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Abstract
An outbreak of coronavirus disease 2019 (COVID-19) has quickly spread worldwide from
December 2019, thus characterizing a pandemic. Until August 2020, the United States of
America (U.S.) accounted for almost one-fourth of the total deaths by coronavirus. In this
paper, a new regression is constructed to identify the variables that affected the first-wave
COVID-19 mortality rates in the U.S. states. The mortality rates in these states are computed
by considering the total of deaths recorded on 30, 90, and 180 days from the 10th recorded
case. The proposed regression is compared to the Kumaraswamy and unit-Weibull regres-
sions, which are useful in modeling proportional data. It provides the best goodness-of-fit
measures for the mortality rates and explains 76.57% of its variability. The population den-
sity, Gini coefficient, hospital beds, and smoking rate explain the median of the COVID-19
mortality rates in these states. We believe that this article’s results reveal important points to
face pandemic threats by the State Health Departments in the U.S.

Keywords COVID-19 · Pandemic · unit interval · unit Burr XII distribution

Mathematics Subject Classification 60E05 · 62J99

1 Introduction

Coronavirus disease-2019 (COVID-19), initially so-called 2019-nCoV, belongs to the coro-
navirus family of enveloped positive-strand RNA viruses. This illness infects several species
of animals and humans, causing respiratory tract infections, liver, neurological and gas-
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trointestinal problems, ranging from mild to lethal (Guan et al. 2003). Its initial source was
identified in Wuhan city, Hubei province of China, in persons exposed to seafood and wet
animal wholesale market. The first case was detected in December 2019 (Municipal Health
Commission et al. 2019) and has quickly spread worldwide.

In the past two decades, the COVID-19 is the third coronavirus to emerge in the human
population, likely characterizing a potentially more novel and severe infectious disease to be
revealed. Due to the rapid spread and increase in the number of cases, there is evidence that it
is more contagious than the severe acute respiratory syndrome coronavirus (SARS-CoV) and
the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks, which occurred
in 2002 and 2012, respectively (Huang et al. 2020; Munster et al. 2020). Inclusive, since its
similarity with the SARS-CoV, the COVID-19 is also named by SARS-CoV-2.

In April 2020, due to many cases and deaths by the new coronavirus, New York City had
become the new epicenter of the disease in the United States of America (U.S.) (Radmanesh
et al. 2020), after Italy. Thenceforward, several other states have experienced a substantial
increase in the number of cases and deaths. From January 20 to August 14, 2020, the total of
confirmed cases passed five million in the country, being equal to 5, 150, 407. In this same
period was recorded 164, 826 deaths (World Health Organization 2020). Those numbers are
equivalent to about 25% of the documented cases total and 22% of deaths by coronavirus
globally (World Health Organization 2020).

Some recent studies present statistical applications to pandemic data in the U.S. Bashir
et al. (2020) analyzed the correlation between the virus and climate indicators in New York
City. They identified that the temperature and air quality are significantly associated with
the coronavirus pandemic. Regressive and autoregressive spatial models were examined by
Mollalo et al. (2020) to explain variations of coronavirus in the whole country, considering
several environmental, topographic, socioeconomic, behavioral, and demographic factors as
predictor variables. Duhon et al. (2021) estimated the initial growth rate of COVID-19 for all
countries of the world. They used a multiple linear regression model to study the association
between the initial growth rate and non-pharmaceutical interventions, demographic, social,
and climatic factors. Other similar studies can be found in Andersen (2020) and Zhang and
Schwartz (2020).

Although several studies have been done regards to pandemic, to our best knowledge,
a regression analysis modeling the first-wave coronavirus mortality rate across the 50 U.S.
states has no been conducted. Our goal is to analyze how health care resources, demographic,
socioeconomic, and behavioral variables affected the first-wave COVID-19 mortality rate in
the U.S. to identify which covariates have a more significant influence on the mortality’s
initial growth by this disease. This information can be helpful to improve decision-making in
the area of public health policy. Moreover, the findings can help understand potential future
outbreaks in other countries of the world.

In this context, some regressions are fitted to the first-wave coronavirus mortality rates in
the 50 American states to determine the demographic, socioeconomic, health care resources,
and behavioral covariates that affect these rates. Since the response variable has a restricted
domain, a new parametric regression is constructed to fit these data. The new regression,
based on a transformation on the Burr XII (BXII) random variable, is compared to the
Kumaraswamy (Kw) and unit-Weibull (UW) regressions, which are feasible alternatives to
model the median of such data. The main advantage of the proposed regression is that it
captures the effect of the associated covariate to health care resources and provides the best
regression’s adequacy measures. Other similar quantile regressions and unit models recently
proposed can be found in Gündüz and Korkmaz (2020), Korkmaz (2020a, b), Korkmaz et al.
(2021).
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The rest of the paper is structured as follows. A new regression to model the mortality
rates in the American states is defined in Sect. 2. Further, the estimation of the parameters,
a simulation study, and some goodness-of-fit measures to check the proposed regression’s
adequacy are discussed. Section 3 contains some basic statistics of the data set, performs an
analysis by identifying the best regression to fit the mortality rates, and provides some useful
findings. Finally, in Sect. 4, some concluding remarks are addressed.

2 The proposed regression

This section aims to introduce a new regression that has much broader applicability in
coronavirusmortality rates. This approach’s particular feature is that it accommodates double-
bounded variables in the unit interval with several types of asymmetry. The proposal is based
on the transformation Z = 1 − e−X , where X is a BXII random variable having cumulative
distribution function (cdf) and probability density function (pdf)

FX (x; c, d) = 1 − (
1 + xc

)−d
, x > 0,

and

fX (x; c, d) = c d xc−1 (
1 + xc

)−(d+1)
,

respectively, where c > 0 and d > 0 are shape parameters. It is worth noting that Z can
also be seen as a reflected transformation on W , Z = 1− W , where W is a random variable
following a unit Burr XII (UBXII) distribution pioneered by Korkmaz and Chesneau (2021).
Hence, the cdf and pdf of the reflected unit Burr XII (RUBXII) distribution can be expressed
as (for z ∈ (0, 1))

FZ (z; c, d) = 1 − [1 + logc(1 − z)−1 ] −d , (1)

and

fZ (z; c, d) = c d
(z − 1)−1 logc−1(1 − z)−1

[1 + logc(1 − z)−1]d+1 , (2)

respectively. By inverting (1), the quantile function (qf) of Z is

QZ (u; c, d) = 1 − exp
{
−[(1 − u)−1/d − 1]1/c

}
. (3)

Both the UBXII and RUBXII distributions are special cases of the unit extended Weibull
family; see Guerra et al. (2020).

To introducing a systematic component on a location parameter, the RUBXII distribution
is re-parameterized in terms of its quantiles. Let q(τ ) = QZ (τ ; c, d) be the τ th quantile of
Z . By evaluating Equation (3) in τ and inverting for d ,

d = log(1 − τ)−1/ log
{
1 + logc [1 − q(τ )]−1} . (4)

Although the quantiles are functions of τ , q(τ ) is denoted just as q to simplify the notation.
Then, by replacing (4) in Equations (1) and (2), the cdf and pdf of the RUBXII distribution
expressed in terms of a quantile-based parameterization are (for z ∈ (0, 1))

FZ (z; q, c) = 1 − [
1 + logc(1 − z)−1]

log(1−τ)

log[1+logc (1−q)−1] , (5)

123



255 Page 4 of 16 T. F. Ribeiro et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

z

f(z
)

c = 0.8, q = 0.5
c = 3.3, q = 0.5
c = 4.6, q = 0.1
c = 1.2, q = 0.8

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

z

f(z
)

c = 1.1, q = 0.9
c = 4.4, q = 0.6
c = 5.0, q = 0.4
c = 0.3, q = 0.2

Fig. 1 Plots of the RUBXII density (τ = 0.5)

and

fZ (z; q, c) = log(1 − τ)−c logc−1(1 − z)−1

(1 − z) log
[
1 + logc(1 − q)−1

]
[
1 + logc(1 − z)−1]

log(1−τ)

log[1+logc (1−q)−1]−1
,

(6)

respectively, where c > 0 is a shape parameter and the quantile order τ ∈ (0, 1) is chosen by
the researcher. Henceforth, let Z ∼ RUBXII(q, c) be a random variable having density (6).

In some cases, median-based regressions are preferable to the mean-based. Median is
a more robust measure against the presence of atypical observations and asymmetries at
data than the mean. Thus, when data present these features, it is more suitable to consider
the median as a measure of location than the mean (Pumi et al. 2020). In the coronavirus
mortality rates application of Sect. 3, we consider τ = 0.5, and therefore, q = q(0.5) is the
median of Z .

Figure 1 displays the RUBXII density plots with τ = 0.5, which have the following forms:
U, symmetric, right-skewed, increasing, and increasing-decreasing-increasing (tilde). Thus,
it is useful for modeling variables with different types of skewness and heavy tails. Moreover,
it can assume shapes (as tilde-shaped) whose densities of classical regressions for modeling
unit data do not accommodate.

On the proposed re-parametrization, the qf of Z is

QZ (u) = 1 − exp

{

−
[
(1 − u)log[1+logc(1−q)−1]/ log(1−τ ) − 1

]1/c}

. (7)

It is useful to generate observation from the RUBXII distribution by the inversion method
since it has a closed-form. So, ifU is a randomvariable having a standard uniformdistribution,
then Z = QZ (U ) follows the RUBXII law.

Let z = (z1, . . . , zn)� be a vector of n independent observations of the variables
Zi ∼ RUBXII(qi , c) (for i = 1, . . . , n). The new regression is proposed assuming that the
parameters qi can be expressed as a function of covariates under the systematic component

g(qi ) = ηi =
k∑

j=1

xi j ξ j = x�
i ξ , (8)

where g : (0, 1) → R is a strictly monotonic and twice differentiable link function, ηi is the
linear predictor, and ξ = (ξ1, . . . , ξk)

� is the parameter vector associated with the covariates
x�
i = (xi1, . . . , xik). The quantities qi can be obtained by inverting (8) as qi = g−1(ηi ).
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Several link functions can be chosen for g(·) such as the logit, probit, and complementary
log–log. In applications, the logit link function is generally considered due to the useful
interpretation of the regression coefficients as an odds ratio. It is defined as g(p) = log[p/(1−
p)], and it is used in all fitted regressions here.

2.1 Estimation

The estimation of the parameters of the RUBXII regression is done by the maximum like-
lihood (ML) method. Let θ = (ξ�, c)� be the (k + 1)-dimensional parameter vector. The
log-likelihood function based on a sample of n independent observations is

�(θ) ≡ �(ξ , c) =
n∑

i=1

�i (qi , c), (9)

where qi satisfies the systematic component (8) and �i (qi , c) is the logarithm of the density
fZ (zi ; qi , c) given in Eq. (6). Thus,

�i (qi , c) = log(1 − zi )
−1 − log [ r(qi ) ] + log [ log(1 − τ)−c ]

+ log [ logc−1(1 − zi )
−1] + [log(1 − τ)/r(qi ) − 1] r(zi ),

where r(x) = log [ 1 + logc(1 − x)−1].
The components of the score vector U (θ), given in Appendix 1, are defined as the par-

tial derivatives of (9) with respect to each element of the parameter vector θ . Equalizing
its components to zero, U (θ) = 0, and solving the system simultaneously, the maximum

likelihood estimators (MLEs) θ̂ = (ξ̂
�
, ĉ)�of θ can be found. However, the system of equa-

tions is non-linear and cannot be solved analytically. In such a way, the estimators must
be obtained through numerical optimization algorithms using well-known programming lan-
guages such as theR (optim function), SAS (PROC NLMIXED), andOx program (MaxBFGS
sub-routine).

2.2 Simulation study

Some Monte Carlo experiments are carried out to assess the performance of the MLEs on
the finite sample. Consider the systematic component for qi :

log

(
qi

1 − qi

)
= ηi = ξ1 + ξ2 xi2, i = 1, . . . , n.

Four scenarios with different simulation schemes, combining various values for the para-
meter vector θ = (ξ1, ξ2, c)�, are considered. To evaluate the performance of the MLEs,
for each scenario, the samples {(z1, x12) , . . . , (zn, xn2)} are simulated 10,000 times with
n ∈ {30, 90, 160, 300}. The occurrences of the response Zi ∼ RUBXII(qi , c) are obtained
by the inversion method through the qf in Equation (7). The covariate xi2 is generated from
a uniform distribution on the interval (−3, 3) (scenarios 1 and 2), and a standard normal
distribution (scenarios 3 and 4). The R programming language (R Core Team 2021) is used
to perform the simulation study.

The percentage relative bias (RB) and root mean squared error (RMSE) of the estimates
in θ are determined. Table 1 lists the results for these measures. Low RB values are noted
even for small sample sizes. Considering all the scenarios and sample sizes, the RBs of the

123



255 Page 6 of 16 T. F. Ribeiro et al.

Table 1 Simulation results from the RUBXII regression

Scenario ξ1 ξ2 c n RB RMSE

ξ̂1 ξ̂2 ĉ ξ̂1 ξ̂2 ĉ

1 −1.6 1.2 2.3 30 −0.0122 0.4027 7.6418 0.1293 0.0753 0.4343

90 0.0998 −0.1007 2.4591 0.0757 0.0431 0.2124

160 0.1782 −0.1204 1.3935 0.0551 0.0336 0.1546

300 0.1585 −0.1431 0.7695 0.0422 0.0234 0.1098

2 2.5 3.1 3.2 30 −2.9889 −0.9241 13.3777 0.3581 0.1647 0.8805

90 −2.4068 −0.9072 4.0566 0.1829 0.0874 0.4272

160 −2.6012 −0.9774 1.6314 0.1445 0.0689 0.2888

300 −2.7385 −1.0250 0.6371 0.1180 0.0552 0.2042

3 −0.5 −2.8 3.2 30 −3.2219 −0.4907 14.7059 0.2350 0.1103 1.1643

80 −2.6410 −1.2360 4.6612 0.1528 0.1263 0.6492

160 −3.9155 −1.9756 1.6002 0.1217 0.0922 0.3960

300 −4.3493 −2.5438 0.3910 0.1031 0.0878 0.2848

4 1.6 2.3 4.2 30 0.4497 0.1082 8.0971 0.1273 0.1096 0.6221

90 1.6508 −0.2845 2.7237 0.0731 0.0897 0.3342

160 1.3309 −0.1371 1.4408 0.0558 0.0512 0.2522

300 1.8395 −0.2971 0.7331 0.0418 0.0373 0.1709

estimates of ξ1 and ξ2 are less than 4%, and those of c are less than 15%. On the other hand,
the RMSE quickly goes to zero when n increases, thus in agreement with the asymptotic
properties of the MLEs.

2.3 Regressionmodel adequacy

In this section, some methods are presented to analyze whether a fitted regression is suitable
for a data set. As goodness-of-fit measures of the RUBXII regression, the maximized log-
likelihood value (LL), a normality test for the quantile residuals (Dunn and Smyth 1996),
generalized pseudo-R2 (R2

G ), and a RESET-type test are considered. The same measures are
adopted to compare the proposed regression with other suitable regressions for proportional
data.

The quantile residuals for the RUBXII regression are

r = �−1[FZ (z; q̂, ĉ)],

where FZ (·) is the cdf of the RUBXII distribution given in Eq. (5) and �−1(·) is the qf of
the standard normal distribution. If the fit is adequate, it is expected that the distribution of
the quantile residuals is close to the standard normal. To check whether this assumption is
satisfied, the well-known Shapiro–Wilk (SW) normality test can be performed.

The R2
G is useful to assess the proportion of the response variable’s variation explained

by the regression. It is defined by Nagelkerke (1991) as

R2
G = 1 − exp

{
−2/n [�(θ̂) − �(θ̂0)]

}
,
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where �(θ̂0) is the log-likelihood for the null model, i.e., modeling the response without
covariates, and �(θ̂) is the log-likelihood of the fitted regression. A regression with a higher
value of R2

G provides a larger explanation power of the response variable’s variation.
A RESET-type test introduced by Pereira and Cribari-Neto (2014) can be adopted to

detect possible specification errors in the regression. The null hypothesis of this test is that
the regression is correctly specified. It may be conducted in the following way: (i) fit the
regression and obtain the fitted values q̂ = (q̂1, . . . , q̂n)� of q = (q1, . . . , qn)� using (8);
(ii) compute powers of second and third degrees of q̂, i.e., get q̂2 = (q̂21 , . . . , q̂

2
n )

� and
q̂3 = (q̂31 , . . . , q̂

3
n )

�; and (iii) using these powers as additional covariates, fit the augmented
regression, and test their significance through the likelihood ratio (LR) test.

The LR statistic is ω = 2[�(θ̂) − �(θ̃)], where �(θ̂) and �(θ̃) are the unrestricted and
restricted maximized log-likelihood functions, respectively. Under the null hypothesis, ω

converges in distribution to a chi-squared with ν degree of freedom, that is, ω
D−→ χ2

ν , where
ν is the number of added test variables (ν = 2 in this case).

3 Results and discussion

In the first eight months of the coronavirus advance since its inception, on August 19, 2020
in the U.S., the Disease Control and Prevention (CDC) reported a total of 5,650,176 con-
firmed cases and 175,789 deaths, putting the disease with 3.1% lethality. Also, the adoption
of systematic non-pharmaceutical interventions seems to have decreased mortality. Thus,
understanding the relationship between demographic, socioeconomic, health care resources,
and behavioral variables with the mortality rate became a crucial task. In this sense, this sec-
tion presents the RUBXII regression’s application, concurrently with two other well-known
regression models, by associating the mortality rate with these possible predictor variables.

The amount of information available on the disease is as abundant as it is scattered and
unreliable. Therefore, before the analysis, data mining is built to construct the database
described at the beginning of the section. The regressionmodels chosen in this study consider
an essential characteristic of the mortality rate: it belongs to the interval (0, 1).

3.1 Descriptive statistical analysis

The response variable is the COVID-19 deaths rate in the U.S. states. This rate is calculated
in the 50 states from data available by the CDC (Centers for Disease Control and Prevention
2020). For all states, it is considered the total of deaths per hundred people on 30, 90, and
180 days after the 10th detected case, to ensure that the comparisons are made to the same
period. In this way, a panel with three observations for each state is structured.

For all states, the population density, Gini coefficient, hospital beds, smoking rate, poverty
rate, and life expectancy, are obtained from the following sources: World Population Review,
Global Data Lab, World Atlas, Kaiser Family Foundation, Iowa Community Indicators Pro-
gram of the Iowa State University, and County Health Rankings and Roadmaps. The response
variable and covariates are defined below:

1. MR: Mortality rate (response variable) (Centers for Disease Control and Prevention
2021).

2. PD: Population density (p/mi2) (data of 2020) (World Population Review 2020c).
3. GINI: Gini coefficient (data of 2017) (World Atlas 2017).

123



255 Page 8 of 16 T. F. Ribeiro et al.

Table 2 Descriptive statistics

Variable Statistics

Mean Median Skewness Kurtosis Min. Max. CV(%)

MR(30) 0.0035 0.0021 2.4538 5.2026 0.0001 0.0191 126.2387

MR (90) 0.0257 0.0149 2.0870 4.0643 0.0012 0.1375 116.6332

MR (180) 0.0449 0.0335 1.6478 2.9062 0.0060 0.1800 79.7501

PD 203.9010 107.7835 2.2110 4.4851 1.2863 1,215.1980 130.2652

GINI 0.4522 0.4530 0.1339 −0.4813 0.4190 0.4990 3.9165

BEDS 2.6000 2.4500 0.9693 0.5641 1.6000 4.8000 27.2984

SR 0.1733 0.1715 0.2741 −0.1108 0.0890 0.2600 20.0528

PR 0.1323 0.1322 0.4554 −0.3877 0.0762 0.2007 21.3240

LE 78.6960 79.1000 −0.4830 −0.4259 74.8000 82.3000 2.2677

4. BEDS: Hospital beds per 100 thousand inhabitants (data of 2018) (Kaiser Family Foun-
dation 2018).

5. SR: Smoking rate by state (data of 2020) (World Population Review 2020b).
6. PR: Poverty rate (data of 2020) (World Population Review 2020a).
7. LE: Life expectancy (data of 2018) (County Health Rankings & Roadmaps 2018).
8. T90: dummy that is equal to one if the response observation corresponds to mortality rate

after 90 days of the 10th confirmed case, and zero otherwise.
9. T180: dummy that is equal to one if the response observation corresponds to mortality

rate after 180 days of the 10th confirmed case, and zero otherwise.

Table 2 gives some descriptive measures of these variables. TheMR has a high coefficient
of variation (CV) for all current time periods, being the most at 30 days with a CV of about
126%. Also, in the three time periods (30, 90, and 180 days), the response presents positive
skewness, the mean is not close to the median, and at 30 and 90 days its kurtosis is greater
than three indicating that it has a leptokurtic distribution. The GINI, and LE covariates have
the lowest variabilities with CV ranging between about 2% and 4%. On the other hand, the
PD covariate has the most CV about at 130% and takes values on a sizeable range since the
minimum and maximum are around 1p/mi2 (referring to the Alaska state) and 1, 215p/mi2,
respectively. The BEDS, SR, and PR covariates have close CVs varying from around 21% to
28%. Moreover, they have a mean close to the median, and kurtosis lower than three. Only
the LE covariate has negative skewness.

Figure 2 displays the histogram of the MR and box plots from three panel’s observations,
i.e., MR for 30, 90, and 180 days. The histogram and the three box plots agree to those figures
in Table 2. The MR on 30, 90, and 180 days have skewed-right distribution, and it presents
some outliers. Clearly, after 90, and 180 days of the 10th recorded case, the mortality rate
has increased substantially according to the box plots.

3.1.1 Correlation analysis

Initially, we present some dispersion plots of the response variable against each covariate; see
Fig. 4. It can be noted that there is no indication of a linear relationship among them. Then
Fig. 3 displays the correlation matrix for the current variables by considering the Spearman
method. To study the significance of these correlations, it is carried out a Spearman correlation
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Fig. 2 Histogram of the MR and box plots of the MR after 30, 90, and 180 days after the 10th confirmed case
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Fig. 3 Correlation matrix

test and a non-parametric analysis. This test’s null hypothesis (H0) is that the populational
correlation coefficient between two variables is equal to zero, i.e., there is no statistically
significant correlation. Under H0, the computed test statistic converges in distribution to a
Student’s t distribution with (n − 2) degrees of freedom, where n is the sample size. The
p-values of the test are given in Table 3.

In a first analysis, note that the response variable is positively correlated to PD, present-
ing the most correlation value with the MR regards to the other covariates (see Figure 3).
Moreover, this correlation is significant; see Table 3. Hence, theMR increases as PD. Indeed,

123



255 Page 10 of 16 T. F. Ribeiro et al.

0 200 600 1000

0.
00

0.
05

0.
10

0.
15

PD

M
R

0.42 0.44 0.46 0.48 0.50

0.
00

0.
05

0.
10

0.
15

GINI
M

R

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
00

0.
05

0.
10

0.
15

BEDS

M
R

0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

SR

M
R

0.08 0.12 0.16 0.20

0.
00

0.
05

0.
10

0.
15

PR

M
R

76 78 80 82

0.
00

0.
05

0.
10

0.
15

LE
M

R

Fig. 4 Dispersion plots

Table 3 p-values of the Spearman correlation test between all variables

Variables MR PD GINI BEDS SR PR LE

MR < 0.0001 0.0001 0.7088 0.4662 0.8059 0.9015

PD < 0.0001 0.0028 0.0002 0.3573 0.0255

GINI 0.6856 0.4548 < 0.0001 0.1975

BEDS < 0.0001 0.0001 < 0.0001

SR < 0.0001 < 0.0001

PR < 0.0001

LE

according to Rocklöv and Sjödin (2020), the contact rate by COVID-19 is proportional to
population density. Observe also that there is a statistically significant correlation between
theMR and theGini coefficient (Table 3). A similar findingwas found inOronce et al. (2020).

3.2 Fitted regressions

In what follows it is explored more deeply the relationship between covariates and the MR
through regression analysis. The goodness-of-fit measures are investigated for the RUBXII
regression defined in Sect. 2 with two competitive systematic components to study the effects
of the covariates given in Sect. 3.1 on the median of the mortality rate by coronavirus in the
U.S. states. The well-known Kw regression (Mitnik and Baek 2013) and the UW quantile
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Table 4 Fitted regressions for the median of the MR by COVID-19 in the U.S. states

Covariate RUBXII Kw UW

Estimate p-value Estimate p-value Estimate p-value

Intercept -13.1507 < 0.0001 -13.0291 < 0.0001 -13.4194 < 0.0001

PD 0.0021 < 0.0001 0.0021 < 0.0001 0.0020 < 0.0001

GINI 12.6735 0.0007 12.7810 0.0009 13.3897 0.0001

BEDS -0.1905 0.0598 -0.1423 0.1774 0.0821 0.5720

SR 8.8401 0.0003 7.3394 0.0039 3.0877 0.1516

T90 1.8856 < 0.0001 1.8695 < 0.0001 1.9669 < 0.0001

T180 2.5751 < 0.0001 2.5619 < 0.0001 2.8292 < 0.0001

c 1.5433 < 0.0001 0.6408 < 0.0001 6.4030 < 0.0001

regression (Mazucheli et al. 2020) are considered for comparison purposes. The densities of
each competitive regression’s random component are given below.

Let Z be a random variable that follows a Kw distribution on median-dispersion parame-
terization (Mitnik and Baek 2013), say Z ∼ Kw(q, c). Then its pdf is (for z ∈ (0, 1))

f (z; q, c) = log 0.5

c log(1 − q1/c)
z1/c(1 − z1/c)log 0.5/ log(1−q1/c)−1, (10)

where 0 < q < 1 is the median of Z and c > 0 is a dispersion parameter.
Recently,Mazucheli et al. (2020) proposed theUWquantile regression. Let Z ∼UW(q, c)

be a random variable having the UW law. Then its pdf is (for z ∈ (0, 1))

f (z; q, c) = c

z

(
log τ

log q

) (
log z

log q

)c−1

τ (log z/ log q)c , (11)

where 0 < q < 1 is the τ th quantile, c is a shape parameter, and τ ∈ (0, 1) is assumed
known. Here, it will be considered that τ = 0.5 to model the median of Z .

Table 4 gives the estimates of the parameters and associated p values of the final fitted
RUBXII, Kw, and UW regressions to the coronavirus death rates across the U.S. states. The
significance of the estimates is adopted as a criterion to choose the variables in the final fits.
The PR and LE covariates were not significant to the usual significance level (1%, 5%, and
10%) at all considered regressions. According to Table 4, when RUBXII regression is fitted,
most of the covariates are significant at a significance level of 1%, except for the BEDS,which
is significant at 10%. Other fitted regressions do not capture the effect of the covariate BEDS.
Besides, the covariate SR is also not statistically significant in the fitted UW regression.

The goodness-of-fit measures of the fitted regressions given in Table 4 are reported in
Table 5. The RUBXII regression has the best adequacy measures. It presents the most LL
value and p-value of SW test upper to the usual nominal level of significance. Further, its R2

G
is the greatest, indicating that the fitted RUBXII regression explains 76.57% of the median
response variability. The p-value of the SW test for the Kw andUW regressions’ residuals are
lower than 0.05. Hence, we reject the null hypothesis that the residual distribution is normal
at a significance level of 5%. Therefore, these regressions are inadequate to the current data.
The p-value of the RESET-type (RES) tests indicate that all fitted regressions are specified
correctly at usual significance levels. Thus, the results from Table 5 favor the RUBXII more
clearly than those Kw and UW regressions by showing its superiority in terms of model fit
and significance of the BEDS covariate to the mortality rates by COVID-19 in the U.S. states.
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Table 5 Goodness-of-fit measures for the final fitted regressions

Regression LL R2
G p-value(SW) p-value(RES)

RUBXII 524.0359 0.7657 0.1122 0.7203

Kw 523.3649 0.7643 0.0319 > 0.9999

UW 521.5016 0.7585 0.0001 0.2498
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Fig. 5 Normal Q–Q plot for the quantile residuals of the RUBXII, Kw, and UW fitted regressions

Figure 5 displays a normalQ–Q plot for each fitted regression’s quantile residuals to assess
if they are normally distributed. The plots corroborate with results from Table 5 by indicating
that the RUBXII regression’s residuals are more close to a normal distribution since the data
points are closely following the straight red line. For the other regressions, mainly the Q–Q
plot from the UW regression’s residuals, it is possible to note a lack-of-fit of them to the
standard normal distribution.

After the above analysis, there is evidence that the RUBXII regression provides a better
fit quality. Therefore, from the estimates of the RUBXII regression parameters reported in
Table 4, its regression equation can be expressed as

log [q̂i/(1 − q̂i )] = −13.1507 + 0.0021 PDi + 12.6735GINIi − 0.1905BEDSi
+ 8.8401 SRi + 1.8856T90i + 2.5751T180i .

Based on the fitted RUBXII regression, some findings of the modeling mortality rate’s
median by COVID-19 in the U.S. states are now presented.

– The PD presents a p-value lower than 0.0001, and its associated estimate is positive,
which indicates that the MR is higher in states most densely populated. Similarly, Wong
and Li (2020) showed that population density is an effective predictor of cumulative
infection cases in the U.S. at the county level. According to this study, low population
density offers a strong protective effect against COVID-19 infection.

– The Gini coefficient is significant at the 1% level, and its positive estimate means that
the MR increases in states with a larger Gini coefficient. This finding corroborates with
the study of Oronce et al. (2020), who noted that states with higher income inequality
had experienced a higher number of deaths by COVID-19.
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– The number of hospital beds is significant at the 10% level. The mortality rate’s median
decreases when the total hospital beds per 100 thousand inhabitants increase as expected.
According to Janke et al. (2021) U.S. geographic areas with fewer intensive care unit
beds, nurses, and general medicine/surgical beds per COVID-19 case were statistically
significantly associated with greater deaths in April.

– The SR is mightily significant (p-value= 0.0003). The mortality rate’s median
increases as the SR grows according to the positive signal of its related estimate. This
result is expected since the immune response of smoking patients decreases poten-
tially (Taghizadeh-Hesary and Akbari 2020).

– The dummy variables related to the time 90 and 180 days after the 10th confirmed case
are significant as expected. As indicated by the box plots in Fig. 2, theMR grows steadily
during the considered periods.

4 Concluding remarks

The COVID-19 characterizes a pandemic that has been spread across the United States of
America (U.S.) since January 2020. This paper investigates how demographic, socioeco-
nomic, health care resources, and behavioral variables are related to the mortality rate by
COVID-19 in the U.S. states. To properly reach that aim, it is chosen regressions that con-
sider the double-bounded characteristic of the mortality rate. It is introduced an alternative
model called the reflected unit Burr XII (RUBXII) regression, which is a helpful tool for
modeling bounded random variables in the interval (0, 1), such as rates, proportions, and
indexes. This proposal is based on a new unit continuous distribution that arises from a
transformation on a random variable Burr XII distributed. Further, a more general and use-
ful quantile-parameterization is introduced to define the quantile regression for unit data.
The estimation of the parameters, a simulation study to evaluate the maximum likelihood
estimators’ performance and some adequacy measures to check whether the regression’s
assumptions hold are discussed. After consolidating the data set about the mortality rates and
other covariates for the U.S. states, a descriptive statistical analysis and regression modeling
are done.

In this way, the new regression is compared with the Kumaraswamy and unit-Weibull
regressions. The proposed regression is quite competitive compared with those regressions
and provides the best fit according to some selection criteria. Thus, from the fitted RUBXII
regression, it is possible to identify that the population density, Gini coefficient, hospital
beds, and smoking rate are statistically significant in modeling the mortality rate’s median by
COVID-19 in theU.S. states. This paper’s findingsmay improveunderstandingof coronavirus
in the U.S. and help healthcare system better prepare for the advance of the pandemic or even
respond to similar epidemics. Interested readers can access all computational codes at https://
github.com/tatianefribeiro/RUBXII_Regression_COVID-19/tree/master. Since theRUBXII
regression’s potentiality to analyze coronavirus data, it is aimed in future research to fit this
regression to the mortality rates by coronavirus in other countries of the world
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A: Score vector

In this appendix, it is determined the score vector of the log-likelihood function given
by Eq. (9). It is obtained from the first derivative of the log-likelihood function with respect
to the k + 1 unknown parameters which compose the vector θ . That is, it is defined as

U (θ) := (
Uξ (θ)�,Uc(θ)

)�
, where

Uξ j (θ) := ∂�(θ)

∂ξ j
=

n∑

i=1

[
∂�i (qi , c)

∂qi

dqi
dηi

∂ηi

∂ξ j

]

and

Uc(θ) := ∂�(θ)

∂c
=

n∑

i=1

∂�i (qi , c)

∂c

with j = 1, . . . , k.
To simplify the notation, the following quantities are considered:

ai := − c logc−1(1 − qi )−1

(1 − qi )r(qi )exp[r(qi )] + log(1 − τ)−c logc−1(1 − qi )−1r(zi )

(1 − qi )[r(qi )]2exp[r(qi )]
and

bi := 1

c
+ s(zi ) + s(zi ) logc(1 − zi )−1[log(1 − τ)/r(qi ) − 1]

exp[r(zi )] − logc(1 − qi )−1s(qi )

r(qi )exp[r(qi )]
− log(1 − τ)s(qi ) logc(1 − qi )−1r(zi )

[r(qi )]2exp[r(qi )] ,

where s(x) = log [ log (1 − x)−1 ]. Observe that
∂�i (qi , c)

∂qi
= ai ,

dqi
dηi

= 1

g′(qi )
,

∂ηi

∂ξ j
= xi j ,

and
∂�i (qi , c)

∂c
= di .

Hence, the score vector’s components can be written compactly in matrix notation as

Uξ (θ) = X�T a and Uc(θ) = b�1,

where X is an n × k covariates matrix, whose i th row is xi = x�
i = (xi1, . . . , xik),

T = diag{1/g′(q1), . . . , 1/g′(qn)}, a = (a1, . . . , an)�, b = (b1, . . . , bn)�, and 1 is an
n-dimensional vector of 1s.
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