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Abstract In this article, we consider a discrete-time inventory model in which

demands arrive according to a discrete Markovian arrival process. The inventory is

replenished according to an ðs; SÞ policy, and the lead time is assumed to follow a

discrete phase-type distribution. The demands that occur during stock-out periods

either enter a pool which has an infinite capacity or leave the system with a pre-

defined probability. The demands in the pool are selected one by one, if the on-hand

inventory level is above sþ 1; and the interval time between any two successive

selections is assumed to have a discrete phase-type distribution. The joint proba-

bility distribution of the number of customers in the pool and the inventory level is

obtained in the steady-state case. We derive the system performance measures under

steady state and using these measures, the total expected cost rate of the system is

calculated. The impacts of arrival rate on the performance measures are graphically

illustrated. Finally, we study the impact of cost on the optimal values of the total

expected cost rate, inventory level and the reorder point.
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1 Introduction

Continuous review inventory system with postponed demands has received

considerable attention in the last few decades. [12] considered an inventory system

with Poisson demand, exponential lead time and assumed that the pooled customers

are selected according to an exponentially distributed time. [23] considered an

inventory model in which the demands occur according to a Markovian arrival

process, lead time is distributed as phase type, life time for the items in the stock has

exponential distribution, and the pooled customers are selected exponentially. [18]

dealt an inventory system in which the positive and negative demands occur

according to independent Markovian arrival processes and the lead time of the

reorder, the life time of the items, the inter-selection time of customers from the

pool and the reneging time points of the customers in the pool have independent

exponential distributions. [24] considered an inventory system with independent

Markovian arrival processes for both positive and negative demands, exponential

distribution for the lead time, exponential life times for each item in the stock and an

infinite pool size.

In all the above models, the authors assumed that all the system events are

monitored continuously and that the time axis is continuous. Although many

inventory systems are conveniently characterized by fixed-length intervals during

which events occur and decisions are made, only few articles in the literature dealt

with discrete-time inventory models. However, there is a growing research interest

in discrete-time queues (see [2–4, 26]), mainly motivated by their applications in

computer and communication systems where the time axis is often slotted.

The first paper on discrete-time inventory models was [7]. This paper analysed a

Markovian inventory model for perishable commodities, in which the arrivals of

items into the system as well as the demands for these items were assumed to be

discrete random variables having common supports 0; 1; � � �. The items are assumed

to have the life span of N item units. Some characteristics of this model were

derived for the case of two and three age categories.

Lian and Liu [14] developed a discrete-time inventory model with geometric

inter-demand times and constant life time. They assumed that the demands arrive in

batches and that the batch size was random. They also assumed that the lead time

was zero and full backlogging of demands. They used matrix-analytic methods to

construct a discrete-time Markov chain at the inventory level, and they obtained a

closed-form average cost function.

Abboud [1] analysed a discrete-time Markov model for production inventory

systems with machine breakdowns. He assumed that the demand and production

rates were constant, and the production rate was greater than the demand rate. The

failure times and the repair times were independently distributed as geometric and

the demands that occur during stock out were back-ordered.

Lian et al. [15] discussed a discrete-time model for common lifetime inventory

systems. They assumed that the demand arrives in batches according to a discrete

phase-type renewal process, and the lifetime of an item had a discrete PH

distribution. They assumed that the supply of the order was instantaneous, and

unmet demands are back-ordered.
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In this work, we use the concepts of discrete phase-type distribution and discrete

Markovian arrival process (DMAP), and hence we give an introduction and notation

on these concepts. The MAP was a class of the Markov counting process introduced

by [20] as a generalization of the Poisson process which was well suited for matrix-

analytic method and numerical investigations. The research reported by [16, 17]

suggested a convenient notation which was better suited for a general discussion

than the one which was originally used. A highly accessible discussion of the MAP;
with many examples, may be found in [16]. A partly expository paper discussing

how the MAP can be used qualitatively to model point processes with certain

‘‘bursty’’ feature given by [22]. For more details on the DMAP, we refer to readers

[9] and [11]. The following is a brief informal description of the DMAP, which

should be adequate for this paper. Let D be an irreducible stochastic matrix of order

n and let D0 and D1 be two sub-stochastic matrices whose sum is D such that the

matrix I � D0 is non-singular. The element ½D0�ij represents a transition from phase i

to phase j which is associated with a non-occurrence of an event (such as arrival),

and the element ½D1�ij represents a transition from phase i to phase j which is

associated with an occurrence of the above event. Let gD ¼ g with ge ¼ 1: Then the

rate of occurrence of the event is k ¼ gD1e; where g is the stationary probability

distribution of the transition probability matrix D: The sequence of time points of

these transitions forms a stochastic process which is known as DMAP with

parameters n;D0 and D1: We represent such a DMAP by ðD0;D1Þn:
The discrete phase-type distribution was introduced in the mid 1970s, see [19].

However, more researchers have been focusing on the studies of the continuous

phase-type distributions. Detailed discussions of continuous phase-type distributions

can be found in [21] and [13]. Brief overviews of either discrete or continuous

phase-type distributions and their properties can be found in [5, 6, 8, 10] and the

references therein.

We briefly describe the phase-type distribution. Consider a Markov chain with m

transient states and one absorbing state, say 0. It has an associated transition

probability matrix

~T ¼
1 0

T0 T

� �
;

where T0 ¼ ðt10; t20; � � � ; tm0Þ0, and T ¼ ðtijÞm�m. The matrix T is a sub-stochastic

matrix, holding the transition probabilities among the m transient states, and T0

contains the absorption probabilities into state 0 from the transient states. Clearly,

T0 satisfies Teþ T0 ¼ e, where e is a column vector of appropriate dimension

containing all ones. The initial state of this Markov chain is chosen according to the

probability vector ðb0; bÞ where b0 > 0 and b is a row vector of size m: Once the

initial state of the Markov chain is fixed, the chain gets absorbed after visiting

various states. The states are also called phases, and the time till absorption is a sum

of exponentially distributed random variables with parameters depending on the

phases visited. Hence, the distribution of time till absorption is called phase-type

distribution. The mean of the phase-type distribution is given by l ¼ bðI � TÞ�1
e:
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This phase-type distribution is represented by ðb; TÞm: If, at every time of absorp-

tion, the Markov chain is started by selecting the initial state according to the

probability vector ðb0; bÞ; b0 > 0 (usually referred to as initialization), then the

point process of times at which the chain is absorbed (or initialized) forms a phase-

type renewal process.

Recently, [25] analysed a discrete-time inventory system with postponed

demand, and the pool has finite capacity. They considered the demands arrived

according to discrete-time Markovian arrival process, and the lead time and pool

customer’s selection follow discrete phase-type distribution.

In this paper, we extend the work of [25] by assuming that the capacity of the

pool is infinite. This mathematical model has a real-life application in many

industries, including the garments industry, the retailer’s shop, etc., to satisfy the

demand of customer. For example, in a retailer shop, during the stock-out period, to

avoid the demand lost, an arriving customer is offered a choice of postponement by

the retailer. If this customer accepts the postponement, then the retailer will satisfy

this postponed customer after the replenishment of items.

The rest of the paper is organized as follows. In Sect. 2, we describe the

mathematical model for the problem under consideration. The stability analysis and

steady-state analysis of the model are presented in Sect. 3, and some important

system performance measures and the total expected cost rates are derived in Sect.

4. In Sect. 5, we provide numerical illustrations of the results.

Notation

N = f1; 2; � � �g:
N0 = f0; 1; � � �g:
½A�ij : Element/sub-matrix at ith row, jth column of the matrix A:

e : A column vector of appropriate dimension containing all ones.

0 : A zero matrix of appropriate dimension.

I : identity matrix of appropriate dimension.

½A� B�ij = ½A�ijB:
A� B = A� IB þ IA � B; where IA and IB has dimension as that of A and B.

2 Mathematical Model

Consider a discrete-time inventory system in which all system-related activities

occur at discrete-time points only. We describe the discrete-time system as defined

by [9]. The system is monitored at time epochs sequentially numbered 0; 1; � � � ; and

all events which occur between epoch t and t þ 1 are assumed to occur at epoch

t þ 1.

Now we describe the mathematical model of the system considered in this work

as follows:
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• The inventory order strategy is ðs; SÞ policy.

• The unit demands to occur according to a DMAP with representation ðD0;D1Þn:
• The lead time for the supply of the reorder is assumed to have a discrete phase-

type distribution with representation ða1; T1Þm1
.

• Any arriving demand, when the inventory level is zero, is offered a choice of

either leaving the system immediately or being postponed until the ordered

items are received. We assume that the demanding customer accepts the offer of

postponement according to an independent Bernoulli trial with probability

p ð0 6 p\1Þ and with probability q ð¼ 1� pÞ and the customer declines the

offer and leaves the system.

• The customers who opted for postponement of their demands are retained in a

pool, which has an infinite capacity.

• Only if the inventory level is greater than sþ 1, the customers in the pool can be

selected one by one according to FCFS discipline.

• The time between two successive selections is assumed to have a discrete phase-

type distribution with representation ða2; T2Þm2
; and the rate of selection of

demands from the pool is given by a ¼ a2ðI � T2Þ�1
e

h i�1

.

3 Analysis

We have the following random variables defined at time t.

Lt : the inventory level,

Xt : the number of demands in the pool,

JD
t : the phase of the MAP associated with demand process,

JL
t : the phase of the distribution of lead time of an order, if order is placed

already,

JS
t : the phase of the distribution associated with the selection of demand from

pool.

It may be noted that JL
t and JS

t do not arise when the inventory level Lt [ s and the

number of customers in the pool Xt ¼ 0 and that JL
t does not arise when Lt [ s and

Xt [ 0: In the same way, JS
t does not arise if Lt 6 sþ 1: For clarity, we shall assume

and write 0 value for the state of random variables, which do not arise in the above

cases. It may be noted that for these random variables, the associated Markov chain

has 0 as the absorbing state and hence when these random variables do not arise, one

can assume that the associated Markov chain is in absorbing state 0.

When multiple events can occur in a time slot, for mathematical tractability, we

assume the following order: (1) the materialization of an order, (2) the satisfaction

of a demand and (3) the selection of demand from the pool.

In the case of random variables with phase-type distribution, the initial state has

to be fixed by the associated initial probability vector. For more than one such

initialization, we assume the following order of initialization: (i) selection process

of customers from the pool and (ii) lead time of an order.
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It may be noted that if the replenishment, the occurrence of a demand and the

selection from the pool occur in a time slot, then the inventory level becomes at

least Q� 2: In order to place a subsequent order, this level must be greater than the

reorder level s: Otherwise, there is a positive probability that the stock may face a

perpetual shortage. Hence, we assume Q > sþ 2.

The possible states of the stochastic process fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g are

given in Table 1. In Table 1, the blocks represent the different set of states for 5-

tuples ðx; l; j; j1; j2Þ; and the union of these four blocks gives the state space E of the

process fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g.

Now we check the Markov property of the stochastic process

fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g. i.e.

Pr
�

Xnþ1 ¼ xnþ1; Lnþ1 ¼ lnþ1; J
D
nþ1 ¼ jnþ1; J

L
nþ1 ¼ j1nþ1

; JS
nþ1 ¼ j2nþ1

� �
Xn ¼ xn; Ln ¼ ln; J

D
n ¼ jn; J

L
n ¼ j1n

; JS
n ¼ j2n

� ��� ; Xn�1; Ln�1; J
D
n�1; J

L
n�1; J

S
n�1

� �
; � � � ;

X0; L0; J
D
0 ; J

L
0 ; J

S
0

� ��
ð3:1Þ

depends only on ðxn; ln; jn; j1n; j2nÞ and ðxnþ1; lnþ1; jnþ1; j1nþ1; j2nþ1Þ. For example,

consider the case ðXn ¼ xn; Ln ¼ 0; JD
n ¼ jn; J

L
n ¼ j1nÞ and

ðXnþ1 ¼ xn þ 1; Lnþ1 ¼ 0; Jnþ1 ¼ jnþ1; J
L
nþ1 ¼ j1nþ1Þ. In order to move to the state

ðxnþ1; 0; jnþ1; j1nþ1Þ at time nþ 1;

i. An arrival with phase changes from jn to jnþ1ðjn; jnþ1 ¼ 1; 2; � � � ; nÞ must

occur and this arrived customer must accept the postponement.

ii. Also no replenishment takes place, but the phase must change from

j1n to j1nþ1ðj1n; j1nþ1 ¼ 1; 2; � � � ;m1Þ.

The probability for the first event is p½D1�jnjnþ1
and for the second event is ½T1�j1nj1nþ1

.

Therefore, the value of Eq. 3.1 is ½p½D1�jnjnþ1
½T1�j1nj1nþ1

. Since the probability depends

only on ½ðxnþ1; 0; jnþ1; j1nþ1Þ and ½ðxn þ 1; 0; jn; j1nÞ, the stochastic process satisfies

the Markov property. Similarly, we can write all the transition probability values.

Therefore, ½fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g is a discrete-time Markov chain with the

state space E:

Table 1 State space of the model

States of variables

Block Xt Lt JD
t JL

t JS
t

0 x ¼ 0; 1; � � � l ¼ 0; 1; � � � ; s j ¼ 1; 2; � � � ; n j1 ¼ 1; 2; � � � ;m1 �
1 x ¼ 0 l ¼ sþ 1; sþ 2; � � � ; S j ¼ 1; 2; � � � ; n � �
2 x ¼ 1; 2; � � � l ¼ sþ 1 j ¼ 1; 2; � � � ; n � �
3 x ¼ 1; 2; � � � l ¼ sþ 2; � � � ; S j ¼ 1; 2; � � � ; n � j2 ¼ 1; 2; � � � ;m2
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The possible transitions of states in the discrete-time Markov chain are listed in

Table 2.

The transitions other than those listed in the Table 2 cannot occur.

The transition probability matrix P of the discrete-time Markov chain

fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g is a Quasi-Birth-and-Death process. Because of the

assumptions made in this model, the outer random variable, i.e. the number of

demands in the pool, Xt

i. Increases by one i.e. a birth occurs when the demands arrive during a stock-

out period with acceptance of postponement, and no replenishment takes

place at that time epoch.

ii. Decreases by one i.e. a death occurs due to pool customer selection when the

inventory level is above sþ 1 with or without demand occur.

iii. All other events occur in the same level.

According to the possible transitions given in Table 2, the transitions from h0i to

h1i, h0i to h0i and h1i to h0i are considered as block matrix B0, B1 and B2. The

transitions hii to hii and hii to hiþ 1i ði ¼ 1; 2; � � �Þ are considered as block matrix

A1, A0 and hii to hi� 1iði ¼ 2; 3; � � �Þ is considered as block matrix A2. Then the

transition probability matrix P of the discrete-time Markov chain is given below:

Table 2 Description of the states

Class From To Due to

hii to hii hi; 0i
i ¼ 0; 1; � � �

hi; 0i No demand & no replenishment,

demand not joining pool

& no replenishment

hi; li
i ¼ 0; 1; � � � ; l ¼ 1; 2; � � � ; s

hi; li
hi; l� 1i

No demand & no replenishment

Demand & no replenishment

hi; sþ 1i
i ¼ 1; 2; � � �

hi; sþ 1i
hi; si

No demand

Demand

h0; li
l ¼ sþ 2; � � � ; S

h0; li
h0; l� 1i

No demand

Demand

hi; sþ 2i
i ¼ 1; 2; � � �

hi; sþ 2i
hi; sþ 1i

No demand & no selection from pool

Demand

hi; li
i ¼ 1; 2; � � � ; l ¼ sþ 3; � � � ; S

hi; li
hi; l� 1i

No Demand & No Selection from Pool

Demand & No Selection from Pool

hi; li
i ¼ 1; 2; � � � ; l ¼ 0; 1; � � � ; s

hi; lþ Qi
hi; lþ Q� 1i

No demand & replenishment

Demand & replenishment

hii to hiþ 1i hi; 0i
i ¼ 0; 1; � � �

hiþ 1; 0i Demand & no replenishment

hii to hi� 1i hi; li
i ¼ 0; 1; � � � ; l ¼ sþ 2; � � � ; S

hi� 1; l� 1i
hi� 1; l� 2i

No demand & selection from pool

Demand & selection from pool

* Here, we specifically need Q� 1 > sþ 2) Q > sþ 3) Q [ sþ 2
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It may be noted that B0, B1 and B2 are matrices of size ðsþ 1Þnm1þ
Qn� ðsþ 1Þnm1 þ nþ ðQ� 1Þnm2, ðsþ 1Þnm1 þ Qn� ðsþ 1Þnm1 þ Qn, ðsþ
1Þnm1 þ nþ ðQ� 1Þnm2 � ðsþ 1Þnm1 þ Qn and the size of the matrices A0, A1

and A2 are ðsþ 1Þnm1 þ nþ ðQ� 1Þnm2 � ðsþ 1Þnm1 þ nþ ðQ� 1Þnm2.

3.1 Stability Analysis

In this section, we derive the necessary condition for the positive recurrence of the

Markov chain fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g. We first consider the stochastic matrix

A ¼ A0 þ A1 þ A2, which is given by
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It can be seen from the structure of the transition probability matrix A that the

underlying Markov chain is irreducible and aperiodic. Since the state space of the

underlying Markov chain is finite, it is also positive recurrent. Hence, the limiting

distribution exists and it is independent of the initial state. Let

p ¼ pð0Þ; pð1Þ; � � � ;pðSÞ
� �

be the steady-state probability vector of A. Then, p can be shown to satisfy the

following equations:

pA ¼ p

and pe ¼ 1:

In the next lemma, we give the condition for the positive recurrence of Markov

chain fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g.

Lemma 3.1 The discrete-time Markov chain fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g is

positive recurrent if

pð0ÞðpD1 � T1Þ
� �

e\ pðsþ2ÞðD1 � a1 � t2Þ
� �

eþ pðsþ2ÞðD0 � t2Þ
� �

eþ pðsþ3ÞðD1 � t2Þ
� �

e

þ
XS

i¼sþ3

pðiÞðD0 � t2a2Þ
� �

eþ
XS

i¼sþ4

pðiÞðD1 � t2a2Þ
� �

e:

ð3:2Þ

Proof From the well-known result of [21] on the positive recurrence of P; we have

pA0e\pA2e:

By exploiting the structure of the matrices A0 and A2, and p, the stated result

follows.

3.2 Steady-State Analysis

It can be seen from the structure of the transition probability matrix P and from the

inequality (Eq. 3.2) that the discrete-time Markov chain fðXt; Lt; J
D
t ; J

L
t ; J

S
t Þ; t 2 N0g

on E is irreducible, aperiodic and positive recurrent.

Hence, the limiting distribution, defined by

/ðx;l;j;j1;j2Þ ¼ lim
n!1

Pr½Xt ¼ x; Lt ¼ l; JD
t ¼ j; JL

t ¼ j1; J
S
t ¼ j2jX0; L0; J

D
0 ; J

L
0 ; J

S
0 �

exists and is independent of the initial state.

We group the probabilities /ðx;l;j;j1;j2Þ as follows:
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/ ¼ /ð0Þ;/ð1Þ; � � �
� �

;

/ðxÞ ¼ /ðx;0Þ;/ðx;1Þ; � � � ;/ðx;SÞ
� �

; x ¼ 0; 1; � � � ;

/ðx;lÞ ¼ /ðx;l;1Þ;/ðx;l;2Þ; � � � ;/ðx;l;nÞ
� �

; x ¼ 0; 1; � � � ; l ¼ 0; 1; � � � ; S;

/ðx;l;jÞ ¼ ð/ðx;l;j;1Þ;/ðx;l;j;2Þ; � � � ;/ðx;l;j;m1ÞÞ; x ¼ 0; 1; � � � ; l ¼ 0; 1; � � � ; s; j ¼ 1; 2; � � � ; n;
ð/ðx;l;j;1Þ;/ðx;l;j;2Þ; � � � ;/ðx;l;j;m2ÞÞ; x ¼ 1; 2; � � � ; l ¼ sþ 2; sþ 3; � � � ; S; j ¼ 1; 2; � � � ; n:

(

Then, the limiting probability distribution / satisfies the following equations:

/P ¼ / and /e ¼ 1:

Theorem 3.2 When the stability condition (Eq. 3.2) holds good, the steady-state

probability vector / is given by

/ðxÞ ¼ /ð1ÞRx�1; x ¼ 2; 3; � � � ;

where the matrix R satisfies the quadratic equation

R2A2 þ RA1 þ A0 ¼ R; ð3:3Þ

and the vector /ð0Þand /ð1Þ is obtained by solving

/ð0ÞðB1 � IÞ þ /ð1ÞB2 ¼ 0 ð3:4Þ

and

/ð0ÞB0 þ /ð1ÞðA1 þ RA2 � IÞ ¼ 0; ð3:5Þ

subject to the normalizing condition,

/ð0Þeþ /ð1ÞðI � RÞ�1
e ¼ 1: ð3:6Þ

Proof The theorem follows from the well-known result on matrix geometric

methods ([21]).

3.3 Computation of R Matrix

In this subsection and the next one, we present an algorithmic procedure for

computing the R matrix and the vector /, which are the main ingredients for

discussing the qualitative behaviour of the model under study.

The square matrix R of dimension ðsþ 1Þnm1 þ nþ ðQ� 1Þnm2 can be

computed as follows: We note that as A0 has a non-zero entry in its first nm1

rows only, and the matrix R also has non-zero entries in its first nm1 rows only.

Hence, we write
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R ¼

R0 R1 R2 � � � � � � Rs

0 0 0 � � � � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � � � � 0

0
BB@

1
CCA:

Due to this special form of R, we note

Rk ¼

Rk
0 Rk�1

0 R1 Rk�1
0 R2 � � � � � � Rk�1

0 Rs

0 0 0 � � � � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � � � � 0

0
BBB@

1
CCCA; k ¼ 1; 2; � � � :

This form is exploited in the computation of R using (Eq. 3.3). The relevant

equations are given in Appendix 1.

3.4 Computation of the Vectors /ð0Þ and /ð1Þ

Due to the special structure of R matrix as well as the coefficient matrices

B0;B1;B2;A1 and A2; the vectors /ð0Þ and /ð1Þ are computed from the Eqs. 3.4, 3.5

and 3.6. The detailed computation of this vector is given in Appendix 2.

4 System Performance Measures

In this section, we derive some system performance measures which are very useful

in qualitative interpretation of the model under study.

1. Expected inventory level Let fI denote the expected inventory level in the

steady state. Since /ðx;lÞ denotes the steady-state probability vector for l-th

inventory with each component specifying a particular combination of the

number of demands in the pool, that is the phase of the arrival process, the

phase of the lead time process, if the order is placed, and the phase of the

selection process, if the inventory level is above sþ 1; then /ðx;lÞe gives the

probability for l inventories in the system. The expected inventory level is

given by

fI ¼
X1
x¼0

XS

l¼1

l/ðx;lÞe:

From the theorem 3.2 and the special structure of the R and Rk matrices, we

simplify the above infinite summation by

fI ¼
XS

l¼1

l /ð0;lÞeþ /ð1;lÞeþ /ð1;0Þ½I � R0��1Rle
h i

: ð4:1Þ
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2. Expected reorder rate Let fR denote the expected reorder rate in the steady

state. We note that an order is placed when the inventory level drops to s.

We also note that the inventory level drops to s in the following cases:

(1) The inventory level is in sþ 2; and both events ‘‘the demand

selection’’ and ‘‘the demand’’ take place.

(2) The inventory level is in sþ 1; and a demand takes place.

These lead to

fR ¼
X1
x¼0

/ðx;sþ1ÞD1

� �
eþ

X1
x¼1

/ðx;sþ2ÞðD1 � t2Þ
� �

e:

The simplified version of fR is given by

fR ¼ /ð0;sþ1ÞD1eþ /ð1;sþ1ÞD1eþ /ð1;sþ2ÞðD1 � t2Þeþ /ð1;0Þ½I
� R0��1½Rsþ1D1eþ Rsþ2ðD1 � t2Þe�: ð4:2Þ

3: Expected number of demands in the pool Let fP denote the expected number

of customers in the pool in the steady state. This is given by

fP ¼ /ð1ÞðI � RÞ�2
e: ð4:3Þ

4: Expected number of demands lost Let fL denote the loss due to the customer

who arrives during stock out and may not be willing to join the pool. Then

fL is given by

fL ¼
X1
x¼0

/ðx;0ÞðqD1 � T1Þ
� �

e:

The fL can be simplified as

fL ¼ /ð0;0ÞðqD1 � T1Þeþ /ð1;0Þ½I � R0��1ðqD1 � T1Þe: ð4:4Þ

5: Expected total cost rate We assume the following costs in connection with

maintaining the inventory.

ch : holding cost of an item per unit time.

cs : set-up cost per order.

cw: waiting time cost of a demand per unit time in the pool.

cl : cost of loss of a demand due to stock out.

The expected total cost per unit time (the total expected cost rate) in the

steady state for this model is defined to be

TCðS; sÞ ¼ chfI þ csfR þ cwfP þ clfL:

Substituting the values of f’s from Eqs. (4.1)–(4.4), we get
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TCðS; sÞ ¼ ch

XS

l¼1

l /ð0;lÞeþ /ð1;lÞeþ /ð1;0Þ½I � R0��1Rle
h i !

þ cs /ð0;sþ1ÞD1eþ /ð1;sþ1ÞD1eþ /ð1;sþ2ÞðD1 � t2Þeþ /ð1;0Þ
�

½I � R0��1½Rsþ1D1eþ Rsþ2ðD1 � t2Þe�
�
þ cw/ð1ÞðI � RÞ�2

e

þ cl /ð0;0ÞðqD1 � T1Þeþ /ð1;0Þ½I � R0��1ðqD1 � T1Þe
� �

:

Due to the complex form of the limiting distribution, it is difficult to discuss the

qualitative behaviour of the cost function TCðS; sÞ analytically. Hence, a detailed

computational study of the expected cost rate function is carried out in the next

section.

5 Numerical Illustrations

In this section, we discuss some numerical examples that reveal the possible

convexity of the total expected cost rate. For all the numerical works considered

below, we assume that the arrival process is MAP specified by ðD0;D1Þ where

D0 ¼
0:2 0:0

0:1 0:1

� �
; D1 ¼

0:7 0:1

0:3 0:5

� �
:

The lead time has the phase-type distribution ða1; T1Þ; where

a1 ¼ 0:4; 0:2; 0:4½ �; T1 ¼
0:6 0:4 0

0 0:6 0:4

0 0 0:6

2
64

3
75:

The inter-selection times are assumed to have a phase-type distribution ða2; T2Þ;
where

a2 ¼ 0:4; 0:6½ �; T2 ¼
0:3 0:7

0:0 0:3

� �
:

For the model developed in this work, we have not shown the convexity of TCðs; SÞ
analytically. However, our experience with considerable numerical examples indi-

cates that the function TCðs; SÞ is convex. We use simple numerical search proce-

dure to get the optimal values of total cost rate, S and s ðsay TC�; S�; s�Þ.

Numerical Search Procedure:

Step 1 By fixing S and varying s, find that its corresponding total cost rates with

the curve of total expected cost rate is to be convex.

Step 2 Do step 1 for different values of S.
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Step 3 Arrange the TC values obtained in each step as the rows of a matrix, like

Table 3.

Step 4 Find the minimum value for each row and each column.

Step 5 Find the minimum among the values obtained in step 4, the result gives

the optimal total expected cost rate TC� and its corresponding S and s are

the optimal S� and s�.

In Table 3, the value that is shown bold is the least among the values in that column,

and the value that is shown underlined is the least in that row. The minimum of bold

and underlined value is the optimal total cost rate TC�. The optimal cost value

TC� ¼ 1 : 894 164 415 4 is obtained at ðS�; s�Þ ¼ ð24; 7Þ from Table 3. A typical

three-dimensional plot of the expected total cost function is shown in Fig. 1. It may

be observed that these values in each table exhibit a (possibly) local minimum of the

function of the two variables.

Next, we focus our attention to study the sensitivity to the costs ch; cs; cw; cl on

the optimal values S� and s� and on the corresponding optimal cost, TC�; in Tables 4

and 5. A summary of examination of the entries in this table is given below:

• We notice that the optimal cost appears to increase as ch; cs; cw; cl increase.

• As is to be expected, the optimal values of S� and s� decrease monotonically

when the holding cost increases. This is because the holding cost increases, and

we have to maintain low stock.

• We also notice that the optimal values of S� and s� increase monotonically when

the cost of waiting in the pool and the cost of lost due to zero stock increase.

• It is interesting that as cs increases, the optimum inventory level increases and

the optimum reorder point decreases.

The observations made on Fig. 2 are listed below:

• The increment in the arrival rate decreases the mean inventory level of the

system.

• As we increase the arrival rate of the customers, the expected number of reorder

is increased.

Table 3 Total expected cost rate as a function of S and s

s Total expected cost rate

S 6 7 8

22 1.923 973 364 3 1.905 778 563 1 1.925 371 816 2

23 1.913 186 469 8 1.895 197 681 8 1.912 331 125 2

24 1.911 356 048 0 1.894 164 415 4 1.909 920 282 6

25 1.916 536 523 6 1.900 479 033 7 1.915 537 199 4

26 1.927 313 308 8 1.912 577 001 0 1.927 376 454 7

p ¼ 0:7; ch ¼ 0:1; cs ¼ 10; cw ¼ 3; cl ¼ 2:
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• The mean number of demands in the pool and the expected number of demands

lost in the system increase when we increase the arrival rate of demands.

Finally, we study the impact of the value of probability p on the total expected cost

rate through the Figs. 3 and 4. We notice that as the p value increases, the total cost

increases. For the small values of p means, the number of customers who accept the

offer of postponed their demand is less, and hence they approach another place for

their demand. In order to avoid this situation, we have to maintain large inventory.

This will be reflected in Fig. 3. Similar reason holds good for Fig. 4 also.

6 Conclusion

In the literature, the Inventory systems have been monitored either periodically or

continuously. In the former, the duration of a period could be a day, a week or a

month and in the latter, every transaction that induces some changes in the system is

assumed to be available. However, in recent time due to advances in transaction

reporting devices, the time axis is slotted with smaller durations, and any incidents

such as demand, etc., which occur in these slots, are synchronized to have occurred

at any one of the end points of the slot. The telecommunication and computer

networks, which are becoming digital, have initiated interest in the systems which

are monitored in slotted time axis.

In this work, we modelled an inventory system in a slotted time axis with an

infinite pool. The arrival time points of demands assumed to be generated by a

DMAP which actually provided a basic setup for correlated demand types, and

thereby the model provided to be used to include some non-Markovian demand
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Fig. 1 A typical three-dimensional plot for convexity of total expected cost rate of
p ¼ 0:7; ch ¼ 0:1; cs ¼ 10; cw ¼ 3; cl ¼ 2
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Table 4 Effect of costs on the optimal values

ch

cw cl 0 . 1 0. 2

cs

8 10 12 14 8 10 12 14

2.5 1.5 22 7 23 7 24 6 25 6 19 6 19 6 20 5 20 5

1.753 9 1.854 2 1.947 2 2.035 2 2.741 9 2.864 2.974 1 3.079 6

2 22 7 23 7 24 6 25 6 19 6 19 6 20 5 20 5

1.755 9 1.856 1.949 7 2.037 5 2.745 4 2.867 4 2.978 7 3.084 1

2.5 22 7 23 7 24 6 25 6 19 6 19 6 20 5 20 5

1.757 9 1.857 9 1.952 2 2.039 9 2.748 9 2.870 9 2.983 2 3.088 6

3 22 7 23 7 24 6 25 6 19 6 19 6 20 5 20 5

1.759 8 1.859 7 1.954 8 2.042 3 2.752 4 2.874 4 2.987 7 3.093 2

3 1.5 23 7 24 7 24 7 25 7 20 6 20 6 20 6 21 6

1.793 8 1.892 4 1.986 1 2.075 8 2.826 9 2.940 3 3.053 7 3.164 5

2 23 7 24 7 24 7 25 7 20 6 20 6 20 6 21 6

1.795 6 1.894 1 1.987 8 2.077 5 2.830 2 2.943 5 3.056 9 3.167 5

2.5 23 7 24 7 24 7 25 7 20 6 20 6 20 6 21 6

1.797 5 1.895 9 1.989 6 2.079 1 2.833 4 2.946 8 3.060 1 3.170 6

3 23 7 24 7 24 7 25 7 20 6 20 6 20 6 21 6

1.799 3 1.897 6 1.991 3 2.080 8 2.836 6 2.95 3.063 4 3.173 6

3.5 1.5 23 7 24 7 25 7 25 7 20 6 20 6 21 6 21 6

1.832 9 1.927 9 2.019 9 2.108 4 2.901 3 3.014 6 3.124 6 3.230 5

2 23 7 24 7 25 7 25 7 20 6 20 6 21 6 21 6

1.834 7 1.929 6 2.021 5 2.11 2.904 5 3.017 9 3.127 6 3.233 5

2.5 23 8 24 7 25 7 25 7 20 6 20 6 21 6 21 6

1.836 1 1.931 4 2.023 2 2.111 7 2.907 7 3.021 1 3.130 6 3.236 5

3 23 8 24 7 25 7 25 7 20 6 20 6 21 6 21 6

1.837 4 1.933 1 2.024 8 2.113 3 2.911 3.024 3 3.133 7 3.239 5

4 1.5 24 8 24 8 25 7 26 7 20 7 21 7 21 6 21 6

1.860 3 1.96 2.052 4 2.139 2.964 1 3.080 6 3.190 6 3.296 4

2 24 6 24 8 25 7 26 7 20 7 21 7 21 6 21 6

1.861 5 1.961 2 2.054 1 2.140 6 2.966 4 3.082 8 3.193 6 3.299 4

2.5 24 8 24 8 25 7 26 7 20 7 21 7 21 6 21 6

1.862 7 1.962 4 2.055 7 2.142 2 2.968 6 3.084 9 3.196 6 3.302 5

3 24 8 24 8 25 7 26 7 20 7 21 7 21 6 21 6

1.863 9 1.963 6 2.057 4 2.143 7 2.970 9 3.087 3.199 6 3.305 5
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Table 5 Effect of costs on the optimal values

ch

cw cl 0. 3 0. 4

cs

8 10 12 14 8 10 12 14

2.5 1.5 17 5 18 5 18 5 18 5 16 5 16 4 17 4 17 4

3.576 2 3.702 6 3.824 3.945 5 4.335 9 4.468 1 4.589 1 4.709 8

2 17 5 18 5 18 5 18 5 16 5 17 4 17 4 17 4

3.581 8 3.707 8 3.829 2 3.950 7 4.342 4.476 4.596 7 4.717 5

2.5 17 5 18 5 18 5 18 5 16 5 17 5 17 4 17 4

3.587 5 3.713 3.834 5 3.955 9 4.348 2 4.483 6 4.604 4 4.725 1

3 17 5 18 5 18 5 18 5 16 5 17 5 17 4 17 4

3.593 1 3.718 2 3.839 7 3.961 2 4.354 3 4.489 3 4.612 1 4.732 8

3 1.5 18 5 18 5 18 5 19 5 17 5 17 5 17 5 17 4

3.707 7 3.829 1 3.950 6 4.068 7 4.488 8 4.620 2 4.751 7 4.883 1

2 18 5 18 5 18 5 19 5 17 5 17 5 17 5 17 4

3.712 9 3.834 3 3.955 8 4.073 6 4.494 4 4.625 9 4.757 3 4.888 8

2.5 18 5 18 5 18 5 19 5 17 5 17 5 17 5 17 5

3.718 1 3.839 6 3.961 4.078 4 4.500 1 4.631 5 4.763 4.894 4

3 18 5 18 5 18 5 19 5 17 5 17 5 17 5 17 5

3.723 3 3.844 8 3.966 3 4.083 3 4.505 7 4.637 2 4.768 6 4.900 1

3.5 1.5 18 6 19 6 19 6 19 6 17 5 17 5 18 5 18 5

3.815 5 3.943 4.065 4.187 4.636 6 4.768 1 4.892 7 5.014 2

2 18 6 19 6 19 6 19 6 17 5 17 5 18 5 18 5

3.819 2 3.946 5 4.068 5 4.190 5 4.642 3 4.773 7 4.898 5.019 4

2.5 18 6 19 6 19 6 19 6 17 5 17 5 18 5 18 5

3.823 3.95 4.072 4.194 4.647 9 4.779 4 4.903 2 5.024 7

3 18 6 19 6 19 6 19 6 17 5 17 5 18 5 18 5

3.826 8 3.953 4 4.075 5 4.197 5 4.653 6 4.785 4.908 4 5.029 9

4 1.5 19 6 19 6 19 6 19 6 18 6 18 5 18 5 18 5

3.906 4 4.028 4 4.150 4 4.272 5 4.773 3 4.897 8 5.019 3 5.140 8

2 19 6 19 6 19 6 19 6 18 6 18 5 18 5 18 5

3.909 9 4.031 9 4.153 9 4.275 9 4.777 1 4.903 1 5.024 5 5.146

2.5 19 6 19 6 19 6 19 6 18 6 18 5 18 5 18 5

3.913 4 4.035 4 4.157 4 4.279 4 4.780 8 4.908 3 5.029 8 5.151 2

3 19 6 19 6 19 6 19 6 18 6 18 5 18 5 18 5

3.916 9 4.038 9 4.160 9 4.282 9 4.784 6 4.913 5 5.035 5.156 5
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processes. The assumptions of phase-type distributions for lead time and for inter-

selection time for demands allowed us to fit them to a wide range of real-life

situations. We obtained the limiting probability of the inventory level in the pool.

Using this, we derived some of the system performances. Also, we calculated

expected total cost rate of the system under a suitable cost structure. The convex

nature of the expected total cost rate is shown numerically.
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Appendix 1

To compute the R matrix, we use the following set of non-linear equations. This can

be solved using the Gauss-Seidel iterative process. These equations are derived by

exploiting the coefficient matrices appearing in (3.3).

For i ¼ 0;

RðiÞðD0 � T1 þ qD1 � T1Þ þ Rðiþ1ÞðD1 � T1Þ þ pD1 � T1 ¼ Rð0Þ:

For i ¼ 1; 2; � � � ; s� 1;

RðiÞðD0 � T1Þ þ Rðiþ1ÞðD1 � T1Þ ¼ RðiÞ:

For i ¼ s;

RðiÞðD0 � T1Þ þ Rðiþ1ÞðD1 � a1Þ þ Rðiþ2ÞðD1 � a1 � t2Þ ¼ RðiÞ:

For i ¼ sþ 1;

RðiÞD0 þ Rðiþ1ÞðD1 � T2em2
Þ þ Rð0ÞRðiþ1ÞðD0 � t2Þ þ Rð0ÞRðiþ2ÞðD1 � t2Þ ¼ RðiÞ:

For i ¼ sþ 2; sþ 3 � � � ;Q� 2;

RðiÞðD0 � T2Þ þ Rðiþ1ÞðD1 � T2Þ þ Rð0ÞRðiþ1ÞðD0 � t2a2Þ þ Rð0ÞRðiþ2ÞðD1 � t2a2Þ
¼ RðiÞ:

For i ¼ Q� 1;

Rð0ÞðD1 � t1 � a2Þ þ RðiÞðD0 � T2Þ þ Rðiþ1ÞðD1 � T2Þ þ Rð0ÞRðiþ1ÞðD0 � t2a2Þ
þ Rð0ÞRðiþ2ÞðD1 � t2a2Þ ¼ RðiÞ:

For i ¼ Q;Qþ 1 � � � ; S� 2;

Rði�QÞðD0 � t1 � a2Þ þ Rði�Qþ1ÞðD1 � t1 � a2Þ þ RðiÞðD0 � T2Þ
þ Rðiþ1ÞðD1 � T2Þ þ Rð0ÞRðiþ1ÞðD0 � t2a2Þ þ Rð0ÞRðiþ2ÞðD1 � t2a2Þ ¼ RðiÞ:

For i ¼ S� 1;

Rði�QÞðD0 � t1 � a2Þ þ Rði�Qþ1ÞðD1 � t1a2Þ þ RðiÞðD0 � T2Þ
þ Rðiþ1ÞðD1 � T2Þ þ Rð0ÞRðiþ1ÞðD0 � t2a2Þ ¼ RðiÞ:

For i ¼ S;

Rði�QÞðD0 � t1 � a2Þ þ RðiÞðD0 � T2Þ ¼ RðiÞ:
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Appendix 2

To compute the /ð0Þ and /ð1Þ matrices, we use the following set of non-linear

equations. From Eq. (3.4), we get

For i ¼ 0;

/ð0;iÞðD0 � T1 þ qD1 � T1Þ þ /ð0;iþ1ÞðD1 � T1Þ ¼ /ð0;iÞ:

For i ¼ 1; 2; � � � ; s� 1;

/ð0;iÞðD0 � T1Þ þ /ð0;iþ1ÞðD1 � T1Þ ¼ /ð0;iÞ:

For i ¼ s;

/ð0;iÞðD0 � T1Þ þ /ð0;iþ1ÞðD1 � a1Þ þ /ð1;iþ2ÞðD1 � a1 � t2Þ ¼ /ð0;iÞ:

For i ¼ sþ 1; sþ 2; � � � ;Q� 2;

/ð0;iÞD0 þ /ð0;iþ1ÞD1 þ /ð1;iþ1ÞðD0 � t2Þ þ /ð1;iþ2ÞðD1 � t2Þ ¼ /ð0;iÞ:

For i ¼ Q� 1;

/ð0;0ÞðD1� t1Þþ/ð0;iÞD0þ/ð0;iþ1ÞD1þ/ð1;iþ1ÞðD0� t2Þþ/ð1;iþ2ÞðD1� t2Þ ¼/ð0;iÞ:

For i¼Q;Qþ 1; � � � ;S� 2;

/ð0;i�QÞðD0 � t1Þ þ /ð0;i�Qþ1ÞðD1 � t1Þ þ /ð0;iÞD0 þ /ð0;iþ1ÞD1

þ /ð1;iþ1ÞðD0 � t2Þ þ /ð1;iþ2ÞðD1 � t2Þ ¼ /ð0;iÞ:

For i ¼ S� 1;

/ð0;i�QÞðD0 � t1Þ þ /ð0;i�Qþ1ÞðD1 � t1Þ þ /ð0;iÞD0 þ /ð0;iþ1ÞD1

þ /ð1;iþ1ÞðD0 � t2Þ ¼ /ð0;iÞ:

For i ¼ S;

phið0;i�QÞðD0 � t1Þ þ /ð0;iÞD0 ¼ /ð0;iÞ:

From Eq. (3.5) we get, For i ¼ 0;

/ð1;iÞðD0 � T1 þ qD1 � T1Þ þ /ð1;iþ1ÞðD1 � T1Þ þ /ð0;iÞðpD1 � T1Þ ¼ /ð1;iÞ:

For i ¼ 1; 2; � � � ; s� 1;

/ð1;iÞðD0 � T1Þ þ /ð1;iþ1ÞðD1 � T1Þ ¼ /ð1;iÞ:
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For i ¼ s;

/ð1;iÞðD0 � T1Þ þ /ð1;iþ1ÞðD1 � a1Þ þ /ð1;0ÞRðiþ2ÞðD1 � a1 � t2Þ ¼ /ð1;iÞ:

For i ¼ sþ 1;

/ð1;iÞD0þ/ð1;iþ1ÞðD1�T2em2
Þþ/ð1;0ÞRðiþ1ÞðD0� t2Þþ/ð1;0ÞRðiþ2ÞðD1� t2Þ¼/ð1;iÞ:

For i¼ sþ2;sþ3; � � � ;Q�2;

/ð1;iÞðD0 � T2Þ þ /ð1;iþ1ÞðD1 � T2Þ þ /ð1;0ÞRðiþ1ÞðD0 � t2a2Þ
þ /ð1;0ÞRðiþ2ÞðD1 � t2a2Þ ¼ /ð1;iÞ:

For i ¼ Q� 1;

/ð1;0ÞðD1 � t1 � a2Þ þ /ð1;iÞðD0 � T2Þ þ /ð1;iþ1ÞðD1 � T2Þ
þ /ð1;0ÞRðiþ1ÞðD0 � t2a2Þ þ /ð1;0ÞRðiþ2ÞðD1 � t2a2Þ ¼ /ð1;iÞ:

For i ¼ Q;Qþ 1; � � � ; S� 2;

/ð1;i�QÞðD0 � t1 � a2Þ þ /ð1;i�Qþ1ÞðD1 � t1 � a2Þ þ /ð1;iÞðD0 � T2Þ
þ /ð1;iþ1ÞðD1 � T2Þ
þ /ð1;0ÞRðiþ1ÞðD0 � t2a2Þ þ /ð1;0ÞRðiþ2ÞðD1 � t2a2Þ ¼ /ð1;iÞ:

For i ¼ S� 1;

/ð1;i�QÞðD0 � t1 � a2Þ þ /ð1;i�Qþ1ÞðD1 � t1 � a2Þ þ /ð1;iÞðD0 � T2Þ
þ /ð1;iþ1ÞðD1 � T2Þ þ /ð1;0ÞRðiþ1ÞðD0 � t2a2Þ ¼ /ð1;iÞ:

For i ¼ S;

/ð1;i�QÞðD0 � t1 � a2Þ þ /ð1;iÞðD0 � T2Þ ¼ /ð1;iÞ:
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