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Abstract Generalized Fourier—Mellin transforms for analytic functions defined in
simply connected circular domains are derived. Circular domains are taken to be those
with boundaries that are a finite union of circular arcs, including straight line edges. The
results are an extension to circular domains of the generalized Fourier transforms for
convex polygons (having only straight line edges) derived by Fokas and Kapaev (IMA
J Appl Math 68:355-408, 2003). First, a new, elementary derivation of the latter result
for polygons is given based on Cauchy’s integral formula and a spectral representation
of the Cauchy kernel. This rederivation extends in a natural way to the case of circular
domains once an adapted spectral representation of the Cauchy kernel is established.
Domains with boundaries that are a combination of circular arc and straight line
edges can be treated similarly. The newly derived transforms are generalizations of
the classical Fourier and Mellin transforms to general circular domains. It is shown
by example how they can be used to solve boundary value problems for Laplace’s
equation in such domains. The notions of spectral matrix and fundamental contour,
which arise naturally in the formulation, are also introduced.
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656 D. Crowdy

1 Introduction

The last two decades have seen the emergence of a set of mathematical ideas and
techniques which have become known collectively as the unified transform method. It
has been pioneered by Fokas and collaborators [16, 18] and it is often called the Fokas
method. For the most recent survey of this method the reader is referred to [17]. Part of
this collective involves the reappraisal of classical boundary value problems for linear
partial differential equations using the lessons learned from the study of nonlinear
integrable systems. While the scope of the unified transform method is broad, the
present article has been inspired by novel insights that this impactful method has
brought to the area of complex analysis and function theory.

Specifically, in studying mixed boundary value problems for Laplace’s equation in
a convex polygon, Fokas and Kapaev [14] produced what appears to be a completely
novel constructive method for their solution. The heart of the method, which developed
ideas set out earlier by Fokas and Gel’fand [12], is the spectral analysis of one of the
equations of a certain Lax pair (by means of Riemann—Hilbert techniques) and it leads
eventually to the analysis of a so-called global relation. Interestingly, the approach
also gives rise to a new integral representation for analytic functions in a convex
polygon, one that generalizes the classical Fourier transform (naturally associated to
a strip geometry) to more complicated domain types. Crowdy and Davis [8] have
shown, in the context of a fluid dynamics application and by direct comparison with
traditional Fourier methods how, even for the simple strip (or channel) geometry, the
new approach of [14] already affords analytical advantages in practice.

The result of Fokas and Kapaev [14]—who derived it from the spectral analysis of
a parameter-dependent ordinary differential equation and the use of Riemann—Hilbert
methods—has been rederived from various other perspectives, including an approach
via the fundamental differential form [13,15], and the consideration of fundamental
solutions and Green’s integral representation [24]. The key result of [14], however, is
concisely stated as follows. If f(z) is analytic in a bounded, simply connected, convex,
N-sided polygon with sides {S;|j = 1, ..., N} then one can write

1 u ~ ikz
fz) = E;/Ej pj (k)™ dk, (1)

where £ are a special set of rays in the spectral k-plane (depending on the geometry
of the polygon, and defined here in Sect. 2) and where the so-called spectral functions
are defined as

pjk) = /S f(He " dz. )

These spectral functions satisfy the global relation
N
> pjtk) =0, keC. ?3)
j=1
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Fourier—Mellin Transforms for Circular Domains 657

In the context of boundary value problems for Laplace’s equation for a harmonic
function g (x, y)—taken to be the real part of some analytic function f(z), say—these
global relations can be used to determine the unknown boundary data for f(z) and,
hence, the solution for g (x, y) inside the polygonal domain [14,16,18].

Ultimately, however, the statements (1)—(3) constitute a basic result in function
theory, one that does not appear to have been reported elsewhere in the literature:
it is a representation result for analytic functions in simply connected polygons. As
such, this author was led to seek out an elementary derivation of (1)—(3) that does not
require the language of Lax pairs, differential forms, distribution or spectral theory, or
the mathematical technology of Riemann—Hilbert methods. Such a derivation, which
we believe to be new, is presented in Sect. 2. It relies on nothing more than elementary
properties of complex numbers, of the exponential function, and use of Cauchy’s
integral formula—all concepts available to a typical undergraduate after a first course
in complex analysis.

Significantly the new derivation, which is geometric in nature, points the way to
an important generalization: the formulation of the analogous transform methods for
analytic functions defined in general circular domains (and, hence, to the study of
boundary value problems for Laplace’s equation in such domains). Where a polygon
has N edges that are all straight lines (with zero curvature), we here define a circular
domain to be one having N edges that each has constant, generally non-zero, curva-
ture (including the possibility of straight line edges). This includes simple circular
discs, of course, but also so-called “polycircular arc” domains which are the natural
generalizations of N-sided polygons to regions with N circular arc edges. We derive
the natural analogues of (1)—(3) for such domains. In Sects. 5-7 it is shown how these
new transform pairs can be used to solve harmonic boundary value problems in a suite
of examples which also allow us to outline some computational methods based on our
approach.

Spence and Fokas [25] have presented, in the context of boundary value problems
for Poisson’s equation and several other partial differential equations, generalizations
of the unified transform method to “boundary value problems in polar coordinates”,
including wedge regions. Our work is related to theirs, but our derivation here is
more geometrical—not requiring any choice of coordinate system, or separation of
variables—and the final statement of the results is different and applies to circular
domains that are much more general than the wedge domains considered in [25].
Similarly, Fokas and Pinotsis [15] have developed the ideas of Fokas and Zyskin [13]
and given a derivation of the transform pair of Fokas and Kapaev [14] by considering
the Cauchy kernel, but the details of their derivation are different to that given here: it is
our more geometrical viewpoint that provides the pathway to generalization to circular
domains. Our treatment is, however, limited to consideration of analytic functions
or, from the point of view of applications to boundary value problems, to Laplace’s
equation.

This paper treats only simply connected domains. However, the important gener-
alization of the transform method to the case of multiply connected circular domains
has been made in a companion paper [9].
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658 D. Crowdy

2 A Transform Method for Convex Polygons

This section presents a new and elementary derivation of the transform method for
convex polygons first introduced by Fokas and Kapaev [14] who used other techniques.
In Sect. 3, it will be generalized to circular domains.

We start with a basic geometrical observation. If 7’ lies on some finite length slit
on the real axis and z is in the upper half-plane—see Fig. 1—then, on geometrical
grounds,

0 <arg[z— 7] <m. 4)
It follows trivially that
k(z—z' o)
/oo ek qr = ¢ (Z_) = —1 5)
0 i(z—2) o iz —2)
or,
1 oo . /
= 1/ ") dk, 0 <arg[z — 7] < 7, (6)
=2 0

where it is easy to check that the contribution from the upper limit of integration
vanishes for the particular choices of z” and z to which we have restricted consideration.

On the other hand, suppose z’ lies on some other finite length slit now making angle
x with the positive real axis and suppose that z is in the half-plane shown in Fig. 2 (the
half-plane “to the left” of the slit as one follows its tangent with uniform inclination
angle x). Now the affine transformation

e X —a), z+>e X(z—a), @)

for example, where the (unimportant) constant « is shown in Fig. 2, returns the slit to
the real axis, and z to the upper half-plane, so

0<argle X (z—a)—e X( —a)] <. (8)

Fig. 1 Geometrical positioning
of z and 7’ for the validity of (6)
z

<
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Fourier—Mellin Transforms for Circular Domains 659

(In Fig. 2 we have drawn the slit to intersect the imaginary axis, but this is not necessary
and our arguments go through for any slit making angle x to the real axis.) Hence, on
use of (6) now with the substitutions (7), we can write

1
e (7 —a)—e X (z —a)

oo . .
—i / k(e (G—a)—e X @ =a) gp )
0

or, on cancellation of « and rearrangement,

1
7=z

oo .
=i / el¢ ka=Demix gr, (10)
0

This integral identity is valid uniformly for all z and 7z’ having the geometrical posi-
tioning depicted in Fig. 2.

Now consider a bounded convex polygon P with N sides {S;[j = 1,..., N}.
Figure 3 shows an example with N = 3. Geometrically the shaded polygon P can be
viewed as the intersection of N = 3 half-plane regions of the kind just considered.

Fig. 2 Geometrical positioning
of z and 7z’ for the validity
of (10)

</

Fig.3 Aconvexpolygon P asanintersectionof N = 3 half-planes with N angles {x;|j = 1, 2, 3}. Formula
(10) can be used in the Cauchy integral formula with x = x; when 7' is on side S; (for j =1,2,3)
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660 D. Crowdy

For a function f(z) analytic in P, Cauchy’s integral formula provides that for z € P,

f@= # P fz(f/iiz,' (i
We can separate the boundary integral into a sum over the N sides:
1< , 1 /
f(Z)Z%;/S,.f(“[(z/—@}dz' (12)

Now if side §; has inclination angle x; then (10) can be used, with x +— x;, to
re-express the Cauchy kernel uniformly for all z € P and for z’ positioned on the
respective sides:

_ 1 N ’ . o) ie—ixjk(z_z/) _ij ,
f(z)—z—m;/sjf(z)[l/o e emix dk}dz. (13)

On reversing the order of integration we can write
1 al : TG
@)= 52 / p ke e Mk g, (14)
j=1"¢
where, for integers m, n between 1 and N, we define the spectral matrix

P (k) = / Fe e gy, (15)
M

with £ = [0, 0o) defined to be the fundamental contour for straight line edges. The
transform pair for polygons can thus be stated as

[ F@ =230 [ pjjke ek g, 6

pijt) = [, f@he K d, =1, N.

This is our final result.

2.1 The Global Relations

The elements of the spectral matrix, or “spectral functions”, have important analytical
structure. Observe that, for any k € C, and foranym = 1,..., N,

N N _ o
Z Omn (k) = Z/ f(Z/)efieflxmkz dZ/ — / f(Z/)efle xm fz dZ/ =0, (17)
n=1 n=1 Sn 9P
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Fourier—Mellin Transforms for Circular Domains 661

where we have used both the fact that f(z')e™¢ %' (form =1, ..., N) is analytic
inside P, and Cauchy’s theorem. There are N such global relations relating different
elements of the spectral matrix, but each is an equivalent statement of the analyticity
of f(z) in the domain P.

While the global relations relate all elements of the spectral matrix, it is worth
emphasizing that only the diagonal elements of the spectral matrix appear in the
integral representation (14).

Transform pairs for unbounded polygons, such as semi-strips, can also be written
down with minor modifications to the derivation above. The only difference is that the
global relations are now valid in restricted sectors of the k-plane where the spectral
functions are well defined [14].

2.2 Connection with Fokas and Kapaev [14]

Our statement (16) of the transform pair differs from (1)—(3) given by Fokas and
Kapaev [14] in two ways. First, the notion of a spectral matrix was not introduced
there. Second, the rays {L;|j = 1,..., N} in the spectral plane of [14] are absent.
But it is easy to generate them.

By defining, foreach j = 1, ..., N, the change of spectral variable given by

Aj=e Wik, j=1,...,N, (18)

in both the spectral functions and the integral representation for f(z), then, rather than
a sum of N contributions over the single fundamental contour in the spectral plane,
the transform pair (16) can be written as a sum of contributions from N (generally
distinct) rays in a spectral plane:

1 al - irz ~ Na—irz 3./
f(Z)=g}%}/ﬁjﬁj(l)eA da, pj(?»)E/ij(Z)e a7, (19)

where £; = [0, ooe~4i) is the ray defined by arg[A] = —x ; (these coincide with the
definitions given in [14]). Figure 4 shows the rays for the polygon shown in Fig. 3.
With formulas (16) thus modified they are equivalent to (1) and (2).

The changes of variables (18) have the effect of reducing the N-by-N spectral
matrix to just N distinct spectral functions. It is therefore tempting to argue that this
obviates the need to introduce the spectral matrix. But we will see that this feature
of reduction of the spectral matrix to just N spectral functions is not shared by more
general domain types (notably, the circular domains considered later). Furthermore,
it has been observed by previous authors studying the unified transform method (see
[10,16], for example) that for simple polygonal domains, it is possible, using the global
relations and their so-called “invariant properties”, to express all spectral functions
in terms of the given boundary data, using only algebraic manipulations [16]. This
procedure of generating new spectral functions by transformations of the spectral
argument often generates the other (off-diagonal) elements of the spectral matrix (15)
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662 D. Crowdy

Ly

L,

Fig.4 The fundamental contour £ = [0, 0o) for straight line edges (shown lef?). The spectral rays {£ ;| j =
1,2, 3} from Fokas and Kapaev [14] for the N = 3 polygon P shown in Fig. 3 (right). The latter rays are
images of £ under the N transformations (18)

that has arisen naturally in our derivation above. We would argue that the notion of
a spectral matrix and the fundamental contour (for particular edge types) are very
natural ones for these transform formulations. Both concepts will appear again in the
generalization to circular domains given in Sect. 3.

2.3 Unbounded Polygonal Regions

For unbounded regions exterior to some bounded polygon (and, hence, containing the
point at infinity), a little thought reveals that it is geometrically impossible to “cover”
the entire region as a finite intersection of half-plane regions. The next best thing is to
subdivide the domain into an atlas of polygonal subregions that are the intersection
of half-planes having a representation of the kind introduced above. This realization
has already been made, albeit from alternative perspectives, by Charalambopoulos,
Dassios and Fokas [4] for the exterior of an equilateral triangle, for example, where
an atlas of 6 convex subregions outside the triangle is used.

3 A Transform Method for Circular Domains

To find generalized transform schemes for circular domains we start by considering D
as the simple unit disc; this basic geometrical unit will now replace the “half-plane”
regions used for polygons. It should be clear that, to extend our approach to D, we must
identify the particular spectral representation of the Cauchy kernel that is uniformly
valid for z’ on the domain boundary 8 D and for z inside D.

For values |z| < 1 in D, consider the integral

1 2mik
15/ —zkdk—i-/ zkdk—i-/ ik (20)
L 1 — e27rik L Ly 1— eZnik :

This integral is taken around what we will call the fundamental contour for circular arc
edges shown in Fig. 5; it is the generalization of the fundamental contour for straight
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Fig. 5 The fundamental
contour for circular arc edges
with0 <r <1

Ly
17
L,
-1 —-r\_ O 1 2 3
—ir
Ly
Fig. 6 Contours L_ and L4 in 1 —r 0 1 L., 3 4
the spectral k-plane used to R U wna ) U ana ) P e
establish (21) G Cio G Gy O
Coo Ol G Cf Cf
-1 —r 0 1 2 3 4
T L.

line edges shown on the left in Fig. 4. To explain it, choose 0 < r < 1. The contour
L is the union of the negative imaginary axis (—ioco, —ir] and the arc of the quarter
circle |k| = r in the third quadrant traversed in a clockwise sense; the contour L; is
the real interval [—r, 00); the contour L3 is the arc of the quarter circle |k| = r in
the second quadrant traversed in a clockwise sense together with the portion of the
positive imaginary axis [ir, ico). All integrals in (20) are non-singular and it is easy to
verify directly that all integrands are exponentially decaying as |k| — oo uniformly
for all |z] < 1. (Readers already familiar with the method of Fokas and Kapaev [14]
might recognize this fundamental contour as similar to that associated with an infinite
semi-strip, and there is a good reason for this that is explained in Appendix A.)
For |z] < 1 it can be shown that

1 2mik 1
1=/ —zkdk—i-/ zkdk—i—/ & dk= Q1)
L 1— eQnik L Ly 1— eZnik 1 — Z.

To derive (21), note that the second integral in / can be written as
1 _ e2mik
k45 _ k
2 oe=r ) [ o
2rik

1 k € k
= _ dk — _ dk, 22
A B M = ER TS

where P denotes the principal value integral. But, with the contours L_ and L shown
in Fig. 6 for some 0 < € < r,
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664 D. Crowdy

o]

k
4
/L|:l 2n1k] +P/ |: 2n1k:|dk+n Oeh_r)%/ |:1_627r1kj|dk

ik Jk 2mik Jk 00 2mik Jk
(& € €
‘/ [ ;m}dk— ] [ ;w}dk lml/ [ ;w]dk
Ly 1 c Lo 1 [ =0 e—>0 C;rg 1 c

(23)

The contours L_ and L, are made up of the union of the radius-e¢ semi-circles
{C [n > 0} centred at k = n (for n > 0) traversed in an anti-clockwise sense
together with the portions of the real k-axis between them. Hence, after an explicit
computation of the integrals around {C ,‘,—: [n > 0}, and on substituting for the principal
value integrals in (22) using (23), we can write

1 ; e271ik .
[ = ek dk+Zz + T | dk, (24)
n=0 +

where £L_ = Ly UL_ and £; = L4 U L3 are shown in Fig. 7. But the integral
around £_ vanishes because its integrand is analytic in the fourth quadrant; similarly,
the integral around £ vanishes because its integrand is analytic in the first quadrant.
Hence, for |z] < 1, we have

I=> "= ! , (25)

which establishes our result.
Several remarks are in order:

1. The residue calculus steps just given reveal that the integral (20) around the fun-
damental contour in Fig. 5 can be deformed to the modified integral

Ls
Ly c.
= _M AT
L

Fig.7 The contours £4 and £_
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Fig. 8 The contour C

ir C

—ir]

Zk

with the contour C encircling the real axis as shown in Fig. 8.

2. The reader might recognize the contour C as that appearing in the classical Watson
transformation (see [25]) and, indeed, our construction of the spectral form (21)
of the Cauchy kernel could alternatively have been made by invoking this trans-
formation and giving a modified inversion formula based on (26). But we were led
to our preferred form (21) in a quite different way. To see how, next we give the
transform pair for the unit disc then, in Appendix A, show how to derive it inde-
pendently from a logarithmic conformal mapping (a simple Schwarz—Christoffel
mapping taking the disc to a semi-strip) coupled with the result for polygons of
Sect. 2. Appendix A can be viewed as giving an algorithmic construction of the
Watson contour C in Fig. 8 from the results of Sect. 2.

3. While the modified form (26) might, at first sight, appear to be a more concise
statement of (20) we continue to use the latter. This is because (20) can be derived,
after a logarithmic change of variable, from application of the transform method
for a polygon (details are in Appendix A), hence the associated integration con-
tours in Fig. 5 are, by the very nature of that construction, the ones along which
exponential decay of the integrands is guaranteed. In (26), integration is along the
deformed contour C that remains uniformly close to the infinite array of simple
pole singularities along the positive real axis and, if high precision is desired, this
can compromise accuracy of any numerical quadrature of the inverse transforms.
Many such approximation theory questions will be properly addressed in future
work.

3.1 Transform Pair for Interior of the Unit Disc

Let 7/ be a point on the unit circle and let |z] < 1 be a point inside the unit disc as
depicted in Fig. 9 (this is the analogue of Fig. 1, but now for the unit disc instead of
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666 D. Crowdy

Fig.9 Geometry of 7’ and z for
derivation of (31)

the upper half-plane). Then |z/z'| < 1 uniformly and it follows on letting z > z/7’
in (21) that

7 1 -k -k e2mik  k

The Cauchy kernel is therefore given by the spectral representation

1 1 - - Q2mik ok
7 —z =/ 1 — e2mik Jk+1 dk+/ Zk+1 dk"’/ 1 — e2mik Jk+1 dk. (28)

The Cauchy integral formula for a function f(z) analytic in the unit disc is

1 f(z)
f@)=— (29)
fj

271 J =1 7 —z

On substitution of (the uniformly valid) representation (28) for the Cauchy kernel we

find
f@) = 74 f@) / L dk+/ "
Z 27Tl |Z,|=1 < L 1 _ eZﬂ'ik Z/k_l,_l L Z/k+1

e27rik Zk ,
+/L3m2/kﬁ dk]dz. (30)
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On swapping the order of integration we arrive at the transform pair

f@) = ﬁ |le ]fégik M dk + I, pk)z* dk + ng pl(f)eejﬁA Zk dk]’ 31)
ptk) = §.1_ ;,,E—i?dz’.
The global relation is
pk) =0, ke—-N (32)

since, for this discrete set of k-values, the integrand of the integral defining p (k) is
analytic in the unit disc.

It is a simple and instructive exercise to verify the transform pair (31) for simple
test analytic functions such as f(z) = z” for p € Z*.

Equation (31) provides an alternative way to represent analytic functions in the
disc. It is clear from our development that it is the natural generalization of the Fourier
transform to the unit disc (or, more properly, the Fourier—Mellin transform—see the
discussion in Appendix A and Appendix B, and the later comments at the end of
Sect. 6). In complex analysis, it is more common to associate analytic functions in
discs with Taylor series but, as we have seen, one can also write down the Fourier—
Mellin transform pairs (31) too.

3.2 Transform Pair for Exterior of the Unit Disc
The transform pair for the exterior of the unit disc follows similarly. For z’ on the unit

circle with |z| > 1 then |z’/z| < 1 uniformly and setting z > z’/z in (21) gives the
identity

1 7\ k 7\ k 2mik I\ k
[ e (o
Z2—2Z Lll—eﬂl z L, \ 2 L31_e7r1 z

(33)

Hence we have the spectral representation of the Cauchy kernel given by

1 1 Z/k Z/k e2nik z k
-7 /L1 | — o2k gh+1 dk+/L2 Zk+1 dk JF/L3 | — e2mik gh+1 dk. (34)
For |z| > 1 the Cauchy integral formula

1 /
F@) = - Sf(@)

, dz' 35
2mi lz/|=1 7 -z (53)

holds for a function analytic outside the unit disc that decays like 1/z as z — oco. Use
of (the uniformly valid) expression (34) in the Cauchy integral formula then produces
the following transform pair for such a function:
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668 D. Crowdy

k )e2mik
Je= ZMHIL‘ lpéz’i'k i +fL2'0(k) = ﬂ(—)eez_nik %]
plk) = f\zqzl f(Hz*dz.

(36)

The global relation is
pk)y=0, ke-N (37)
since, for this discrete set of k-values, the integrand of the integral defining p (k) is

analytic outside the disc and is O(1/ z2) as 7 — 00.
For future use, we prefer to write (36) with the addition of two minus signs:

]’ (38)

pk) (k) 2ik dk
1= s [le 1—esmik Zkﬂ + fLZ p(k)zk“ + fL3 pl—ei”ik KT

pk) = _ﬁz/lzl f(z )Z d7’ ,

which clearly does not affect the transform pair. The reason for this is to preserve a
convention that the spectral function is the integral around the boundary traversed in
such a way that the domain of interest is on the left as the boundary is traversed.

3.3 Transform Pair for Polycircular Domains

Just as a convex polygon was understood in Sect. 2 to be the intersection of N half-
plane regions, a polycircular domain is now understood to be the intersection of N
circular discs.

Consider now the convex simply connected region D bounded by the arcs {C;|j =
1,...,N}of Ncircles {|z—8;| =¢g;lj =1,..., N} as shown in Fig. 10 for N = 3.
The Cauchy integral formula for a function f(z) analytic in this region is

Fig. 10 A polycircular domain
D with N = 3 sides denoted by
C1,Cyand C3
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pi—1z2

L f@ L [ @)
f(z)_z—m]g dz—z—m;/cjz/_zdz, (39)

where 0 D denotes the boundary of D and where, in the second equality, the integral
around 0D has been separated into the N separate integrals around the individual
circular arcs {C;|j =1,..., N}.

Focussing on the portion of the integral along C; for which it holds, uniformly
for z in D, that |z — 8| < |z’ — §;| the Cauchy kernel for z" on C; has the spectral
representation

1 1
-z (@ —=8)— (-8
1 (z—8,)k / (z—8,)k
= . dk ————dk
/Ll 1 — e2mik (Z/ _ 5j)k+l + L (Z/ _ Sj)k'H
2mik k
e (z—3j)
- dk, 40
+/L3 1 — e2mik (7 — 5].)k+] (40)

where we have set z — (z — 8;)/(z' — §;) in (21). It is important to write this in the
rescaled form

I =/ 1 'i(z—aj)"[z’—sj}‘k‘ldk
7 —z Lll_e27r1kqj qj qj
l _8 k /_8' 71{71
7 G N el B
Ly 4 qj qj
2mwik k / —k—1
e 1 (z-3; 7 =3
L) ] @
L3 € qj qj qj

Now for z € D (see Fig. 10) comprising the intersection of the circular discs we
can substitute (41) into the Cauchy integral formula (39) when z’ sits on each of the
separate boundary arcs {C;|j =1, ..., N} to find

N

k k
pjj(k) Z—(Sj / Z_‘Sj
: dk ii(k dk
2mi Z[~/L1 1- ez’”k qj * Ly p“( ) qj

1
f@) ==
j=1

,o~-(k)e2”ik 7 —38; k
+ / g t|odkys “2)
L3 —¢ qj

where we have swapped the order of integration and introduced the N-by-N spectral
matrix

1 Z - Sm e / /
pon () = —— / [ } £() dz. 43)
qm Jc, dm
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Global relations for this system are

N
> pmnlk) =0, ke-N (44)
n=1
foranym = 1,2, ..., N. There are N such global relations but each is an equivalent

statement of the analyticity of f(z) in the domain D.

It is important to remark that, unlike in the case of polygons, it is not clear that it is
now possible to invoke any changes of variables in the spectral k-plane, akin to (18),
that will reduce the N-by-N spectral matrix to just N spectral functions.

Variants of the above should be obvious. Suppose, on the other hand, that the
polycircular domain D is that shown in Fig. 11: D is the intersection of the exterior of
the circle |z — 81| = g1 and the interior of the circles |z — 82| = g2 and |z — 83| = g3.
Let {C;|j = 1, 2, 3} again denote the boundary arcs making up the boundary 3D as
shown in Fig. 11 and such that the domain D remains to the left as d D is traversed.
By arguments similar to those given above we deduce that the appropriate integral
representation is

1 p11(k) a \ / g\
= —— - dk k dk
@) 2ni|/L11—e2m’< (1—61) + szn() T3

p”(k)CZnik q1 k+1 i
+ L 1— ezmk Z— 51
3
3

1 gk Tz—68;1° —-5; 71
+— [/ p”(zn)ik [z ]} dk+/ pjj (k) [Z ]} dk
2mi UL 1—e qj L, q;j

pjj (ke ik [z —5;7*
e (45)
Ly 1—¢€ qj

Fig. 11 A polycircular domain
D with N = 3 (directed) sides
denoted by Cy, C> and C3. Note
that Cq isanarc of [z — §1| = g1
now traversed in a clockwise
sense
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where the matrix of spectral functions is defined for n = 1, 2, 3 by

1 7 =4 g / ’
mn(k)z—/ ( ) £ dz,
q1 Jc, q1

1 Z/ _ 8m *k*l
P (k) = — / ( ) P, m=2.3 (46)
dm Jc, dm
Global relations are
3
men(k) =0, ke-N,m=1,2,3. (47)
n=1

3.4 Domains with Both Straight and Circular Edges

It should be clear that our approach generalizes to more general domains with bound-
aries comprising a mixture of circular arc and straight line edges. Correspondingly, the
derivation of the relevant transform pairs involves a mixture of the results of Sects. 2
and 3. This is best illustrated by means of an explicit example (given in Sect. 6) from
which the general construction can be discerned.

4 Applications to Boundary Value Problems

In the remainder of the paper we survey just a few of the many possible applications
of this new transform perspective for circular domains, in particular to the solution of
boundary value problems for Laplace’s equation. We proceed under the assumption
that solving for the functions in the spectral matrix will lead, on substitution of this
spectral data into the integral representations for the relevant analytic function, to the
solution of the stated boundary value problems. That this is true is not obvious, but
it has been established for boundary value problems for Laplace equations in convex
polygons by Fulton, Fokas and Xenophontos [21] and for general elliptic equations in
arbitrary convex domains by Ashton [1].

Here we focus on boundary value problems where the effectiveness of the transform
approach can be tested against other mathematical schemes. The following examples
also give us the opportunity to introduce some numerical schemes we have devised
for the analysis of the global relation.

5 The Problem of Dual Fourier Series

Even for the simple unit disc the new transform approach affords a reappraisal of some
boundary value problems previously tackled by other means. A problem considered
by Shepherd [20] is to find the set of real coefficients {A,} satisfying the conditions

cos(md) = D A,cosnd, 0 <0 <m/2(orC),

n>0

—sin(mf) = > A,sinnf, 7/2 <0 <7 (or Cy), (48)

n>1
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where m is some positive integer. This has become known as a problem of dual Fourier
series [20,23,26]; indeed, Shepherd solved this problem, separately for even and odd
m, by a sequence of ingenious manipulations of integral representations of the Fourier
series coefficients; he also included an application to a problem in potential theory.
But the same results follow in a more algorithmic way by an analysis of the global
relations for this system as they arise in the new transform method described above.

First note that the problem can be reformulated as a mixed boundary value problem
for a function f(z) analytic in the unit z-disc. Let

fR) = A" (49)

n>0

be the Taylor expansion of such a function valid convergent for |z] < 1. Suppose it
satisfies the mixed boundary conditions on the two “faces” of the unit circle |z] = 1

where z = e?:

Re[f(z)] = cosmO, —mw/2 <6 <m/2,
Im[f(z)] = —sinmb, =w/2 <6 <37/2. (50)

If such a function f(z) can be found then the coefficients in (49) will satisfy (50) as
z tends to the boundary.

Since f(z) is analytic in the unit disc we have the following transform pair repre-
sentation for it:

2mik
fxz)zzﬁﬁ[jillfggkzkdk-%j;zp(kmkdk-kjizﬂfzﬂkzkdk

£G) ] Gb
pUk) = §12y Z/k% dz’.

The global relation is

p(k) =0, ke—N. (52)

Equation (52) can be used to find the spectral function p(k), hence f(z), and, in turn,
the coefficients {A,}.
On C;| we write

f() =cosmb +1i|ap+ Z:ane2”9i +ape 20|, (53)
n>1

where ag € R and {a, € C|n > 1} are to be determined. Here we have decomposed
the unknown imaginary part of f(z) as a period-m Fourier series over the interval
[—m/2, 7 /2]. Similarly, for z on Cy we write
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f@) =|bo+ D bye® +bue " | —isinmo, (54)

n>1

where by € Rand {b,, € C|n > 1} areto be determined and, here, we have decomposed
the unknown real part as a period-w Fourier series. On substitution of (53) and (54)
into (52) we arrive at the following linear system for the unknown coefficients:

ag A©. k) + > an AQn. k) + @ A(—2n, k)

n>1
+bo BO, k) + D baB@n, k) +bB(=2n, k) = r(k)., k€ =N,
n>1
ao A, k) + D @y ACn, k) + an A(=2n, k)
n>1
+b0 BO.K) + D by BCn k) +by B(2n.k) =r(®), ke-N, (55
n>1
where
1 [ain—k)7/2 _ a—in—k)m/2
A k) = [ = [e e . n#k, (56)
i, n =k,
i 1 3iln—k)r/2 _ .i(n—k)m/2
Bln. k) [ D [e e . n#k, 57)
T, n=k,
and
/2 . 3m/2 .
r(k) = — / cosmf e %0 dg + i / sinmé e~ dp. (58)
—1/2 /2

The system (55) can be solved numerically by truncating the infinite sums at some
integer N—so that there is a total of 4N + 2 real unknown coefficients—and then
picking Ny > 4N + 2 values of k in (55) to produce an overdetermined system of
Ny equations from which the unknown coefficients can be found by a least-squares
algorithm. This procedure was carried out and the results checked against those derived
by the alternative scheme given by Shepherd [20] (it can also be solved using a method
based on conformal slit maps as used recently by the author [7] in a mixed boundary
value problem of the same general kind).

While we have used Fourier series representations for the unknown boundary data
above, another possibility (akin to Chebyshev-type expansions) is described in the
example of Sect. 7 and can be applied in the above example too.

A strong argument in favour of the transform approach to this problem just demon-
strated is that it is more algorithmic than the rather more ad hoc approach used by
Shepherd [20]. Our approach also frames this problem as just another boundary value
problem that is amenable to analysis using the same basic mathematical ideas under-
pinning the unified transform method.
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6 Mixed Boundary Value Problem in a Semi-Disc

A second boundary value problem that can be used to test the method is to find a
function f(z) analytic in D defined to be the upper half unit semi-disc |z| = 1, Im[z] >
0 as shown in Fig. 12. This is an interesting example in that D has both a circular
arc boundary and a straight line boundary and it affords an opportunity to see how to
combine the ideas given earlier in this paper.

Suppose the boundary conditions on an analytic function f(z) in such a domain
are given to be

Re[f(2)] =r(z,27), onC, (59)
Im[f(z)] =0, onL,
where r(z, 7) is some given real-valued function.

The semi-disc can be understood as the intersection of the upper half-plane and the
interior of the unit disc. Hence, by combining the ideas presented earlier for polygons
regions (in Sect. 2) and for circular regions (in Sect. 3)—that is, by substituting the
appropriate uniformly valid spectral representation of the Cauchy kernel having split
the Cauchy integral formula into the two boundary portions—it is straightforward to
derive the integral transform representation

fx) = L[/ %zk dk+/ p11(k)ZE dk
Ly —¢ Lo

2mi
+/ﬂﬁ£ﬁﬁm+i/w(mhw (60)
Ls 1 — 62””‘ 27 0 022 s
where the spectral matrix has components
_ N (=k=1) 3./ _ Na—ikz' 3.7
puk) = [ f()z dz', pnk) = [ f(z)e " dz,
c L
p21(k) = / f(he *dZ, pratk) = / F(HZ D gy, (61)
c L

Two global relations can be expressed as

pi1(k) + p1a(k) =0, ke —-N (62)
Fig. 12 Boundary value Re[ f] —r
problem in D, the upper half
semi-disc, with boundary C
comprising the circular portion
C and straight line portion L D
L Im[f]l=0
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and
p1(k) + pn(k) =0, keC. (63)

These two conditions are not independent, but both turn out to be helpful in solving
the problem.

First we will make use of (62) to find f(z) on C. Some preliminary manipulations
reveal that

/Cf(z/)z/(_k_” dz’ = —pi1(—k), /L f@H)Z TV d =pk).  (64)

The boundary condition on C is

f@+ f@) =2r(z2), (65)

whence, on multiplying it by z7*~! and integrating the resulting relation along C, we
find

p11(k) —pii(—k) = Ri(k), VkeC, (66)
where
rw= [ T (67)
czZ
The boundary condition on L is
f@=fQ@. (68)
On multiplying this by z7%~! and integrating the resulting relation along L we find
p12(k) =prak), VYkeC. (69)
The complex conjugate of (62) is
p11(k) +p2(k) =0, ke —N. (70)
Now (69) implies
pii(k) + p12(k) =0, ke —-N (71)
while (66), with k — —k, gives

piik) = p11(=k) — Ri(—k) VkeC (72)
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which can be used in (71) to produce
p11(=k) — Ri(=k) + p12(k) =0, k€ —N. (73)

Finally (62) can be used to eliminate pj;(k) to give a relation depending only on
p11(k):

p11(=k) = Ri(=k) + p11(k), ke —N. (74)

Equation (74) will be analysed to find f(z) on C and, hence, p11 (k).
We will represent f(z) on C using a Fourier series on the interval 6 € [0, 7] where
z = ¢!, For z € C we therefore write

f@=r@2+i|a+ D ae? +a,e 2" | (75)

n>1

where the set of coefficients {a,|n = 0, 1,2, ...} is to be found. On substitution of
(75) into the definition of p;(k), and use of the definition of R (k), we find

Ri(k) g —ik6 2in0 | — . —2ind
pity ===~ e ao+ Y ae™™ +aze de. (76)
0

n>1

On substitution into (74) we arrive at the system

@ |:/rr[_eik9 + eike]de] n Zan [/”[_ei(k+2n)9 + ei(2nk)9]d9i|
0 0

n>1

T
. . 1
+Za[ / [—e! 207 el<—2"—k>9]d9] = S[Ri(k) + Ri(=k)], ke -N.
0 2

n>1

(77)

All the matrix elements in this linear system can be determined in closed form. As
in Sect. 5, the system can be solved numerically by truncating the infinite sums and
forming an overdetermined system by evaluating (77) at a sufficiently large number
of choices of k € —N.

Once p11 (k) has been found the global relation (62) gives p12 (k), but the latter is not
needed in the integral representation (60). But with f(z) determined on C, the spectral
function p2> (k) needed in (60) can be found from the second global relation (63). This
is because the boundary data on C are now known and can be used to compute p21 (k)
with (63) then yielding p2; (k).

This boundary value problem can be solved using alternative methods based on the
Schwarz reflection principle. Suppose we pick the data for the above boundary value
problem to be
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1 .
r(z,7) = 5lz +7] = cost, z=c¢’. (78)
Then it is clear that the solution is

f@ =z (79

This, and other simple choices of f(z), provides a check on the transform solution.
It should be clear that the transform method will work; however, when the boundary
condition on L is more complicated and arguments based on Schwarz reflection fail.

It is the appearance of both e*? (Fourier-type) and z¥ (Mellin-type) in the integral
representation (60) that prompts us to refer to the general transform methods of this
paper as “Fourier—Mellin transforms for circular domains”. We also show, in Appen-
dix B, how to apply the very same method of Appendix A to derive the classical
(complex) Mellin transform pair for an infinite wedge region. Together, Appendix A
and Appendix B should convince the reader that the transform pairs we have derived
above really are the natural extensions of the classical Fourier/Mellin transforms to
general circular domains.

7 Mixed Boundary Value Problem in a Lens-Shaped Domain

To conclude, we solve a boundary value problem for f(z) in the lens-shaped region
D shown in Fig. 13 having two circular arc boundaries denoted by C; and C,. The
boundary conditions are taken to be

Re[f(2)] =r(z,2), on Cy,
Im[f(z)] =0, onCy, (80)

where r(z, 7) is some given real-valued function.
The general transform pair for an N-sided circular arc polygon was given in (42).
In the present example N = 2 with

=1 6=0 g=1 8&=1 81

Fig. 13 The convex lens-shaped
domain D formed by the
intersection of the circular discs
|z] < Tand |z — 1| < 1. The
boundary arc of D with |z| = 1
is denoted by C1, the arc with

|z — 1| = 1 is denoted by C
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We can therefore write

1 ik
f) = —[/ L(k)zk dk —|—/ o11(k)z* dk —|—/ wzk dk
L Ly L3

2T . 1 — eZnik 1 — e27rik
022 (k)[z — 11F / ‘
—— _ — dk Nz — 11" dk
+/L1 | ook + L p2(k)[z — 1]
P2 (k)e? ik [z — 17¢
+ /L | —oinik dk ., (82)

where
p11(k) =7§ 175 () A2, pma(k) =% [ =117 1riH)dZ.  (83)
C C
The other two elements of the spectral matrix are
prah) = ]{ LT FE A p ) = f - A 84)
Cr Cy

The global relation we will analyse is
p11(k) + p12(k) =0, ke —-N. (85)

We expect singularities of f(z) at the two points where C; and C; intersect. We
are therefore motivated to introduce the representations of the boundary values given
by

r(z,2) +i[a0 + anl ant" + ?:1’,] on Cy,

f@) = ;
bo+ X1 bal" + %, on Cy,

(86)

where the coefficients ag, bg € R, {a,, b, € C|n > 1} are to be found; these expres-
sions encode the known boundary conditions (80). On each boundary the complex
variable ¢ has a different identification with the variable z given by

_ ] &), for z on Cy,
a [ 1—g(¢), forzonCy, (87)
with
) , 1
8¢) = ool 1) o, a)=( —a), (83)

o Do, 1/a)
where o = is for some 0 < s < 1, and where ¢ = ¢? for & € [0, 7]. For D

shown in Fig. 13 we choose s = 0.2679492. g(¢) has an interpretation as a conformal
slit mapping [6] and, with the value of s just stated, (88) maps the unit ¢-disc to
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the unbounded region exterior to a circular arc slit on the unit z-circle for —7/3 <
arg[z] < /3. The upper half semi-circle in the ¢ plane, i.e., ¢ = e for 6 € [0, 7]
maps in a one-to-one fashion onto the slit —x /3 < arg[z] < 7 /3. The relevant s value
is found using Newton’s method to ensure that g(1) = e~7/3_ It is helpful to think of
g(¢) in (88) as a generalization of the classical Joukowski map to one taking the unit
disc to the exterior of a circular arc segment (rather than a straight line segment). We
anticipate that g(¢) will find great utility in the general numerical implementation of
our method.
On substitution of (86) into (85), we find

ag Ak, 0) + > {an Ak, n) + @y Ak, —n))

n>1
+boB(k,0) + > {byB(k.n) + b, B(k, —n)} = R(k). ke-N, (89
n>1
where
_ [T Q). I SR S 4 (S N
Ak,n) = 1/0 —g({)k_H i¢ d8, B(k,n) = /0 —(1 20 i¢ do, (90)
and
T "g©) .
R(k) = — de. 91
© 0 8K “ ob

This system can be solved by truncating the infinite sums and choosing sufficiently
many values of k € —N to form an overdetermined system solvable by a least-squares
procedure for the unknown coefficients.

The effectiveness of this scheme is tested by making particular choices of data
r(z,7) for which analytical solutions are known via alternative conformal mapping
methods [6]. A composition of the sequence of conformal maps

1 .
L=ty g g =ely,

1+¢
L[]

(92)
43, 1
’ 2 2 |14y

E—>x=¢ X—z=

transplants the upper half unit semi-disc in the ¢-plane to the lens-shape domain D in
the z-plane. The exponent 4/3 in the third of the sequence of maps is a consequence
of the fact, following from spherical trigonometry arguments, that the angle of inter-
section between C; and C, at z = 1/2 4 i+/3/2 is 27/3. Suppose the inverse of the
composite conformal mapping (92) is denoted by /(z) so that

¢ = h(2). 93)
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Suppose now that we pick, say,

f@)=h@?*=¢% (94)

This function is analytic in D, clearly real on the real ¢ axis (and hence on C3), and
it has real part

_ 1[2
r(z,z) == |h°(2) +

3 ] 95)

h%(2)

on the upper half unit ¢{-disc (and, hence, on Cp). Formula (95) was therefore used
as data in the transform solution scheme described above and the resulting solutions
checked against f(z) as given in (94). Other choices of f(z) were also tested. The
transform method was found to accurately retrieve all such test functions f(z).

As aremark, our use of the function g(¢) here is closely related to the use of Cheby-
shev polynomial expansions although, as already mentioned, not of the standard kind
because they have been tailored to a circular arc slit (rather than a straight line interval).
The expansions, however, also include square root singularities at the ends of the arcs so
they are not just expansions in polynomials. As already mentioned, the many approx-
imation theory challenges arising from the numerical implementation of the new
transform approach for circular domains presented here await much further investiga-
tion (see [16,19,21,22] for a survey of progress in this respect on polygonal domains).

8 Discussion

This paper has presented several new ideas and results.

First, we have given a new derivation of the representation of analytic functions
in convex N-sided simply connected polygons due to Fokas and Kapaev [14]. The
derivation is elementary, relying on use of Cauchy’s integral formula and a suitable
spectral representation of the Cauchy kernel obtained from simple properties of the
exponential function. The notion of a spectral matrix and the idea of a fundamental
contour for straight line edges arise naturally in this approach. It was also shown that,
by an N-fold change of spectral variables, the N-by-N spectral matrix reduces to the
same set of N spectral functions considered by Fokas and Kapaev [14].

Then, by replacing the spectral representation of the Cauchy kernel by the one rele-
vant to circular discs (rather than half-planes), the very same sequence of constructive
steps starting from Cauchy’s integral formula is used to derive the natural extensions of
the transforms to general circular domains, both bounded and unbounded, understood
geometrically to be intersections of N circular discs.

More general circular domains with boundaries comprising a mixture of straight
lines and circular arcs are treated too (cf. Sect. 6). Geometrically these are intersections
of half-planes and circular discs and a hybrid construction clearly leads to the relevant
transform pairs.

The reduction of the spectral matrix to a set of N spectral functions appears to be
special to the case of polygons and does not extend (at least, in any obvious way)
to domains with circular boundaries of non-zero curvature. We have argued that the
notions of a spectral matrix, and the fundamental contour, are natural.
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Several simple illustrative examples have been given of the scope of the new method
in the context of examples where the approach can be checked by alternative means. It
is clear that the approach has great flexibility and possible future applications. Already
the method has been extended by the author to the case of multiply connected circular
domains; full details can be found in [9] where some important physical applications
of the method are also discussed.

We also touched on several new approximation theory questions, including the
optimal choice of integration contour when performing the transform inversion by
numerical quadrature, and the best ways to represent unknown data on circular arc
boundaries. Such matters are the subject of ongoing investigation.

Other questions arise: are there special boundary value problems in circular
domains, perhaps with sufficient geometrical symmetries, where the analysis of the
global relations leads to previously unrecognized explicit solutions using just alge-
bra (as has been the case when the unified transform method has been applied to
elliptic PDEs in simple polygons [10,16])? Can the new transform formulation here
lead to fast and accurate new general numerical methods for the solution of harmonic
boundary value problems in general circular domains (evidence now exists that this
is possible for polygons [11,16,19])? A natural advantage of transform methods—as
we have seen by our very construction where the singular Cauchy kernel has been
replaced by a non-singular spectral integral (cf. (6) and (28))—is that they often lead
to the possibility of alternative numerical formulations that do not involve singular
integral equations (as do most standard boundary integral methods).

We have deliberately steered away from the very mathematical ideas that gave rise to
the discovery of (1)—(3) in the first place, i.e., the spectral analysis of Lax pair equations,
differential forms, etc. [14]. This was done in the conviction that (1)—(3) is a basic
result in analytic function theory and should be derivable as such. But the formulation
in terms of the spectral analysis of differential forms is the gateway to generalization
to other partial differential equations [16,18,25] and it is now of interest to determine
how one might reproduce the new transform pairs for circular domains found herein
starting from, for example, the spectral analysis of an appropriate differential form
[13]. This, in turn, might point the way to generalization of Fokas’ unified transform
method to other partial differential equations (e.g., the modified Helmholtz equation,
or Helmholtz equation) in the more general circular domains of the kind considered
here.

Crowdy and Fokas [5] have shown how boundary value problems for the biharmonic
equation in polygonal domains in two dimensions can be formulated by appropriate
extension of the ideas of Fokas and Kapaev [14] who restricted to harmonic fields.
Similarly, the present extended formulation is useful for the solution of biharmonic
boundary value problems in general circular domains. There are currently very few
alternative techniques to solve biharmonic problems in such domains. Work in this
direction is in progress.

The extension of all these ideas to boundary value problems for Laplace’s equation
in three dimensions—that is, regions interior and exterior to spheres—is an important
open problem. In this vein it is worth pointing out that Ashton [2,3] has recently
extended the unified transform approach of Fokas to various elliptic boundary value
problems defined in convex polyhedra.
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Appendix A: Alternative Derivation of (31)

Here we show how to rederive the transform pair for the unit disc by combining a
simple conformal mapping and the result for a general polygon.
Introduce the (Schwarz—Christoffel) conformal mapping
n=1logz, z=¢" (96)

and take the branch cut of the logarithm to be along the negative z-axis with the choice
—n < arg[z] < 7w (say). The map then transplants the unit disc to the left semi-strip
in the n-plane (Fig. 14):

—o00 <Re[n] <0, —m <Im[n]<m. 97

Now let

E@m) = f(zm), (98)

where f(z) is analytic in the unit disc. Since F' () inherits the property of analyticity,
now in the left semi-strip, the transform expression for a function analytic in this
polygon, and vanishing as || — oo, is

1 . 1 . 1 .
F(p=5= / o1 (k) dk + 5= [ " py(k) dk+5— / e p3 (k) dk, (99)
2w Ji, 2 2 Jis

Ly

where Ly, L, and L3 are rays from the origin with arguments 0, —7 /2 and —m. The
spectral functions are

i

—I17

Fig. 14 The logarithmic transformation (96) takes the unit z disc to the left semi-strip in an n-plane
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p1(k) = / O Fape ™ dy, poo) = / F(me % dy,

imr—o0 —im

p3(k) = / F (e 1 dn. (100)

by

We will return later to the restriction to functions vanishing as || — oo.
Since f(z) is single-valued in the z-disc, we need to enforce the constraint

F(np) = F(y — 27i). (101)

On multiplying condition (101) by e ¥ and integrating along the upper side of the
semi-strip, we find

irT—oo iT—oo Cim—oo
[ etrman= [ e rg-aman = [ e W R ac,
1

i i —im
(102)
where we have used the change of variable { = n — 27i. We conclude that
_ 2k
p3(k) = —e™ " py (k). (103)
The global relation for the representation of F'(n) in the left semi-strip is
p1(k) + p2(k) + p3(k) =0, Im[k] > 0. (104)
Use of (103) in (104) leads to
p2(k)
p1k) = 2k 1’ (105)

which is valid on I:l and Zg. Relation (99) then gives
F( )—i/ ik 20 _ dk+i/ e 55 (k) dk_i/ Gk &)
M=or i, ek —1 27 Ji, P2 27 Ji, ek —1
(106)
On redefining the spectral variable to be
A =ik, (107)

and on use of (96), the transform pair for the unit disc becomes

1 ico p()\)e%n)\ p(V) N
f(z) 27-“/ 1 — e2mk A+ 7/ PO‘)Z dk"‘*/loo mz da,

p (k) =ylf,|_1 f@IZ17 1 de, (108)
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and the spectral rays L1, L, and L are rotated by angle 7t /2 to be almost those defining
the fundamental contour in Fig. 5.

The global relation can be deduced from (105): since p; (k) must be analytic in the
upper half k-plane (105) implies that

(k) =0, keilN, (109)
or, equivalently,
p(A) =0, Ae-—N. (110)

The only difference now between what has just been derived and the formulae (31) is
the integration contour. But this is because in (31) we allow for f(z) to be non-zero
at z = 0 while the derivation of (108) assumes a priori that F(n) — 0 as || — oo.
The radius-r circular arc deformations of the above contours L jtoLjforj=1,2,3
as shown in Fig. 5 are included to add in this extra constant term contribution from
the residue at k = 0.

Appendix B: The Classical (Complex) Mellin Transform Pair

Itis very instructive to see how the classical (complex) Mellin transform pair manifests
itself in our much more general transform approach. The reader will then see how our
generalized transforms for circular domains are really just generalizations of the Mellin
transform.

Let f(z) be analytic in a wedge in a complex z-plane (see Fig. 15) defined by

—0 <arg[z] <0 (111)

for some 0 < 6 < 2m. We now seek a transform pair for a function f(z) which is
analytic in this wedge.

ico 0 + ico
)
o0
) Ly
0
i
xxe
',
Y

z-plane _ m-plane k plane

—100 0 — ico

Fig. 15 The logarithmic transformation from a wedge to a vertical strip
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In Appendix A, at the end, we had to perform the change of spectral variable (107).
To avoid this, instead we modify the original logarithmic change of variable (96) to

n=ilogz, z=e . (112)

Under this transformation the wedge in the z-plane is transplanted to a vertical strip
in the n plane given by

0 < Re[n] < 6. (113)
Let
F(n) = fzm). (114)

Since f(z) is analytic in the z-wedge, and z(#) is analytic in the vertical n-strip, then
F(n) is analytic in the vertical n-strip. Hence, from the transform representation of
functions analytic in polygons we can write

nm=i{/mmmwmﬁ+/”wmwme} (115)
27'[ 0 0
where
p1(k) = /7 F(pe %1 dn = —/ if(2)z" " dz (116)
ico 0
and
0+ioco . coe—if
p2(k) = / F(z)e *1dpy = / if ()" dz. (117)
6—ioco 0

But the global relation says that
p1(k) + p2(k) =0, k eiR. (118)

Hence we can write (115) as

1 ico .
Fw=—/ p1(k)e* dk. (119)
27 J o
If we now define
@ (k) = ip; (k) (120)
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then (116) and (119) imply

_ [ k—1
[¢(k)_f0 f(2)z" " dz, (121)

(@) =2 [ @)z * dk.

This is the classical complex Mellin transform pair with the inverse transform taken
along the classical Bromwich contour running parallel along the imaginary k-axis.
Since the new transforms for circular domains in (42) are built on the results of
Appendix A, which themselves are patently “Mellin transforms for a semi-strip”,
it is natural to call our generalized transform pairs “Fourier—Mellin transforms for
circular domains”. In the latter, the Bromwich contour is replaced by our fundamental
contour in Fig. 5.

Fokas and Kapaev [14] studied some boundary value problems for Laplace’s equa-
tion in a wedge, but without first making the logarithmic transformation (112). The
scheme above can be a convenient alternative to that approach, one that connects the
approach to more classical Mellin transform techniques.
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