(ii) If ν = μ and μ �= ±1 then T0 has a fixed point in H if and only if μτ = τμ.

We now characterise parabolic elements of Sp(n, 1) (compare [2, Thm. 3.1 (iii)]).

Proposition 2.3 Let T ∈ Sp(n, 1) be a parabolic map that fixes ∞. Then T may be
conjugated into the standard form (1). That is

T =
⎛
⎝

μ −√
2τ ∗μ (−‖τ‖2 + t)μ

0 U
√
2τμ

0 0 μ

⎞
⎠ ,
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168 W. Cao, J. R. Parker

where (τ, t) ∈ N4n−1, U ∈ Sp(n − 1) and μ ∈ H with |μ| = 1 satisfying (2). That is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uτ = μτ, U∗τ = μτ, μτ �= τμ if τ �= 0 and μ �= ±1,

Uτ = μτ, U∗τ = μτ if τ �= 0 and μ = ±1,

μt �= tμ if τ = 0 and μ �= ±1,

t �= 0 if τ = 0 and μ = ±1.

Recall that if U = In−1 and μ = 1 (or U = −In−1 and μ = −1), then T is a
Heisenberg translation. Otherwise, we say that U is screw parabolic.

Note that if Uτ = μτ = τμ and μ �= ±1, then ζ = τ(1 − μ2)−1 is a fixed
point of ζ 	−→ Uζμ + τ . Furthermore, if τ = 0, μt = tμ and μ �= ±1, then
(ζ, v) = (0, t (1 − μ2)−1) is a fixed point of T (note that, when μt = tμ, if t is pure
imaginary then so is t (1 − μ2)−1).

Proof Suppose that T , written in the general form (9), fixes ∞. Then it must be block
upper triangular, that is c = 0 and α = δ = 0, the zero vector inHn−1. This means that
ψ(∞) is an eigenvector of T with (left) eigenvalue a. Thus, if T is non-loxodromic,
we must have |a| = 1. From (10) we also have ad = 1. Using |a| = 1, we see that
a = d. We define μ := a = d ∈ H with |μ| = 1.

If o = (0, 0) is the origin inN4n−1, then suppose T maps o to (τ, t) ∈ N4n−1. This
means that

bd−1 = −‖τ‖2 + t, βd−1 = √
2τ.

Hence b = (−‖τ‖2 + t)μ and β = √
2τμ. Also, A ∈ Sp(n − 1) and so we write

A = U . It is easy to see from (14) that Uγ + √
2τ = 0. Hence, T has the form

T =
⎛
⎝

μ −√
2τ ∗U (−‖τ‖2 + t)μ

0 U
√
2τμ

0 0 μ

⎞
⎠ .

Since T fixes ∞ and is assumed to be parabolic, we need to find conditions on U , μ
and τ that imply T does not fix any finite point of N4n−1 = ∂Hn

H
− {∞}.

Without loss of generality, we may suppose thatU is a diagonal map whose entries
ui all satisfy |ui | = 1. Writing the entries of ζ and τ ∈ H

n−1 as ζi and τi for
i = 1, . . . , n − 1, we see that a fixed point (ζ, v) of T is a simultaneous solution to
the equations

−‖ζ‖2 + v = μ(−‖ζ‖2 + v)μ − 2τ ∗Uζμ − ‖τ‖2 + t,

ζi = uiζiμ + τi ,

for i = 1, . . . , n − 1. If any of the equations ζi = uiζiμ + τi has a solution, then
conjugating by a translation if necessary, we assume this solution is 0.
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If all the equations ζi = uiζiμ + τi have a solution, then, as above, ζ = 0 and so
τ = 0. The first equation becomes

v = μvμ + t.

By Johnson’s theorem, Lemma 2.2, ifμ �= ±1 this has no solution provided μt �= tμ.
Clearly, if μ = ±1 then it has no solution if and only if t �= 0.

On the other hand, if there are some values of i for which ζi = uiζiμ + τi has
no solution, then by Johnson’s theorem, Lemma 2.2, for each such value of i , the
corresponding ui must be similar to μ (and τi �= 0 else 0 is a solution). Hence,
without loss of generality, we may choose coordinates so that whenever τi �= 0 we
have ui = μ. In particular, uiτi = μτi and so Uτ = μτ . Furthermore, again using
Johnson’s theorem, Lemma 2.2, if μ �= ±1 then μτ �= τμ.

Observe that uiτi = μτi and τi �= 0 imply

uiτi = ui (μτi )(τ
−1
i μτi ) = ui (uiτi )(τ

−1
i μτi ) = μτi .

Hence U∗τ = μτ , or equivalently τ ∗U = τ ∗μ and so T has the required form. ��
The action of T on Hn

H
− {∞} is given by

T (ζ, v, u) = (Uζμ + τ, t + μvμ − 2Im(τ ∗μζμ), u).

Observe that T maps the horosphere of height u ∈ [0,∞) to itself. The Cygan
translation length of T at (ζ, v), denoted �T (ζ, v) = dH (T (ζ, v), (ζ, v)) =
dH (T (ζ, v, u), (ζ, v, u)), is:

�T (ζ, v) = |(Uζμ + τ − ζ, t + μvμ − v + 2Im((ζ ∗ − τ ∗)(Uζμ + τ)))|H
= |‖Uζμ + τ − ζ‖2 + t + μvμ − v + 2Im((ζ ∗ − τ ∗)(Uζμ + τ))|1/2
= |2ζ ∗Uζμ − 2τ ∗μζμ + 2ζ ∗τ − ‖τ‖2 + t − 2‖ζ‖2 + μvμ − v|1/2.

(16)

The vertical projection of T acting on H
n−1 is ζ 	−→ Uζμ + τ . Its Euclidean

translation length is ‖�T (ζ, v)−�(ζ, v)‖ = ‖Uζμ+τ −ζ‖. The following corollary
is easy to show.

Corollary 2.4 Let (ζ, v) ∈ N4n−1 and let � : N4n−1 −→ H
n−1 be the vertical

projection given by � : (ζ, v) 	−→ ζ. If T is given by (1) then

‖�T (ζ, v) − �(ζ, v)‖ ≤ �T (ζ, v).

The following proposition relates the Cygan translation lengths of T at two points
of N4n−1. It is a generalisation of [21, Lem. 1.5].
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Proposition 2.5 Let T be given by (1). Let (ζ, v) and (ξ, r) be two points in N4n−1.

Write (ζ, v)−1(ξ, r) = (η, s). Then

�T (ξ, r)2 ≤ �T (ζ, v)2 + 4‖�T (ζ, v) − �(ζ, v)‖ ‖η‖ + 2NU,μ‖η‖2 + Nμ|s|.

Proof We write (ξ, r) = (ζ, v)(η, s) = (ζ + η, v + s + η∗ζ − ζ ∗η). Then

2ξ∗Uξμ − 2τ ∗μξμ + 2ξ∗τ − ‖τ‖2 + t − 2‖ξ‖2 + μrμ − r

= 2(ζ + η)∗U (ζ + η)μ − 2τ ∗μ(ζ + η)μ + 2(ζ + η)∗τ − ‖τ‖2 + t

− 2‖ζ + η‖2 + μ(v + s + η∗ζ − ζ ∗η)μ − v − s − η∗ζ + ζ ∗η
= 2ζ ∗Uζμ − 2τ ∗μζμ + 2ζ ∗τ − ‖τ‖2 + t − 2‖ζ‖2 + μvμ − v

+ 2η∗(Uζμ + τ − ζ ) − 2(μζ ∗U∗ + τ ∗ − ζ ∗)Uημ + 2η∗(Uη − ημ)μ

+ (μs − sμ)μ.

Therefore, using (16),

�T (ξ, r)2 = |2ξ∗Uξμ − 2τ ∗μξμ + 2ξ∗τ − ‖τ‖2 + t − 2‖ξ‖2 + μrμ − r |
≤ |2ζ ∗Uζμ − 2τ ∗μζμ + 2ζ ∗τ − ‖τ‖2 + t − 2‖ζ‖2 + μvμ − v|

+ 2|η∗(Uζμ + τ − ζ )| + 2|(μζ ∗U∗ + τ ∗ − ζ ∗)Uημ|
+ 2‖η‖ ‖Uημ − η‖ + |μs − sμ|

≤ �T (ζ, v)2 + 4‖η‖ ‖Uζμ + τ − ζ‖ + 2NU,μ‖η‖2 + Nμ|s|.

The result follows since Uζμ + τ − ζ = �T (ζ, v) − �(ζ, v). ��

3 A Precisely Invariant Sub-horospherical Region

In this section, we show how Theorem 1.3 follows from Theorem 1.1. This argument
follows [21, Lem. 3.3, Lem. 3.4].

Proof of Theorem 1.3 Let z = (ζ, v, u) be any point on the Cygan spherewith radius r
and centre (ζ0, v0, 0) = (ζ0, v0) ∈ N4n−1 ⊂ ∂Hn

H
andwrite (η, s) = (ζ, v)−1(ζ0, v0).

Then we have

r2 = dH ((ζ, v, u), (ζ0, v0, 0))
2 = |‖η‖2 + u + s| = ((‖η‖2 + u)2 + |s|2)1/2.

In particular, r2 ≥ ‖η‖2 +u and r2 ≥ |s|. We claim that the Cygan sphere with centre
(ζ0, v0) and radius r does not intersect UT when r satisfies:

r2 ≤ �T (ζ0, v0)
2

K
+ 4‖�T (ζ0, v0) − �(ζ0, v0)‖2

K (K − 2NU,μ)
. (17)

To see this, using Proposition 2.5 to compare �T (ζ0, v0) with �T (ζ, v) = �T (z), we
have
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u ≤ r2 − ‖η‖2

= K

K − Nμ

r2 − Nμ

K − Nμ

r2 − ‖η‖2

≤ K

K − Nμ

(
�T (ζ0, v0)

2

K
+ 4‖�T (ζ0, v0) − �(ζ0, v0)‖2

K (K − 2NU,μ)

)
− Nμ

K − Nμ

|s| − ‖η‖2

≤ 1

K − Nμ

(�T (z)2 + 4‖�T (z) − �(z)‖ ‖η‖ + 2NU,μ‖η‖2 + Nμ|s|)

+ 4

(K − Nμ)(K − 2NU,μ)
(‖�T (z) − �(z)‖ + NU,μ‖η‖)2

− Nμ

K − Nμ

|s| − ‖η‖2

= �T (z)2

K − Nμ

+ 4‖�T (z) − �(z)‖2
(K − Nμ)(K − 2NU,μ)

+ 4K‖�T (z) − �(z)‖
(K − Nμ)(K − 2NU,μ)

‖η‖

− (K − Nμ)(K − 2NU,μ) − 2NU,μK

(K − Nμ)(K − 2NU,μ)
‖η‖2

≤ �T (z)2

K − Nμ

+ 4(2K − Nμ)‖�T (z) − �(z)‖2
(K − Nμ)((K − Nμ)(K − 2NU,μ) − 2NU,μK )

,

where the last inequality follows by finding the value of ‖η‖ maximising the previous
line. Hence, when r satisfies (17) the Cygan sphere with centre (ζ0, v0) and radius r
lies outside UT .

Now suppose that the radius rS of the isometric sphere of S satisfies the bound (6).
Consider the Cygan sphere with centre S−1(∞) = (ζ0, v0) and radius r with equality
in (17). That is

r2 = �T (ζ0, v0)
2

K
+ 4‖�T (ζ0, v0) − �(ζ0, v0)‖2

K (K − 2NU,μ)
. (18)

We know that S sends this sphere to the Cygan sphere with centre S(∞) = (̃ζ0, ṽ0)

and radius r̃ = r2S/r . We claim that r̃ satisfies (17). It will follow from this claim that
both spheres are disjoint from UT . Since S sends the exterior of the first sphere to the
interior of the second, it will follow that S(UT ) ∩ UT = ∅.

In order to verify the claim, use (18) and (6) to check that:

r̃2 = r4S/r
2

≤ 1

r2

(
�T (ζ0, v0)�T (ζ̃0, ṽ0)

K
+ 4‖�T (ζ0, v0) − �(ζ0, v0)‖ ‖�T (̃ζ0, ṽ0) − �(̃ζ0, ṽ0)‖

K (K − 2NU,μ)

)2

≤
(

�T (̃ζ0, ṽ0)
2

K
+ 4‖�T (̃ζ0, ṽ0) − �(̃ζ0, ṽ0)‖2

K (K − 2NU,μ)

)
.

Thus r̃ satisfies (17) as claimed.

123



172 W. Cao, J. R. Parker

Therefore, if S ∈ G−G∞ then the image ofUT does not intersect its image under S.
On the other hand, clearly T mapsUT to itself. Thus every element ofG∞ = 〈T 〉maps
UT to itself. HenceUT is precisely invariant underG∞ inG. This proves Theorem 1.3.

��

4 The Dynamical System Involving S and T

4.1 The Sequence S j+1 = S j T S−1
j

Let T be a parabolic map fixing∞written in the normal form (1) and let S be a general
element of Sp(n, 1) written in the standard form (9). We are particularly interested in
the case where S does not fix ∞. We define a sequence of elements {S j } in the group
〈S, T 〉 by S0 = S and S j+1 = S j T S−1

j for j ≥ 0. We write S j in the standard form
(9) with each entry having the subscript j . Then S j+1 is given by:

⎛
⎝
a j+1 γ ∗

j+1 b j+1

α j+1 A j+1 β j+1
c j+1 δ∗

j+1 d j+1

⎞
⎠ =

⎛
⎝
a j γ ∗

j b j

α j A j β j

c j δ∗
j d j

⎞
⎠

⎛
⎝

μ −√
2τ ∗μ (−‖τ‖2 + t)μ

0 U
√
2τμ

0 0 μ

⎞
⎠

×
⎛
⎜⎝
d j β∗

j b j

δ j A∗
j γ j

c j α∗
j a j

⎞
⎟⎠ . (19)

Performing the matrix multiplication of (19), we obtain recurrence relations relating
the entries of S j+1 with the entries of S j :

a j+1 = γ ∗
j Uδ j − √

2a jτ
∗μδ j + √

2γ ∗
j τμc j − a j (‖τ‖2 − t)μc j

+ a jμd j + b jμc j , (20)

γ j+1 = A jU
∗γ j − √

2A jμτa j + √
2α jμτ ∗γ j − α jμ(‖τ‖2 + t)a j

+α jμ b j + β jμ a j , (21)

b j+1 = γ ∗
j Uγ j − √

2a jτ
∗μγ j + √

2γ ∗
j τμa j − a j (‖τ‖2 − t)μa j

+ a jμb j + b jμa j , (22)

α j+1 = A jUδ j − √
2α jτ

∗μδ j + √
2A jτμc j − α j (‖τ‖2 − t)μc j

+α jμd j + β jμc j , (23)

A j+1 = A jU A∗
j − √

2α jτ
∗μA∗

j + √
2A jτμα∗

j − α j (‖τ‖2 − t)μα∗
j

+α jμβ∗
j + β jμα∗

j , (24)

β j+1 = A jUγ j − √
2α jτ

∗μγ j + √
2A jτμa j − α j (‖τ‖2 − t)μa j

+α jμb j + β jμa j , (25)

c j+1 = δ∗
jUδ j − √

2c jτ
∗μδ j + √

2δ∗
j τμc j − c j (‖τ‖2 − t)μc j

+ c jμd j + d jμc j , (26)
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δ j+1 = A jU
∗δ j − √

2A jμτc j + √
2α jμτ ∗δ j − α jμ(‖τ‖2 + t)c j

+β jμ c j + α jμ d j , (27)

d j+1 = δ∗
jUγ j − √

2c jτ
∗μγ j + √

2δ∗
j τμa j − c j (‖τ‖2 − t)μa

+ c jμb j + d jμa j . (28)

We also define S̃ j+1 = S−1
j T S j and we denote its entries ã j+1 and so on. We will

only need

c̃ j+1 = α∗
jUα j − √

2c jτ
∗μα j + √

2α∗
j τμc j − c j (‖τ‖2 − t)μc j

+ c jμa j + a jμc j . (29)

These recurrence relations are rather complicated.Wewant to simplify thembyextract-
ing geometrical information. Specifically, we want to find relations between the radii
of the isometric spheres of S±1

j and S±1
j+1, the Cygan translation lengths of T at the

centres of these isometric spheres and the Euclidean translation lengths of T at the
vertical projections of these centres.

Suppose S−1
j (∞) and S j (∞) have Heisenberg coordinates (ζ j , r j ) and (ω j , s j ),

respectively. So:

S−1
j (∞) =

⎛
⎝

−‖ζ j‖2 + r j√
2ζ j
1

⎞
⎠ =

⎛
⎜⎝
d j c

−1
j

δ j c
−1
j

1

⎞
⎟⎠ ,

S j (∞) =
⎛
⎝

−‖ω j‖2 + s j√
2ω j

1

⎞
⎠ =

⎛
⎜⎝
a j c

−1
j

α j c
−1
j

1

⎞
⎟⎠ . (30)

We now show how to relate c j+1 to c j and (ζ j , r j ) = S−1
j (∞) and how to relate c̃ j+1

to c j and (ω j , s j ) = S j (∞). Geometrically, this enables us to relate the radius of the
isometric spheres of S±1

j T S±1
j to the radius and centres of the isometric spheres of S j

and S−1
j . Specifically, using (26) and (29) we have:

c−1
j c j+1c

−1
j = 2ζ ∗

j Uζ j − 2τ ∗μζ j + 2ζ ∗
j τμ − ‖τ‖2μ + tμ

− 2‖ζ j‖2μ + μr j − r jμ, (31)

c−1
j c̃ j+1c

−1
j = 2ω∗

jUω j − 2τ ∗μω j + 2ω∗
j τμ − ‖τ‖2μ + tμ

− 2‖ω j‖2μ + μs j − s jμ. (32)

Furthermore, the vertical projections of the centres of the isometric spheres of S j

and S−1
j are �(S−1

j (∞)) = ζ j and �(S j∞)) = ω j . Their images under the vertical

projection of T are �(T S−1
j (∞)) = Uζ jμ + τ and �(T Sj (∞)) = Uω jμ + τ . We

define
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ξ j := �(T S−1
j (∞)) − �(S−1

j (∞)) = Uζ jμ + τ − ζ j

= 1√
2
(Uδ j c

−1
j μ − δ j c

−1
j ) + τ, (33)

η j := �(T Sj (∞)) − �(S j (∞)) = Uω jμ + τ − ω j

= 1√
2
(Uα j c

−1
j μ − α j c

−1
j ) + τ, (34)

Bj := A j − α j c
−1
j δ∗

j . (35)

Note that Lemma 2.1 implies Bj ∈ Sp(n − 1). Also, ‖ξ j‖ and ‖η j‖ are the Euclidean
translation lengths of the vertical projection of T at the vertical projections of the
centres of the isometric spheres of S j and S−1

j , respectively. The next lemma enables
us to get information about the these translation lengths in terms of the radii of the
isometric spheres of S j and S±1

j T S±1
j .

Lemma 4.1 If c j , c̃ j , ξ j and η j are given by (26), (29), (33) and (34), then

0 = 2‖ξ j‖2 + 2Re(c−1
j c j+1c

−1
j μ), 0 = 2‖η j‖2 + 2Re(c−1

j c̃ j+1c
−1
j μ).

Proof We only prove the first identity. Writing out 2Re(c−1
j c j+1c

−1
j μ) from (31), we

obtain

2Re(c−1
j c j+1c

−1
j μ) = 2ζ ∗

j Uζ jμ − 2τ ∗μζ jμ + 2ζ ∗
j τ − ‖τ‖2 + t

− 2‖ζ j‖2 + μr jμ − r j + 2μζ ∗
j U

∗ζ j − 2μζ ∗
j μτ + 2τ ∗ζ j

−‖τ‖2 − t − 2‖ζ j‖2 − μr jμ + r j
= −2(μζ ∗

j U
∗ + τ ∗ − ζ ∗

j )(Uζ jμ + τ − ζ j ),

where we have used τ ∗μ = τ ∗U . The result follows since ξ j = Uζ jμ + τ − ζ j . ��
We now find the centres of the isometric spheres of S j+1 and S−1

j+1 in terms of the
other geometric quantities we have discussed above.

Lemma 4.2 Let S−1
j (∞) = (ζ j , r j ) and S j (∞) = (ω j , s j ). Let ξ j and η j be given

by (33) and (34). Then

ζ j+1 = 1√
2
δ j+1c

−1
j+1 = ω j − BjU

∗ξ j c j c−1
j+1, (36)

−‖ζ j+1‖2 + r j+1 = d j+1c
−1
j+1

= −‖ω j‖2 + s j + c−1
j μ c j c

−1
j+1

+ 2ω∗
j (BjU

∗ξ j c j c−1
j+1), (37)

ω j+1 = 1√
2
α j+1c

−1
j+1 = ω j + Bjξ jμc j c

−1
j+1, (38)

−‖ω j+1‖2 + s j+1 = a j+1c
−1
j+1
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= −‖ω j‖2 + s j + c−1
j μc j c

−1
j+1

− 2ω∗
j (Bjξ jμc j c

−1
j+1). (39)

In particular,

ξ j+1 = Uζ j+1μ + τ − ζ j+1 = η j −U (BjU
∗ξ j c j c−1

j+1)μ

+ (BjU
∗ξ j c j c−1

j+1), (40)

η j+1 = η j +Uω j+1μ + τ − ω j+1 = U (Bjξ jμc j c
−1
j+1)μ

− (Bjξ jμc j c
−1
j+1). (41)

Proof We have

a j+1 = γ ∗
j Uδ j − √

2a jτ
∗μδ j + √

2γ ∗
j τμc j − a j (‖τ‖2 − t)μc j + a jμd j + b jμc j

= a j c
−1
j c j+1 + (γ ∗

j − a j c
−1
j δ∗

j )(Uδ j c
−1
j μ − δ j c

−1
j + √

2τ)μc j

+ (γ ∗
j δ j c

−1
j − a j c

−1
j δ∗

j δ j c
−1
j + b j − a j c

−1
j d j )μc j ,

= a j c
−1
j c j+1 + c−1

j μc j − c−1
j α∗

j B j (Uδ j c
−1
j μ − δ j c

−1
j + √

2τ)μc j .

In the last line we used (10) and (15) to substitute for γ ∗
j δ j and δ∗

j δ j and Lemma 2.1

to write γ ∗
j −a j c

−1
j δ∗

j = −c−1
j α∗

j B j . Now using the definitions of s j , ω j and ξ j from
(30) and (33) we obtain (39).

The other identities follow similarly. When proving the identities for ζ j+1 and
−‖ζ j+1‖2 + r j+1, we also use U∗τ = μτ . ��

The following corollary, along with Proposition 2.5, will enable us to compare the
Cygan translation length of T at S−1

j+1(∞) and S j+1(∞) with its Cygan translation

lengths at S−1
j (∞) and S j (∞).

Corollary 4.3 Write S−1
j (∞) = (ζ j , r j ) and S j (∞) = (ω j , s j ) in Heisenberg coor-

dinates. Then

(ω j , s j )
−1(ζ j+1, r j+1) = (−BjU

∗ξ j c j c−1
j+1, Im(c−1

j μ c j c
−1
j+1)),

(ω j , s j )
−1(ω j+1, s j+1) = (Bjξ jμc j c

−1
j+1, Im(c−1

j μc j c
−1
j+1)).

4.2 Translation Lengths of T at S−1
j (∞) and S j (∞)

We are now ready to define the main quantities which we use for defining the recur-
rence relation between S j+1 and S j . Recall that S j and S−1

j have isometric spheres

of radius rS j with centres S−1
j (∞) and S j (∞), respectively. We write �T (S∓1

j (∞))

for the Cygan translation length of T at the centres of these isometric spheres and
‖�T S∓1

j (∞) − �S∓1
j (∞)‖ for the Euclidean translation of T at the images of these
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centres under the vertical projection. The quantities X j , X̃ j ,Y j and Ỹ j are each the ratio
of one of these translation lengths with the radius of the isometric sphere. Specifically,
they are defined by:

X j = �T (S−1
j (∞))

rS j
, Y j = ‖�T S−1

j (∞) − �S−1
j (∞)‖

rS j
,

X̃ j = �T (S j (∞))

rS j
, Ỹ j = ‖�T Sj (∞) − �S j (∞)‖

rS j
.

Observe that Corollary 2.4 immediately implies Y j ≤ X j and Ỹ j ≤ X̃ j . Using (16),
(31) and (32), we see that in terms of the matrix entries they are given by:

X2
j = |c−1

j c j+1c
−1
j | |c j |

= |2ζ ∗
j Uζ j − 2τ ∗μζ j + 2ζ ∗

j τμ − (‖τ‖2 − t)μ − 2‖ζ j‖2μ
+μr j − r jμ| |c j |, (42)

X̃2
j = |c−1

j c̃ j+1c
−1
j | |c j |

= |2ω∗
jUω j − 2τ ∗μω j + 2ω∗

j τμ − (‖τ‖2 − t)μ − 2‖ω j‖2μ
+μs j − s jμ| |c j |, (43)

Y 2
j = ‖ξ j‖2|c j | = ‖Uζ jμ + τ − ζ j‖2|c j |, (44)

Ỹ 2
j = ‖η j‖2|c j | = ‖Uω jμ + τ − ω j‖2|c j |. (45)

In Sect. 6, we will show that if the condition (6) of our main theorem does not hold
then the sequence S j+1 = S j T S−1

j converges to T in the topology induced by the
Hilbert–Schmidt norm on PSp(n, 1). To do so, we need the following two lemmas
giving X j+1, X̃ j+1, Y j+1 and Ỹ j+1 in terms of X j , X̃ j , Y j and Ỹ j .

Lemma 4.4 We claim that

X2
j+1 ≤ X2

j X̃
2
j + 4Y j Ỹ j + 2NU,μ + Nμ, (46)

X̃2
j+1 ≤ X2

j X̃
2
j + 4Y j Ỹ j + 2NU,μ + Nμ. (47)

Proof Writing S−1
j (∞) and S j (∞) in Heisenberg coordinates and using Proposi-

tion 2.5 and Corollary 4.3, we have

�T (S−1
j+1(∞))2

≤ �T (S j (∞))2 + 4‖�T Sj (∞) − �S j (∞)‖ ‖ − BjU
∗ξ j c j c−1

j+1‖
+ 2NU,μ‖ − BjU

∗ξ j c j c−1
j+1‖2 + Nμ|Im(c−1

j μ c j c
−1
j+1)|

≤ �T (S j (∞))2 + 4‖η j‖ ‖ξ j‖ |c j | |c j+1|−1 + 2NU,μ‖ξ j‖2|c j |2|c j+1|−2

+ Nμ|c j+1|−1.
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Now,multiply on the left and right by |c j+1| = 1/r2S j+1
and use �T (S−1

j (∞)) = X jrS j
and �T (S j (∞)) = X̃ j rS j . This gives

X2
j+1 ≤ X̃2

j |c j+1| |c j |−1 + 4‖η j‖ ‖ξ j‖ |c j | + 2NU,μ‖ξ j‖2|c j |2|c j+1|−1 + Nμ.

Finally, we use |c j+1| |c j |−1 = X2
j , ‖ξ j‖ |c j |1/2 = Y j and ‖η j‖ |c j |1/2 = Ỹ j . This

gives

X2
j+1 ≤ X2

j X̃
2
j + 4Y j Ỹ j + 2NU,μY

2
j X

−2
j + Nμ.

The inequality (46) follows since Y j ≤ X j . The inequality (47) follows similarly. ��
We now estimate Y j+1 and Ỹ j+1 in terms of X j , X̃ j , Y j and Ỹ j .

Lemma 4.5 We claim that

Y 2
j+1 ≤ Ỹ 2

j X
2
j + 2NU,μY j Ỹ j + N 2

U,μ, (48)

Ỹ 2
j+1 ≤ Ỹ 2

j X
2
j + 2NU,μY j Ỹ j + N 2

U,μ. (49)

Proof Using the definition of Y j from (44) and the identity for ξ j+1 from (40), we
have:

Y j+1 = ‖ξ j+1‖ |c j+1|1/2
= ‖η j −U (BjU

∗ξ j c j c−1
j+1)μ + (BjU

∗ξ j c j c−1
j+1)‖ |c j+1|1/2

≤ Ỹ j |c j |−1/2|c j+1|1/2 + NU,μY j |c j |1/2|c j+1|−1/2

= Ỹ j X j + NU,μY j X
−1
j .

Squaring and using Y j ≤ X j gives (48). A similar argument gives the inequality (49).
��

Therefore, we have recurrence relations bounding X j+1, X̃ j+1, Y j+1 and Ỹ j+1 (that
is translation lengths and radii) in terms of the same quantities for the index j . In the
next section, we find a basin of attraction for this dynamical system.

5 Convergence of the Dynamical System

In this section, we interpret the condition (6) of Theorem 1.1 in terms of our dynamical
system involving translation lengths, and we show that if (6) does not hold then X j ,
X̃ j , Y j and Ỹ j are all bounded. Broadly speaking the argument will be based on the
argument of Parker [21] for subgroups of SU(n, 1) containing aHeisenberg translation.
This argument was used byKim and Parker [16] for subgroups of Sp(n, 1) containing a
Heisenberg translation. If NU,μ = 0 then T is a Heisenberg translation, sinceμ = ±1
and U = μIn−1. Moreover, K = 1. These conditions make the inequalities from
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Lemmas 4.4 and 4.5 much simpler (see [16, p. 307]), and so Theorem 1.1 reduces to
[16, Thm. 4.8].

Recall the definition of K from (5). The only properties of K that we need are that
2NU,μ < (1 + 2NU,μ)/2 < K < 1 − 2NU,μ < 1 and that K satisfies the equation:

(K − 2NU,μ)(1 − K ) = 2NU,μ + Nμ. (50)

Observe that (46)–(49) together with (50) imply

max{X2
j+1, X̃2

j+1}≤ X2
j X̃

2
j + 4Y j Ỹ j + (K − 2NU,μ)(1 − K ), (51)

max{Y 2
j+1, Ỹ

2
j+1}≤ X2

j Ỹ
2
j + 2NU,μY j Ỹ j + NU,μ(K − 2NU,μ)(1 − K )/2. (52)

Our goal in this section is to prove the following theorem.

Theorem 5.1 Assume that NU,μ �= 0. Suppose X j , X̃ j , Y j and Ỹ j satisfy (51) and
(52). If

X0 X̃0 + 4Y0Ỹ0
K − 2NU,μ

< K (53)

then for all ε > 0 there exists Jε so that for all j ≥ Jε:
max{X2

j , X̃2
j } < 1 − K + ε, max{Y 2

j , Ỹ
2
j } < NU,μ(1 − K )/2 + ε. (54)

Note that (53) is simply the statement that (6) fails written in terms of X0, X̃0, Y0
and Ỹ0. In the case where T is a Heisenberg translation, that is NU,μ = 0 and K = 1,
the theorem implies that X j , X̃ j , Y j and Ỹ j all converge to 0. In the general case we
have the weaker conclusion that these sequences are uniformly bounded. In particular,
we can find a compact set containing X j , X̃ j , Y j and Ỹ j for all j ≥ Jε. Hence there
is a subsequence on which we have convergence of each of these variables.

In order to simply the notation, for each j ≥ 1 we define

x j = max{X2
j , X̃

2
j }, y j = max{Y 2

j , Ỹ
2
j }.

It is clear that (51) and (52) imply that for j ≥ 1 we have:

x j+1 ≤ x2j + 4y j + (K − 2NU,μ)(1 − K ), (55)

y j+1 ≤ x j y j + 2Nu,μy j + NU,μ(K − 2NU,μ)(1 − K )/2. (56)

The proof of Theorem 5.1 will be by way of three lemmas. The first one converts
the hypothesis (53) of Theorem 5.1 to an initial condition for this dynamical system
involving x1 and y1. Assuming this initial condition, the second and third lemmas,
respectively, show that for each ε > 0 there is Jε so that for j ≥ Jε

x j < 1 − K + ε, y j < NU,μ(1 − K )/2 + ε.

This is just a restatement of the conclusion of Theorem 5.1.
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Before giving the proof, we give a geometrical interpretation of Theorem 5.1.
Consider the dynamical system where we impose equality in (55) and (56) for each
j . It has an attractive fixed point at (x, y) = ((1− K ), NU,μ(1− K )/2) and a saddle
fixed point at (x, y) = ((K − 2NU,μ), NU,μ(K − 2NU,μ)/2). Points on the line

x + 4y

K − 2NU,μ

= K

are attracted to the saddle point and points below this line are attracted to the attractive
fixed point. Sincewe only have inequalities, we cannot describe fixed points. However,
our main result says that points below the line accumulate in a neighbourhood of the
rectangle x ≤ (1 − K ), y ≤ NU,μ(1 − K )/2.

Lemma 5.2 Suppose that X2
1, X̃

2
1, Y

2
1 and Ỹ 2

1 satisfy the recursive inequalities (51)
and (52). If (53) holds, that is:

X0 X̃0 + 4Y0Ỹ0
K − 2NU,μ

< K ,

then

x1 + 4y1
K − 2NU,μ

= max{X2
1, X̃

2
1} + 4max{Y 2

1 , Ỹ 2
1 }

K − 2NU,μ

< K .

Proof Suppose that (53) holds. Interchanging S0 and S
−1
0 if necessary,we also suppose

that X0Ỹ0 ≤ X̃0Y0. Using (51) and (52) we have:

x1 + 4y1
K − 2NU,μ

= max{X2
1, X̃

2
1} + 4max{Y 2

1 , Ỹ 2
1 }

K − 2NU,μ

≤ (X2
0 X̃

2
0 + 4Y0Ỹ0 + 2NU,μ + Nμ)

+ (X2
0 Ỹ

2
0 + 2NU,μY0Ỹ0 + N 2

U,μ)
4

K − 2NU,μ

≤ (X2
0 X̃

2
0 + 4Y0Ỹ0 + 2NU,μ + Nμ)

+ (X0 X̃0Y0Ỹ0 + 2NU,μY0Ỹ0 + N 2
U,μ)

4

K − 2NU,μ

=
(
X0 X̃0 + 4Y0Ỹ0

K − 2NU,μ

)
X0 X̃0 + 4KY0Ỹ0

K − 2NU,μ

+ 2K NU,μ

K − 2NU,μ

+ Nμ

< K

(
X0 X̃0 + 4Y0Ỹ0

K − 2NU,μ

)
+ 2K NU,μ

K − 2NU,μ

+ K Nμ

K − 2NU,μ

< K 2 + K (1 − K )

= K .

This proves the lemma. ��
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We now use this lemma to give an upper bound on x j .

Lemma 5.3 Suppose that x j and y j satisfy the recursive inequalities (55) and (56)
and also that

x1 + 4y1
K − 2NU,μ

< K .

Then for any εx > 0 there exists Jx ∈ N so that for all j ≥ Jx we have

x j < 1 − K + εx .

Proof Using (55) and (56) we have

x j+1 + 4y j+1

K − 2NU,μ

≤ x2j + 4y j + (K − 2NU,μ)(1 − K ) + 4

K − 2NU,μ

(x j y j + 2NU,μy j )

+ 2NU,μ(1 − K )

= K − (x j + K )

(
K − x j − 4y j

K − 2NU,μ

)
.

Since x1 + 4y1/(K − 2NU,μ) < K , the above inequality implies that, for each j ≥ 2,
we have

(
K − x j − 4y j

K − 2NU,μ

)
≥

(
K − x1 − 4y1

K − 2NU,μ

) j−1∏
i=1

(x j + K ) > 0.

If there exists ε > 0 so that x j ≥ (1 − K + ε) for all but finitely many values of j ,
then the right-hand side of the above inequality tends to infinity as j tends to infinity.
However, the left-hand side is at most K , which is a contradiction. ��

Finally, we use the upper bound on x j to obtain an upper bound on y j .

Lemma 5.4 Suppose that y j satisfies the recursive inequality (56) and also that for
all εx > 0 there exists Jx ∈ N so that for all j ≥ Jx , we have x j < 1− K + εx . Then
for any εy > 0 there exists Jy ≥ Jx so that for all j ≥ Jy, we have

y j ≤ NU,μ(1 − K )/2 + εy .

Proof Given εy > 0 choose εx with 0 < εx < K − 2NU,μ so that

NU,μ(K − 2NU,μ)(1 − K )

K − 2NU,μ − εx
≤ NU,μ(1 − K ) + εy .

Using (56) for j ≥ Jx , we have

y j+1 ≤ x j y j + 2NU,μy j + NU,μ(K − 2NU,μ)(1 − K )/2
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≤ x j y j + 2NU,μy j + (K − 2NU,μ − εx )(NU,μ(1 − K )/2 + εy/2)

= NU,μ(1 − K )/2 + εy/2

+ (1 − K + 2NU,μ + εx )(y j − NU,μ(1 − K )/2 − εy/2).

If y j ≤ NU,μ(1− K )/2+ εy/2 then so is y j+1 and the result follows. Otherwise, we
have

y j+1 − NU,μ(1 − K )/2 − εy/2

≤ (1 − K + 2NU,μ + εx )(y j − NU,μ(1 − K )/2 − εy/2)

≤ (1 − K + 2NU,μ + εx )
j+1−Jx (yJx − NU,μ(1 − K )/2 − εy/2).

Since K −2NU,μ +εx > 0, we see that the right-hand side tends to NU/μ(1−K )/2+
εy/2. Therefore, we can find Jy ≥ Jx so that for all j ≥ Jy , we have

(1 − K + 2NU,μ + εx )
j+1−Jx (yJx − NU,μ(1 − K )/2 − εy/2) < εy/2.

This gives the result. ��
Finally, Theorem 5.1 follows by taking ε = min{εx , εy} and Jε = max{Jx , Jy} =

Jy . This completes the proof.

6 Convergence of S j to T

We are now ready to prove that the S j converge to T as j tends to infinity under
the condition (53) of Theorem 5.1. We claim that the sequence {S j } is not eventually
constant and so this convergence implies that the group 〈S, T 〉 is not discrete.

In order to verify the claim, suppose the sequence {S j } converges to T and is
eventually constant. Then S j = T for sufficiently large j , and so S j+1 fixes ∞ for
some j ≥ 0. Since ∞ is the only fixed point of T then S j (∞) is the only fixed point
of S j+1 = S j T S−1

j . Hence, if S j+1 fixes∞ then so does S j . Repeating this argument,
we see that all the S j must fix ∞. However, we assumed S0 = S does not fix ∞,
which is a contradiction.

In this section, we will show that the condition (53) implies that each of the nine
entries of S j converges to the corresponding entry of T . We divide our proof into
subsections, each containing convergence of certain entries. The main steps are:

• We will first show that c j tends to zero as j tends to infinity (Proposition 6.2).

• After showing ‖α j c
−1/2
j ‖, ‖δ j c−1/2

j ‖ are bounded (Lemma 6.3), we can show that

α j and δ j both tend to 0 ∈ H
n−1 as j tends to infinity (Proposition 6.4).

• We then show the remaining matrix entries are bounded (Lemmas 6.6, 6.7 and
Corollaries 6.8, 6.9).

• Using the results obtained so far, we can show that a j and d j both tend to μ and
A j tends to U as j tends to infinity (Propositions 6.10 and 6.11).

• Finally, we show that β j , γ j and b j tend to
√
2τμ, −√

2μτ and (−‖τ‖2 + t)μ,
respectively, as j tends to infinity (Propositions 6.12 and 6.13).
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Throughout this proof we use Theorem 5.1 to show that the hypothesis (53) implies
that (54) holds, that is for large enough j :

max{X2
j , X̃

2
j } < 1 − K + ε, max{Y 2

j , Ỹ
2
j } < NU,μ(1 − K )/2 + ε.

We will repeatedly use the following elementary lemma to show certain entries are
bounded and others converge.

Lemma 6.1 Let λ1, λ2, D be positive real constants with λi < 1 and λ1 �= λ2. Let
C j ∈ R

+ be defined iteratively.

(i) If C j+1 ≤ λ1C j + D for j ≥ 0 then

C j ≤ D/(1 − λ1) + λ
j
1(C0 − D/(1 − λ1)).

In particular, given ε > 0 there exists Jε so that for all j ≥ Jε we have

C j ≤ D/(1 − λ1) + ε.

(ii) If C j+1 ≤ λ1C j + λ
j
2D for j ≥ 0 then

C j ≤ λ
j
1C0 + D(λ

j
2 − λ

j
1)/(λ2 − λ1).

In particular, C j ≤ C0λ
j
1 + max{λ j

1, λ
j
2}D/|λ1 − λ2|.

6.1 Convergence of c j

The easiest case is to show that c j tends to zero. Geometrically, this means that the
isometric spheres of S j have radii tending to infinity as j tends to infinity.

Proposition 6.2 Suppose that (53) holds. Then c j tends to zero as j tends to infinity.

Proof Using Theorem 5.1, given ε > 0, the hypothesis (53) implies that for large
enough j we have X2

j < 1 − K + ε. Since K > 1/2 we can choose ε so that

0 < ε < K − 1/2. Then there exists Jε so that X2
j < (1 − K ) + ε < 1/2 for all

j ≥ Jε. From (42) and (54) for j ≥ Jε we have

|c j+1| = X2
j |c j | < |c j |/2 < · · · < |cJε |/2 j−Jε+1.

Thus that c j tends to zero as j tends to infinity. ��

6.2 Convergence of α j and δ j

In this section, we show that α j and δ j both tend to the zero vector as j tends to infinity.
To do so, we first show their norms are bounded by a constant multiple of |c j |1/2.
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Lemma 6.3 Suppose that (53) holds. For any ε > 0 there exists Jε > 0 so that

‖α j c
−1/2
j ‖ <

√
2

1 − √
1 − K

+ ε, ‖δ j c−1/2
j ‖ <

√
2

1 − √
1 − K

+ ε.

Proof Again, using Theorem 5.1, given ε1 > 0 there exists J1 so that for j ≥ J1

X2
j ≤ (1 − K ) + ε1.

Observe that α j c
−1/2
j = √

2ω j c
1/2
j . Therefore, Eq. (38) implies that for j ≥ J1 we

have

‖α j+1c
−1/2
j+1 ‖ = √

2‖ω j+1‖ |c j+1|1/2
= √

2‖ω j + Bjξ jμc j c
−1
j+1‖ |c j+1|1/2

≤ √
2‖ω j‖ |c j+1|1/2 + √

2‖ξ j‖ |c j | |c j+1|−1/2

= ‖α j c
−1/2
j ‖ |c j |−1/2|c j+1|1/2 + √

2‖ξ j‖ |c j | |c j+1|−1/2

= X j‖α j c
−1/2
j ‖ + √

2Y j X
−1
j

≤ √
1 − K + ε1 ‖α j c

−1/2
j ‖ + √

2.

Therefore, using Lemma 6.1, given ε2 > 0 we can find J2 ≥ J1 so that for j ≥ J2 we
have

‖α j c
−1/2
j ‖ ≤

√
2

1 − √
1 − K + ε1

+ ε2.

Given any ε > 0 it is possible to find ε1 > 0 and ε2 > 0 so that

√
2

1 − √
1 − K + ε1

+ ε2 ≤
√
2

1 − √
1 − K

+ ε.

This proves the first part. A similar argument holds for ‖δ j c−1/2
j ‖. ��

Proposition 6.4 Suppose that (53) holds. Then α j and δ j both tend to 0 ∈ H
n−1 as

j tends to infinity.

Proof Clearly ‖α j‖ = ‖α j c
−1/2
j ‖ |c j |1/2 and ‖δ j‖ = ‖δ j c−1/2

j ‖ |c j |1/2. Using Propo-
sition 6.2 and Lemma 6.3 we see that c j tends to zero and ‖α j c

−1/2
j ‖ and ‖δ j c−1/2

j ‖
are bounded. Thus α j and δ j both tend to 0 ∈ H

n−1 as j tends to infinity. ��

The following estimate will be useful later.
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Corollary 6.5 Suppose that (53) holds. Given ε > 0 there exists J0 so that for j ≥ J0
we have

Y j‖α j c
−1/2
j ‖ <

√
NU,μ√
2 − 1

+ ε.

Proof From (54) we have

2Y 2
j ≤ NU,μ(1 − K ) + ε1,

and from Lemma 6.3 we have

‖α j c
−1/2
j ‖2 ≤ 2

(1 − √
1 − K )2

+ ε2.

Given ε > 0, combining these inequalities for suitable ε1, ε2 > 0, we obtain

Y j‖α j c
−1/2
j ‖ ≤

√
NU,μ(1 − K )

1 − √
1 − K

+ ε.

Since (1 − K ) < 1/2 we have

NU,μ(1 − K )

(1 − √
1 − K )2

<
NU,μ(1/2)

(1 − √
1/2)2

= NU,μ

(
√
2 − 1)2

.

This completes the proof. ��

6.3 The Remaining Matrix Entries are Bounded

In this section, we show that the norms of the remaining matrix entries are bounded.
Later, this will enable us to show they converge. We begin by showing |a j | and |b j |
are bounded.

Lemma 6.6 Suppose that (53) holds. There exists J ∈ N so that for j ≥ J we have

|a j | < 4, |d j | < 4.

Proof We use (39) to obtain

|a j+1| = |a j c
−1
j c j+1 + c−1

j μc j − √
2 c−1

j α∗
j (Bjξ jμc j )|

≤ |a j | |c j+1| |c j |−1 + 1 + √
2‖ξ j‖ |c j |−1/2‖α j c

−1/2
j ‖

= X2
j |a j | + 1 + √

2 Y j‖α j c
−1/2
j ‖.

Using (54) and Corollary 6.5, since 1 − K < 1/2, for any ε1 > 0 we can find J1 so
that for j ≥ J1 we have
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X2
j ≤ 1

2
,

√
2 Y j‖α j c

−1/2
j ‖ <

√
2NU,μ√
2 − 1

+ ε1.

Therefore, using Lemma 6.1(i) with λ1 = 1/2 and D = 1 +
√

2NU,μ√
2−1

+ ε1, for any
ε2 > 0 there is a J2 ≥ J1 so that for all j ≥ J2 we have

|a j | <
1 + √

2NU,μ/(
√
2 − 1) + ε1

1 − 1/2
+ ε2 = 2 + 2

√
2NU,μ√
2 − 1

+ 2ε1 + ε2.

Now, using our assumptions about NU,μ and Nμ, we have:

NU,μ <
3 − 2

√
2 + Nμ

2
<

(
√
2 − 1)2

2
.

Therefore, we can choose ε1 and ε2 so that

√
2NU,μ√
2 − 1

+ ε1 + ε2/2 < 1.

Hence |a j | < 4 for j ≥ J2. A similar argument shows that |d j | < 4 for large enough
j . ��
Lemma 6.7 Suppose that (53) holds. Then |b j | is bounded above as j tends to infinity.
Proof If a j = 0 then γ j = 0 and so b j+1 = 0. Hence we take a j �= 0. Then (11)
gives

0 = (a jb j + γ ∗
j γ j + b ja j )a

−1
j μa j = a jb ja

−1
j μa j + γ ∗

j γ j a
−1
j μa j + b jμa j ,

‖γ j‖2 = −(a jb j + b ja j ) ≤ 2|a j | |b j |.

Hence, using (22), we have

b j+1 = γ ∗
j Uγ j − √

2a jτ
∗μγ j + √

2γ ∗
j τμa j − a j (‖τ‖2 − t)μa j + a jμb j + b jμa j

= γ ∗
j U (γ j a

−1
j )a j − √

2a jτ
∗μγ j + √

2γ ∗
j τμa j − a j (‖τ‖2 − t)μa j

+ a jμ(b ja
−1
j )a j + b jμa j − γ ∗

j (γ j a
−1
j )μa j − a j (b ja

−1
j )μa j − b jμa j

= γ ∗
j (Uγ j a

−1
j − γ j a

−1
j μ)a j − √

2a jτ
∗μγ j + √

2γ ∗
j τμa j − a j (‖τ‖2 − t)μa j

+ a j (μb ja
−1
j − b ja

−1
j μ)a j .

Using Lemma 6.6 we suppose j is large enough that |a j | < 4. Then we have

|b j+1| ≤ |γ ∗
j (Uγ j a

−1
j − γ j a

−1
j μ)a j | + √

2|a jτ
∗μγ j | + √

2|γ ∗
j τμa j |

+ |a j (‖τ‖2 − t)μa j | + |a j (μb ja
−1
j − b ja

−1
j μ)a j |
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≤ NU,μ‖γ j‖2 + 2
√
2|a j | ‖τ‖ ‖γ j‖ + |a j |2|‖τ‖2 − t | + Nμ|a j | |b j |

≤ (2NU,μ + Nμ)|a j | |b j | + 4|a j |3/2‖τ‖ |b j |1/2 + |a j |2|‖τ‖2 − t |
≤ 4(2NU,μ + Nμ)|b j | + 32‖τ‖ |b j |1/2 + 16|‖τ‖2 − t |.

Observe that our hypotheses Nμ < 1/4 and NU,μ < (3 − 2
√
2 + Nμ)/2 imply that

2NU,μ + Nμ < Nμ + 3 − 2
√
2 + Nμ = (

√
2 + Nμ − 1)2 < (3/2 − 1)2 = 1/4.

(57)

Hence we can find λ > 0 with 4(2NU,μ + Nμ) < λ2 < 1 and

|b j+1| ≤ λ2|b j | + 32‖τ‖ |b j |1/2 + 16|‖τ‖2 − t |
<

(
λ|b j |1/2 + 16|‖τ‖2 − t |1/2/λ

)2
.

Then, using Lemma 6.6(i), given ε1 > 0 we can find J1 so that for j ≥ J1 we have

|b j |1/2 ≤ 16|‖τ‖2 − t |1/2/λ
1 − λ

+ ε1.

��
Corollary 6.8 Suppose that (53) holds. Then ‖β j‖ and ‖γ j‖ are bounded above as
j tends to infinity.

Proof Note that ‖γ j‖2 = −(a jb j + b ja j ) ≤ 2|a j ||b j | and ‖β j‖2 = −(b jd j +
d jb j ) ≤ 2|b j ||d j |. Thus Lemmas 6.6 and 6.7 imply that ‖β j‖ and ‖γ j‖ are bounded.

��
Finally, we show that ‖A j‖ and ‖A j −U‖ are bounded.

Corollary 6.9 Suppose that (53) holds. Then ‖A j‖ and ‖A j −U‖ are bounded as j
tends to ∞.

Proof Using (13) we have

In−1 = A j A
∗
j + α jβ

∗
j + β jα

∗
j

= (A j −U )(A∗
j −U∗) +U (A∗

j −U∗) + (A j −U )U∗ + In−1

+α jβ
∗
j + β jα

∗
j .

Therefore

‖A j‖2 ≤ ‖In−1‖ + 2‖α j‖ ‖β j‖, ‖A j −U‖2 ≤ 2‖A j −U‖ + 2‖α j‖ ‖β j‖.

The latter implies that

‖A j −U‖ ≤ 1 + √
1 + 2‖α j‖ ‖β j‖. (58)

Hence ‖A j −U‖ and ‖A j‖ are bounded. ��
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6.4 Convergence of a j and d j

Having now shown that all the entries of S j are bounded as j tends to infinity, we
can now show that the matrix entries of S j tend to the corresponding entries of T .
Recall that we have already shown, Proposition 6.2, that c j tends to 0 ∈ H and in
Proposition 6.4 that α j and δ j tend to the zero vector in Hn−1.

We now show a j and d j both tend to μ.

Proposition 6.10 Suppose that (53) holds. Then both a j and d j tend to μ as j tends
to infinity.

Proof Recall from (10) that 1 = a jd j + γ ∗
j δ j + b j c j . Using (20), we have

a j+1 − μ = γ ∗
j Uδ j − √

2a jτ
∗μδ j + √

2γ ∗
j τμc j − a j (‖τ‖2 − t)μc j + a jμd j

+ b jμc j − μγ ∗
j δ j − μa jd j − μb j c j

= (γ ∗
j U − μγ ∗

j )δ j − √
2a jτ

∗μδ j + √
2γ ∗

j τμc j − a j (‖τ‖2 − t)μc j

+ ((a j − μ)μ − μ(a j − μ))d j + (b jμ − μb j )c j .

Using Lemma 6.6, we suppose that j is large enough that |d j | < 4. Then:

|a j+1 − μ| ≤ NU,μ‖γ j‖ ‖δ j‖ + √
2‖τ‖ |a j | ‖δ j‖ + √

2‖τ‖ |c j | ‖γ j‖ + |‖τ‖2
− t | |a j | |c j | + Nμ|d j | |a j − μ| + Nμ|b j | |c j |

≤ Nμ|d j | |a j − μ| + (NU,μ‖γ j‖ + √
2‖τ‖ |a j |)‖δ j c−1/2

j ‖ |c j |1/2
+ (

√
2‖τ‖ ‖γ j‖ + |‖τ‖2 − t | |a j | + Nμ|b j |)|c j |

≤ 4Nμ|a j − μ| + (NU,μ‖γ j‖ + √
2‖τ‖ |a j |)‖δ j c−1/2

j ‖ |c j |1/2
+ (

√
2‖τ‖ ‖γ j‖ + |‖τ‖2 − t | |a j | + Nμ|b j |)|c j |.

Note that 4Nμ < 1. Moreover, for j ≥ J1 we have X2
j ≤ 1/2. Therefore

|c j | ≤ |cJ1 |/2 j−J1 . Also, ‖γ j‖, ‖δ j c−1/2
j ‖, |a j | and |b j | are all bounded. Then using

Lemma 6.1 with λ1 = 4Nμ < 1 and λ2 = |c j |1/2 ≤ 1/
√
2, we see that |a j −μ| tends

to 0 as j tends to infinity.
Similarly |d j − μ| tends to zero as j tends to infinity. ��

6.5 Convergence of A j

We now show that A j tends to U .

Proposition 6.11 Suppose that (53) holds. Then A j tends to U as j tends to infinity.

Proof Recall from Corollary 6.9 that ‖A j‖ and ‖A j −U‖ are bounded. Note that

A jU −U A j = ((A j −U )U − μ(A j −U )) + (μ(A j −U ) − (A j −U )μ)

− (U (A j −U ) − (A j −U )μ).
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Therefore

‖A jU −U A j‖ ≤ (2NU,μ + Nμ)‖A j −U‖.

Hence

‖A jU A∗
j −U A j A

∗
j‖ = ‖(A jU −U A j )(A

∗ −U∗) + (A jU −U A j )U
∗‖

≤ ‖A jU −U A j‖(‖A j −U‖ + 1)

≤ (2NU,μ + Nμ)‖A j −U‖(‖A j −U‖ + 1).

From (58) we have

(2NU,μ + Nμ)(‖A j −U‖ + 1) ≤ (2NU,μ + Nμ)
(
2 + √

1 + 2‖α j‖ ‖β j‖
)

.

Since 2NU,μ + Nμ < 1/4 by (57), ‖β j‖ is bounded and ‖α j‖ tends to zero, we can
find J so that for all j ≥ J we have

‖A jU A∗
j −U A j A

∗
j‖ <

2 + √
2

4
‖A j −U‖.

Noting that U = Uα jβ
∗
j +U A j A∗

j +Uβ jα
∗
j , we use (24) to find that

A j+1 −U = A jU A∗
j − √

2α jτ
∗μA∗

j + √
2A jτμα∗

j − α j (‖τ‖2 − t)μα∗
j

+α jμβ∗
j + β jμα∗

j −U A j A
∗
j −Uα jβ

∗
j −Uβ jα

∗
j

= A jU A∗
j −U A j A

∗
j − √

2α jτ
∗μ(A∗

j −U∗) + √
2(A j −U )τμα∗

j

−α j (‖τ‖2 − t)μα∗
j − √

2α jτ
∗ + √

2Uτμα∗
j

− (Uα j − α jμ)β∗
j − (Uβ j − β jμ)α∗

j .

Note, we have used τ ∗U = τ ∗μ. Thus for j ≥ J ,

‖A j+1 −U‖ ≤ ‖A jU A∗
j −U A j A

∗
j‖ + 2

√
2‖A j −U‖ ‖α j‖ ‖τ‖ + |‖τ‖2

− t
∣∣ ‖α j‖2 + 2

√
2‖τ‖ ‖α j‖ + 2NU,μ‖α j‖ ‖β j‖

<
2 + √

2

4
‖A j −U‖ + |‖τ‖2 − t | ‖α j c

−1/2
j ‖2|c j |

+ (2
√
2‖A j −U‖ ‖τ‖ + 2

√
2‖τ‖ + 2NU,μ‖β j‖)‖α j c

−1/2
j ‖ |c j |1/2.

Suppose that J is large enough that for j ≥ J we have |c j | ≤ |cJ |/2 j−J . Now apply
Lemma 6.1 with λ1 = (2 + √

2)/4 and λ2 = 1/
√
2, and so ‖A j − U‖ tends to zero

as j tends to infinity. ��
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6.6 Convergence of β j and γ j

We are now ready to show convergence of β j and γ j .

Proposition 6.12 Suppose that (53) holds. Then β j , and γ j tend to
√
2τμ and

−√
2μτ , respectively, as j tends to infinity.

Proof Using Uβ j a j +U A jγ j +Uα j b j = 0, which follows from (14), we have

β j+1 − √
2τμ

= A jUγ j − √
2α jτ

∗μγ j + √
2A jτμa j − α j (‖τ‖2 − t)μa j

+α jμb j + β jμa j − √
2τμ

= A jUγ j − √
2α jτ

∗μγ j + √
2A jτμa j − α j (‖τ‖2 − t)μa j

+α jμb j + β jμa j − √
2τμ

−U A jγ j −Uα j b j −Uβ j a j

= (A jU −U A j )γ j − √
2α jτ

∗μγ j − α j (‖τ‖2 − t)μa j − (Uα j − α jμ)b j

+√
2(A j −U )τμa j − (U (β j − √

2τμ)

− (β j − √
2τμ)μ)a j + √

2τμ2(a j − μ).

Therefore

‖β j+1 − √
2τμ‖

≤ NU,μ|a j | ‖β j − √
2τμ‖ + (2‖γ j‖ + √

2‖τ‖ |a j |)‖A j −U‖
+ (

√
2‖τ‖ ‖γ j‖ + |‖τ‖2 − t | |a j | + NU,μ|b j |)‖α j c

−1/2
j ‖ |c j |1/2.

Using Lemma 6.6, suppose j is large enough that |a j | < 4 and so NU,μ|a j | < 4NU,μ.
Note that

4NU,μ < 2(3 − 2
√
2 + Nμ) < 2(

√
2 − 1)2 < 1.

Since |c j |1/2 and ‖A j −U‖ are bounded by a constant multiple of 2 j/2, we can apply
Lemma 6.1(ii) to show that ‖β j −

√
2τμ‖ tends to zero as j tends to infinity. A similar

argument shows that ‖γ j + √
2μτ‖ tends to zero as j tends to infinity. This argument

uses U∗τ = μτ . ��

6.7 Convergence of b j

Finally, we show that b j converges as j tends to infinity.

Proposition 6.13 Suppose that (53) holds. Then b j tends to −(‖τ‖2 − t)μ as j tends
to infinity.
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Proof Note that if b j tends to −(‖τ‖2 − t)μ then b j tends to −μ(‖τ‖2 + t).
Using 0 = γ ∗

j γ jμ + a jb jμ + b ja jμ, we have

b j+1 + (‖τ‖2 − t)μ

= γ ∗
j Uγ j − √

2a jτ
∗μγ j + √

2γ ∗
j τμa j − a j (‖τ‖2 − t)μa j + a jμb j + b jμa j

− γ ∗
j γ jμ − a jb jμ − b ja jμ + (‖τ‖2 − t)μ

= γ ∗
j U (γ j + √

2μτ) − γ ∗
j (γ j + √

2μτ)μ + √
2(γ ∗

j + √
2τ ∗μ)μτμ − 2‖τ‖2μ

−√
2a jτ

∗μ(γ j + √
2μτ) + 2a j‖τ‖2 + √

2γ ∗
j τμ(a j − μ)

− a j (‖τ‖2 − t)μ(a j − μ) − a j (‖τ‖2 − t)

+ a jμ(b j + μ(‖τ‖2 + t)) − a j (‖τ‖2 + t) + b jμ(a j − μ)

− a j (b j + μ(‖τ‖2 + t))μ + a jμ(‖τ‖2 + t)μ − b j (a j − μ)μ + (‖τ‖2 − t)μ

= γ ∗
j (U (γ j + √

2μτ) − (γ j + √
2μτ)μ)

+√
2(γ ∗

j + √
2τ ∗μ)μτμ − √

2a jτ
∗μ(γ j + √

2μτ)

+√
2γ ∗

j τμ(a j − μ) − a j (‖τ‖2 − t)μ(a j − μ) + b j (μ(a j − μ) − (a j − μ)μ)

+ (a j − μ)μ(‖τ‖2 + t)μ + a j (μ(b j + μ(‖τ‖2 + t)) − (b j + μ(‖τ‖2 + t))μ).

Therefore

|b j+1 + (‖τ‖2 − t)μ| ≤ (NU,μ‖γ j‖ + √
2‖τ‖(|a j | + 1))‖γ j + √

2μτ‖
+ (

√
2‖γ j‖ ‖τ‖ + |‖τ‖2 − t |(|a j | + 1) + Nμ|b j |)|a j − μ|

+ Nμ|a j | |b j + (‖τ‖2 − t)μ|.

Wecan take j large enough that Nμ|a j | < 4Nμ < 1. Also, we know that ‖γ j+
√
2μτ‖

and |a j − μ| are bounded by constant multiples of 2( j−J )/2. Therefore, we can apply
Lemma 6.1 to conclude that |b j + (‖τ‖2 − t)μ| tends to zero. ��

Propositions 6.2–6.13 imply that S j tends to T as j tends to infinity, which com-
pletes the proof of Theorem 1.1.
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