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Abstract We study the behavior of the minimum modulus of analytic functions in
the unit disc in terms of ρ∞-order, which is the limit of the orders of L p-norms of
log | f (reiθ )| over the circle as p → ∞. This concept coincides with the usual order
of the maximum modulus function if the order is greater than one. New results are
obtained for analytic functions of order smaller than 1.
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Zero distribution · Canonical product · Harmonic function
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1 Introduction and Main Results

Let DR = {z ∈ C : |z| < R}, 0 < R ≤ ∞, and D = D1. For an analytic function f
on DR , we define the minimum modulus

μ(r, f ) = min{| f (z)| : |z| = r}, 0 < r < R,
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University in Warsaw, Wóycickiego 1/3, 01-938 Warszawa, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40315-015-0118-y&domain=pdf


54 I. Chyzhykov, M. Kravets

and the maximum modulus

M(r, f ) = max{| f (z)| : |z| = r}, 0 < r < R.

Interplay betweenμ(r, f ) andM(r, f ) has been studied in a large number of papers.
In the case of entire functions, i.e., R = ∞, a survey of results up to 1989 can be
found in Hayman’s book ([16, Chap. 6]).

The orders of the growth of an analytic function f in D∞, and in D, respectively,
are defined as

ρ[ f ] = lim sup
r↗∞

log+ log+ M(r, f )

log r
, ρM [ f ] = lim sup

r↗1

log+ log+ M(r, f )

− log(1 − r)
.

For entire functions of order ρ[ f ] ≤ 1, there are a lot of sharp results on the behavior
such as cosπρ-theorem ([1,16]).

Theorem ([1]) Suppose that 0 ≤ ρ < α < 1. If f is an entire function of order ρ

and f (z) �≡ const then

logμ(r, f ) ≥ cosπα logM(r, f ), r ∈ E

where

lim
r→∞

∫
E∩[1,r)

dt
t

log r
≥ 1 − ρ

α
.

One of the most interesting open problems for entire functions of order greater
than 1 is to find the asymptotic behavior of the minimum modulus with respect to
the maximum modulus, especially for values of ρ[ f ] close to 1 ([14,15]). The most
precise results concerning the minimummodulus of entire and subharmonic functions
of order zero can be found in [2–4,11–13].

For analytic functions in the unit disc D the situation, in a certain sense, is the
opposite. Known results are much weaker in accuracy than the statements of the
cosπρ-theorem type. Moreover, these results mainly concern analytic functions with
ρM [ f ] ≥ 1.

We start with an old result of M. Heins.

Theorem A [18] If f (z) is analytic in D, f (z) �≡ const, f (z) is bounded in D, then
there exist a constant K > 0 and a sequence (rn), rn ↗ 1 such that

logμ(rn, f ) ≥ − K

1 − rn
, n → +∞. (1)

For the function f (z) = exp( 1
z−1 ), we have

logM(r, f ) = O(1), logμ(r, f ) = − 1

1 − r
, r ↗ 1.
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Thus, inequality (1) is sharp in the class of bounded analytic functions in the unit disc.
A description of exceptional sets for the relation (1 − |z|) log |B(z)| → 0, |z| ↗ 1,
where B is a Blaschke product, has been very recently obtained in [17].

In the general case, we have the following theorem of C.N. Linden.

Theorem B [20] Let f (z) be an analytic function, f (z) �≡ const inD, ρ = ρM [ f ] >

1, then there is a constant K (ρ) such that

logμ(rn, f ) > −K (ρ) logM(rn, f ) log logM(rn, f ),

for some sequence of number (rn), rn ↗ 1.

The following theorem plays a key role for the estimates of minimum modulus.

Theorem C [20] Let f be analytic in D, and suppose that 1
2 ≤ α < 1. Then, there

exists R0 = R0(α) ∈ (0, 1) such that for arbitrary R ∈ [R0, 1), there is a set
ER ⊂ [R2, R(R + 1

16 (1 − R))] of measure at least 1
32 R(1 − R) such that

logμ(r, f ) ≥ − C

(1 − R)
1
α

log
1

1 − R

×
⎛

⎝
R∫

0

log+ M(t, f )(R − t)
1
α
−1dt + log+ M(R0, f )

⎞

⎠ ,

r ∈ ER, C = C(α, R0) > 0.

Such an approach for analytic functions f of order ρM [ f ] < 1 allows us to get the
following results.

Theorem D [22] Let 0 ≤ ρM [ f ] < 1, f (z) be an analytic in D, f (0) = 1 and

logM(r, f ) < A(1 − r)−ρM [ f ], 0 ≤ r < 1.

Then, there exist R1 ∈ (0, 1) depending on ρM and K = K (A, R1) such that, if
R ∈ (R1, 1), then the interval (R, 1

2 (1 + R)) contains a set of values r of measure at
least 1

4 (1 − R) such that

logμ(r, f ) > − K

1 − r
log

1

1 − r
.

Let (an) be a sequence of zeros of analytic function f in D. For this sequence, we
define

nz(t) =
∑

|an−z|≤t

1.

Theorem E [22] Let f (z) be analytic in D, f (z) �≡ const, ρM [ f ] < 1. If there are
r0 ∈ (0, 1) and a constant B such that
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nreiθ

(
1 − r

2

)

<
B

(1 − r) log
(

1
1−r

) , 0 ≤ θ < 2π, r0 ≤ r < 1,

then there exist K > 0, L ≥ 1
4 , ρ0 ∈ (0, 1) such that, if R ∈ (ρ0, 1), then the interval

(R, 1
2 (1 + R)) contains a set r of measure at least L(1 − R) such that

logμ(r, f ) > − K

1 − r
.

A characteristic feature of Theorems D and E is that their conclusions do not
depend on the corresponding value of order ρM [ f ] ∈ [0, 1]. It appears that, in this
case, the value ρM [ f ] does not allow the behavior of the minimum modulus in terms
of conditions on zeros of f to be described more precisely. The aim of this paper is to
correct this defect. Note that, some classes of bounded analytic functions satisfying
the inequality

logμ(r, f ) ≥ − K

(1 − r)α
, 0 < α < 1,

were found in [5].
For an analytic function f (z), z ∈ D, f �≡ 0 and p ≥ 1, we define

mp(r, f ) =
(

1

2π

∫ 2π

0
| log | f (reiθ )||pdθ

) 1
p

, 0 < r < 1.

We write

ρp[ f ] = lim sup
r↗1

logmp(r, f )

− log(1 − r)
.

We define the order ρ∞[ f ] of the function f as

ρ∞[ f ] = lim
p→+∞ ρp[ f ].

The limit exists since ρp is a non-decreasing function in p ([24]). This quantity
appeared for the first time in a work of Linden [23], who proved that ρM [ f ] = ρ∞[ f ]
provided that ρM [ f ] > 1, and ρM [ f ] ≤ ρ∞[ f ], but he did not study the classes of
functions defined by the order ρ∞[ f ] when ρ∞[ f ] < 1. Applications of this concept
to factorization of analytic functions inD, and logarithmic derivative estimates can be
found in [6,9].
Let a sequence (an) in D satisfy the condition

∑

n

(1 − |an|)s+1 < +∞, s ∈ Z+. (2)
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Consider the canonical product, s ∈ N,

P(z) =
∞∏

n=1

E (An(z), s) , (3)

where E(w, 0) = 1 − w,

E(w, s) = (1 − w) exp{w + w2/2 + ... + ws/s}, s ∈ N,

is the Weierstrass primary factor, and An(z) = 1−|an |2
1−ān z

. The function P(z) is analytic
in the unit disc with the zero sequence (an) provided that (2) holds. We note that if
s = 0, we have P0(z) = CB(z), where C = ∏

n |an|,

B(z) =
∏

n

ān(an − z)

|an|(1 − ānz)

is the Blaschke product corresponding to the sequence (an) provided that
∑

n(1 −
|an|) < ∞. We define

Nz(h) =
∑

|an−z|≤h

log
h

|z − an| =
h∫

0

nz(s)

s
ds, 0 < h < 1 − |z|.

Let E ⊂ [0, 1) be a measurable set. The upper density of E is defined by

D1(E) = lim sup
r↗1

λ1(E ∩ [r, 1))
1 − r

where λ1(E∩[r, 1)) denotes the Lebesgue measure of E∩[r, 1). Theorem 1 describes
the minimum modulus of canonical products of genus s ∈ N.

Theorem 1 Given a sequence (an) in D, suppose that nz
(
1−|z|
2

)
≤

(
1

1−|z|
)β

, for

some β > 0, and all z ∈ D\Dr0 , 0 ≤ r0 < 1, and let P(z) be the canonical product
of genus s ≥ [β] + 1 with zeros (an). Then, for arbitrary K1, K2 > 1, there exist a
constant C ∈ (0, 2

3 ] and a set F ⊂ [0, 1) such that

Nz

(
1 − |z|

4

)

≤ K1

(
1

1 − |z|
)β

log
1

1 − |z|
and

logμ(r, P) ≥ −K2
1

(1 − r)β
log

1

1 − r
, r ∈ [0; 1)\F,

where D1(F) ≤ C.
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58 I. Chyzhykov, M. Kravets

Remark 1 An example from [20, Theorem 6] shows that for all β ≥ 1 there exists an
analytic function inD satisfying the conditions of Theorem 1, and of order ρM [ f ] = β

such that

logμ(r, f ) ≤ −K3
1

(1 − r)β
log

1

1 − r
,

holds for all r ∈ [0, 1) and some constant K3(β) > 0.

In the general case, we need the following factorization theorem.

Theorem F [6] Let f be an analytic function in D, and of finite order ρ∞[ f ]. Then,

f (z) = z p P(z)g(z) (4)

where P(z) is a canonical product of form (3) displaying the zeros of f , p is a non-
negative integer, g is non-zero and both P and g are analytic, and ρ∞[P] ≤ ρ∞[ f ],
ρ∞[g] ≤ ρ∞[ f ].

Let u(z) be a harmonic function in D. We then define

mp(r, u) =
(

1

2π

∫ 2π

0
|u(reiθ )|pdθ

) 1
p

.

Denote M∞(r, u) = max{|u(z)| : |z| = r}. The following statement is of some
independent interest. It gives another way to compute ρ∞-order of an analytic function
without zeros.

Proposition 1 Let u(z) be a harmonic function in D. Then, we have

ρ∞[u] = lim sup
r↗1

logM∞(r, u)

− log(1 − r)
.

The main result of this paper is the following.

Theorem 2 Let f be analytic inD, ρ∞[ f ] = ρ, ρ < +∞. Then, for arbitrary ε > 0,
there exists C ∈ (0, 1), and a set F ⊂ [0, 1), such that

logμ(r, f ) ≥ − 1

(1 − r)ρ+ε
(5)

for r ∈ [0, 1)\F, D1(F) ≤ C.

Remark 2 Theorem 2 gives us substantially new information when ρ∞[ f ] < 1.

Remark 3 The function g(z) = exp{− 1
(1−z)α log 1

1−z }, g(0) = 1, shows that ε in the
inequality (5) cannot be omitted.

Some generalizations of Theorems 1 and 2 are considered in Sect. 3.
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2 Proof of the Main Results

The following lemma is important in our investigation.

Lemma 1 [21] For a given value θ let Sm,k denote the region

1 − 2−k ≤ |z| < 1 − 2−k−1, 2πm2−k < θ − arg z ≤ 2π(m + 1)2−k, (6)

where k and m are integers such that k > 0 and −2k−1 ≤ m ≤ 2k−1 − 1. Let k0 be
a positive integer and β > 0. Suppose that there are a finite number of points an in
{|z| < 1 − 2−k0} and that for some value θ such that 0 ≤ θ < 2π there are at most
C2kβ points an in each region (6) for k ≥ k0. Then, if s is an integer greater than β

the function P defined by (3) is analytic in D and

log |P(z)| ≤ 2s+2
∞∑

n=1

∣
∣
∣
∣
1 − |an|2
1 − zān

∣
∣
∣
∣

s+1

< K (1 − |z|)−β

where K depends on s, β,C.

Proof of Theorem 1 Without loss of generality, we may assume that r0 = 0. Other-
wise,

nz

(
1 − |z|

2

)

≤ Cr0

(1 − |z|)β ,

where Cr0 = max
{
1, n0

(
1+r0
2

)}
, because nz

(
1−|z|
2

)
≤ n0

(
1+r0
2

)
if |z| ≤ r0.

Since each Sm,k can be covered by a uniformly bounded number of discs of the form
{ζ : |ζ − z| <

1−|z|
2 } with the centers in Sm,k , the assumptions of Lemma 1 are

satisfied. Hence, the inequality nz
(
1−|z|
2

)
≤

(
1

1−|z|
)β

holds in D and we have from

Lemma 1
∞∑

k=1

|Ak(z)|s+1 ≤ K

(
1

1 − r

)β

.

We denote rN = 1 − ( 3
4

)N , and use the following lemma. �

Lemma 2 [15] Suppose that r > 0, h > 0 and that for |z| = r we have nz(h) ≤ n0.
Then there exist a set E ⊂ [r, r + h

2 ] having measure at least 1
4h such that, for R in

E and |z| = R,

Nz

(h

2

)
≤ n0 log

A(r + h)

h
.

where A is an absolute constant.
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60 I. Chyzhykov, M. Kravets

We apply this lemma with r = rN , h = 1
2 (1 − rN ) = 1

2

( 3
4

)N
, and n0 = ( 4

3

)Nβ
.

Since rN + h
2 = rN+1, there exists a set EN ⊂ {R : 1 − rN ≤ R ≤ 1 − rN+1} such

that λ1(EN ) ≥ 1
8

( 3
4

)N , and for R ∈ EN and |z| = R we obtain

Nz

(
1

2
h

)

≤
(
4

3

)βN

log
A(rN +h)

h
≤

(
1

1−rN

)β

log
2A

1−rN
≤

(
1

1−R

)β

log
2A

1−R
.

We define F = ⋃∞
N=1 FN where FN = [1 − rN ; 1 − rN+1]\EN . Let us prove that

λ1([r, 1) ∩ F) ≤ C(1 − r)

holds, where 0 < C ≤ 2
3 . Note that,

λ1(FN ) = RN+1 − RN − λ1(EN ) ≤ 1

8

(
3

4

)N

, N ∈ N.

Consider two cases:

i) Let r ∈ [1 − ( 3
4

)k
, 1 − 7

6 · ( 3
4

)k+1], k ∈ N. Then,

λ1([r, 1) ∩ F) ≤
∞∑

N=k

λ1

([
1 −

(3

4

)N
, 1 −

(3

4

)N+1] ∩ FN

)
=

∞∑

N=k

λ1(FN ) ≤

≤
∞∑

N=k

1

8

(
3

4

)N

= 1

2

(
3

4

)k

.

Since r ≤ 1 − 7
6 · ( 3

4

)k+1, we obtain
( 3
4

)k ≤ 8
7 (1 − r). Hence,

λ1([r, 1) ∩ F) ≤ 4

7
(1 − r).

ii) Let r ∈ [1 − 7
6 · ( 3

4

)k+1
, 1 − ( 3

4

)k+1]. Thus,

λ1([r, 1) ∩ F) ≤
∞∑

N=k+1

λ1(FN ) + 1

6
·
(
3

4

)k+1

≤
∞∑

N=k+1

1

8

(
3

4

)N

+ 1

6
·
(
3

4

)k+1

= 2

3
·
(
3

4

)k+1

≤ 2

3
(1 − r).

Therefore, we have proved that λ1([r, 1) ∩ F) ≤ 2
3 (1 − r) holds for all r < 1

sufficiently close to 1. Thus, D1(F) ≤ C ≤ 2
3 .

To complete the proof of Theorem 1 we need the following lemma.
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Lemma 3 [7] For arbitrary δ ∈ (0, 1) and arbitrary z ∈ D, the inequality

| log |P(z)| + Nz(δ(1 − |z|))| ≤ C1(δ, s)
∞∑

k=1

|Ak(z)|s+1

holds, where C1 is a positive constant depending on s and δ.

From Lemmas 3 and 1, and (2) we get

log |P(z)| ≥ −C1

(1

4
, s

) ∞∑

k=1

|Ak(z)|s+1 − Nz

(1

4
(1 − |z|)

)
,

logμ(r, P) ≥ − log

(
2A

1 − r

) (
1

1 − r

)β

− C2

(1

4
, s, β

) (
1

1 − r

)β

≥

≥ −K

(
1

1 − r

)β

log
1

1 − r
, r ↗ 1, r /∈ F

where K > 1 is an arbitrary constant. Theorem 1 is proved.

Proof of Proposition 1 Since |u(reiθ )| ≤ M∞(r, u), we have mp(r, u) ≤ M∞(r, u).
It implies

ρ∞[u] ≤ lim sup
r↗1

logM∞(r, u)

− log(1 − r)
:= ρ∗.

Let P(z, w) = Rew+z
w−z be the Poisson kernel. The Poisson formula together with

Hölder’s inequality yields

|u(reiθ )| ≤ 1

2π

∫ 2π

0
|u(Reiϕ)|P(reiθ , Reiϕ)dϕ

≤
(

1

2π

∫ 2π

0
|u(Reiϕ)|pdϕ

)1/p (
1

2π

∫ 2π

0
(P(reiθ , Reiϕ))qdϕ

)1/q

= mp(R, u)

(
1

2π

∫ 2π

0
(P(reiθ , Reiϕ))

p
p−1 dϕ

) p−1
p

where 1
p + 1

q = 1, 0 < r < R < 1, 0 ≤ θ < 2π. �
For the estimate of the Poisson kernel, we use the following lemma

Lemma 4 [10] If a > 0 and R = 1
2 (1 + r) then

∫ 2π

0
|Reit − r |−adt = O((1 − r)1−a), r ↗ 1.
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Therefore,

M∞(r, u) ≤ K4mp(R, u)(1 − r)−1/p ≤ K4

(
1

1 − R

)ρp+ε

(1 − r)−1/p.

Putting R = 1
2 (1 + r), we get

M∞(r, u) ≤ K5

(
1

1 − r

)ρp+ε+1/p

.

Thus, as p → ∞ we obtain

ρ∗ ≤ ρ∞[u] + ε.

Hence, from arbitrariness of ε > 0 it follows that ρ∗ ≤ ρ∞[u], and finally

ρ∞[u] = lim sup
r↗1

logM∞(r, u)

− log(1 − r)
.

Proof of Theorem 2 By Theorem F, we have

f (z) = z p P(z)g(z),

where P(z) is a canonical product of form (3) displaying the zeros of f , p is a non-
negative integer, g is non-zero, both P and g are analytic, and ρ∞[P] ≤ ρ, ρ∞[g] ≤ ρ.
Further,

log | f (z)| = p log |z| + log |P(z)| + log |g(z)|.

Note that, by [6, Thm. 1.4]

nz

(
1 − r

2

)

≤ (1 − r)−ρ−ε, |z| = r ↗ 1.

Applying Theorem 1, with β = ρ + ε we get

logμ(r, P) ≥ −K2

(
1

1 − r

)ρ+ε

, r ∈ [0, 1)\F

where D1(F) ≤ C .
We set u = log |g(z)|, u is harmonic in D. Since ρM [g] ≤ ρ∞[g] ≤ ρ, applying

Proposition 1, we deduce

M∞(r, u) ≤ (1 − r)−(ρ+ε), r ∈ [r0, 1)
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which is equivalent to

| log |g(reiθ )|| ≤ (1 − r)−(ρ+ε).

Thus, we have

logμ(r, f ) ≥ −(1 − r)−(ρ+ε) − K2

(
1

1 − r

)ρ+ε

log

(
1

1 − r

)

+ p log r

≥ −(1 − r)−ρ−2ε, r ↗ 1, r /∈ F.

Theorem 2 is proved. �

3 Generalizations

Remark 4 One can replace the condition nz
(
1−|z|
2

)
≤

(
1

1−|z|
)β

in Theorem 1 by a

more general one of the form nz
(
1−|z|
2

)
≤ ψ

(
1

1−|z|
)

, where ψ : [1,+∞) → R+ is

a non-decreasing function such that ψ(2x) = O(ψ(x)), x → ∞. Then, one should

replace the factor 1
(1−r)β

log 1
1−r by ψ̃

(
1

1−r

)
log 1

1−r in the conclusion of Theorem 1,

where ψ̃(x) = ∫ x
1

ψ(t)
t dt (see [7], for details).

If we have additional information on the factors in the factorization formula (4) we
can state more, using the same method.

Theorem 3 Let f be an analytic function in D of the form (4), ψ is a positive non-
decreasing function such that ψ(2x) = O(ψ(x)) on [1,+∞). If

M∞(r, log |g|) ≤ ψ

(
1

1 − r

)

and the counting functions of the zeros of f satisfy

nz

(
1 − |z|

2

)

≤ ψ

(
1

1 − |z|
)

,

then

logμ(r, f ) ≥ −ψ̃

(
1

1 − r

)

log
1

1 − r
,

where ψ̃(x) = ∫ x
1

ψ(t)
t dt.
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