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Abstract We consider the problem of minimizing a fixed-degree polynomial over
the standard simplex. This problem is well known to be NP-hard, since it contains
the maximum stable set problem in combinatorial optimization as a special case. In
this paper, we revisit a known upper bound obtained by taking the minimum value
on a regular grid, and a known lower bound based on Pdlya’s representation the-
orem. More precisely, we consider the difference between these two bounds and we
provide upper bounds for this difference in terms of the range of function values.
Our results refine the known upper bounds in the quadratic and cubic cases, and they
asymptotically refine the known upper bound in the general case.

Keywords Polynomial optimization over the simplex - Global optimization -
Nonlinear optimization
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1 Introduction and Preliminaries

Consider the problem of minimizing a homogeneous polynomial f € R[x] of degree
d on the (standard) simplex

Ay :={xeR}: in =1}.
i=1
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380 Z. Sun

That is the global optimization problem

f:=minf(x), or f:=maxf(x). (1.1)
- XEA, xXeA,
Here we focus on the problem of computing the minimum f of f over A,,. This
problem is well known to be NP-hard, as it contains the maximum stable set
problem as a special case (when f is quadratic). Indeed, given a graph G = (V,E)
with adjacency matrix A, Motzkin and Straus [8] show that the maximum stability
number o(G) can be obtained by

1 T
——=minx (I +A)x,
Of(G) XGA‘V‘ ( )

where I denotes the identity matrix. Moreover, one can w.l.o.g. assume f is
homogeneous. Indeed, if f = Zf;o fs» where f; is homogeneous of degree s, then

minyea, f(x) = mingea, f(x), setting f/ = Zf:ofx(zgq:l x,-)H.

For problem (1.1), many approximation algorithms have been studied in the
literature. In fact, when f has fixed degree d, there is a polynomial time
approximation scheme (PTAS) for this problem, see [1] for the case d = 2 and [5, 7]
for d > 2. For more results on its computational complexity, we refer to [3, 6].

We consider the following two bounds for f: an upper bound fa,, ) obtained by

taking the minimum value on a regular grid and a lower bound fn(:i;d) based on
Pélya’s representation theorem. They both have been studied in the literature, see

e.g., [1, 5, 7] for fa(,,) and [5, 14, 15] for frffi;“o. The two ranges fa(,,) —f and
i frflrn: 9 have been studied separately and upper bounds for each of them have
been shown in the above-mentioned works.

In this paper, we study these two ranges at the same time. More precisely, we

analyze the larger range fa(,,) —f, =) and provide upper bounds for it in terms of

the range of function values f — f- Of course, upper bounds for the range f(u,,) —

fgi;d) can be obtained by combining the known upper bounds for each of the two
ranges fa(,,) —f and f —frfql;d). Our new upper bound for fa(,, — frf]’i;d) refines
these known bounds in the quadratic and cubic cases and provides an asymptotic
refinement for general degree d.

1.1 Notation

Throughout H, ; denotes the set of all homogeneous polynomials in 7 variables with
degree d. We let [n] := {1,2,---,n}. We denote R, as the set of all nonnegative
real vectors, and N" as the set of all nonnegative integer vectors. For o € N", we
define |o|:=3 ", and ol :=oloep!---a,!. We denote I(n,d):={o0ecN":
|| = d}. We let e denote the all-ones vector and e; denote the ith standard unit
vector. We denote R[x] as the set of all multivariate polynomials in n variables (i.e.
Xi,X2+-+,%,) and denote H,, as the set of all multivariate homogeneous

@ Springer



A Refined Error Analysis for Fixed-Degree Polynomial 381

polynomials in n variables with degree d. For o € N", we denote x* := ]\, x7,
while for 7 C [n], we let x' := [[,.,; x;. Moreover, we denote x¢ :=x(x — 1)(x —
2)---(x—d+1) forinteger d > 0 and x% := H;l:lx,i for o € N". Thus, x4 = 0 if x

is an integer with 0 <x < d — 1.
1.2 Upper Bounds Using Regular Grids

One can construct an upper bound for f by taking the minimum of f on the regular
grid
Aln,r) :={x €A, : rx e N"},

for an integer » > 0. We define

fA(n,r) = xenAl;’?r)f(x)

Obviously, f < fap) <f and fa(,,) can be computed by |[A(n, )| = (*""") eval-
uations of f. In fact, when considering polynomials f of fixed degree d, the
parameters fa(,) (with increasing values of r) provide a PTAS for (1. 1), as was
proved by Bomze and de Klerk [1] (for d = 2), and by de Klerk et al. [5] (for
d > 2). Recently, de Klerk et al. [7] provide an alternative proof for this PTAS and
refine the error bound for f(, ) —f from [5] for cubic f.

In addition, some researchers study the properties of the regular grid A(n, r). For
instance, given a pointx € A,, Bomze et al. [2] show a scheme to find the closest point
to x on A(n, r) with respect to some class of norms including ¢,-norms for p > 1.

1.3 Lower Bounds Based on Pdlya’s Representation Theorem

Given a polynomial f € H,, 4, Polya [12] shows that if fis positive over the simplex
A,, then the polynomial (>"7_ , x;)'f has nonnegative coefficients for any r large
enough (see [13] for an explicit bound for r). Based on this result of Pdlya, an

asymptotically converging hierarchy of lower bounds for f can be constructed as

follows: for any integer r > d, we define the parameter f, (r=d)

min

r—d d
=d) . _ max 1 s.t. X; - X;
rin ; ; f ; : 12)

has nonnegative coefficients.

as

Notice that f can be equivalently formulated as

) d
f=max 1 st f(x)—i(Zx,-) >0 VxeR.
i—1
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Then, one can easily check the following inequalities:

fmm = mm < g]ﬁ <fA(n,r) <f

Parrilo [9, 10] first introduces the idea of applying Pélya’s representation theorem to
construct hierarchical approximations in copositive optimization. De Klerk et al. [5]

consider f 9 and show upper bounds for f — fé{i;d) in terms of f — f- Furthermore,

min
Yildirim [15] and Sagol and Yildirim [14] analyze error bounds for fé{igz) for
quadratic f.

Now we give an explicit formula for the parameter fmm which follows from

[13, relation (3)]; note that the quadratic case of this formula has also been observed
in [11, 14, 15].

Lemma 1.1 Forf =", ,fpx" € H,a, one has

ford mm > f, (1.3)

I(
o€l(n,r) pEInd)

Proof By using the multinomial theorem (Y7, x;)¢ = > sci(na) GX"s we obtain

n r—d n r
(s) () - [ 2 ) [ 2w
i=1 i=1 yel(n,r—d) v pel(nd)
| > g

a€l(n,r) o
1) !
= S X)X
acl(n,r) \ pel(nd) rd | al a€l(n,r) x

|
Z Z fl;OC %x“.

o€l(n,r) \ pel(nd)

Hence, by Definition (1.2), we obtain

f<’.’d) =max /A s.t. Z f/;oc ——) 0 Vael(n,r)

ﬁGI n,d)
= min Z f/;ocﬁ s.t. o€ (n,r).
pel(n,d)
O
Similarly as fa(,), by (1.3), the computation of £ requires |I(n, r)| = ("1

evaluations of the polynomial s/, 4) f/;oc-ﬁ
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1.4 Bernstein Coefficients

For any polynomial f =" Bel(nd) f/fxﬂ € H,q, we can write it as

> = 3 a)n (14)

pel(n,d) pel(nd)

For any f§ € I(n,d), we call f,;% the Bernstein coefficients of f (this terminology has
also been used in [4, 7]), since they are the coefficients of the polynomial f when fis
expressed in the Bernstein basis {§ix : f € I(n,d)} of H, 4. Applying the multi-
nomial theorem together with (1.4), one can obtain that when evaluating f at a point
x € A, f(x) is a convex combination of the Bernstein coefficients I8 % Therefore,
we have

in fyly <1 < <F < max il (1.9

[36/ ﬁel(n d)

For the analysis in Sect. 5, we need the following result of [S], which bounds the
range of the Bernstein coefficients of fin terms of its range of values f — S

Theorem 1.2 [5, Theorem 2.2] For any polynomial f =3 s/, ) f3xf € Hoa,

B! B (2d—1\ -
ﬂgaffz)fﬁﬁ ﬁezndfﬂd' ( d )d(f@‘

one has

1.5 Contribution of the Paper

In this paper, we consider upper bounds for fy(,, — félri;d)

in terms of f — f. More
precisely, we provide tighter upper bounds in the quadratic, cubic and square-free
(aka multilinear) cases and in the general case d > 2, our upper bounds are
asymptotically tighter when r is large enough. We will apply the formula (1.3)
directly for the quadratic, cubic and square-free cases, while for the general case we
will use Theorem 1.2.

There are some relevant results in the literature. De Klerk et al. [5] give upper

bounds for f, ) f (the upper bound for cubic f has been refined by de Klerk et al.
[7]) and for f — f

hin ) in terms of f — f>and by adding them up one can easily derive

upper bounds for fa, ) — frElm 49 . Furthermore, for quadratic polynomial f, Yildirim
[15] considers the upper bound ming<, fa( k) for f (for r > 2) and upper bounds the

range mingg, famr) — fn(;; 9 in terms of f- f- Our results in this paper refine the
results in [5, 7, 15] for the quadratic and cubic cases (see Sects. 2 and 3
respectively), while for the general case, our result refines the result of [5] when r is

sufficiently large (see Sect. 5).
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1.6 Structure

The paper is organized as follows. In Sects. 2 and 3, we consider the quadratic and
cubic cases, respectively and refine the relevant results obtained from [5, 7, 15].
Then, we look at the square-free (aka multilinear) case in Sect. 4. Moreover, in Sect.
5, we consider general (fixed-degree) polynomials and compare our new result with
the one of [5].

2 The Quadratic Case

For any quadratic polynomial f, we consider the range fa(,») — fé;z) and derive the
following upper bound in terms of f — I

Theorem 2.1 For any quadratic f = x"Qx and r > 2, one has

LF-n @

(r=2)

- 1
fA(n,r) _fmin < m (Qmax _fA(n,r)) < ,

where Qmax := max;cj, Qii-

Proof By (1.3), we have
r-2) . 1 Rer
fmin - agll(lnl}r) r(r _ 1) [f(d) lz:l: Qllal‘| .

Hence, =1 [512;2) = MiNes() [f(2) — D0, Qi %1]. We obtain

r—1 (r=2)

] 1
fmin 2 ‘ min —) — max _ZQ” _fAnr _;Qmax- (22)

One can easily obtain the first inequality in (2.1) by (2.2). For the second inequality
in (2.1), we use the fact that Q. < f (since Q;; = f(e;) < f for i € [n]) as well as
the fact that f(,,) = f. O

Now we point out that our result (2.1) refines the relevant result of [5]. De Klerk
et al. [5] show the following theorem.

Theorem 2.2 [5, Theorem 3.2] Suppose f € Hyp and r = 2. Then

(r—=2) =
[_fmin < r— 1(f_.]:)a (23)
1 -
Iaer) =f < (F =) (2.4)
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By adding up (2.3) and (2.4), one gets
r—2 1 1\ -
Samr _féﬁn ) < <ﬁ + ;) -1,

which is implied by our result (2.1).
Moreover, in [15], Yildirim considers one hierarchical upper bound of ]_‘ (when f

is quadratic), which is defined by ming<, fou ). One can easily verify that

fmm <f mlan n.k) <fA (n,r)
In [15, Theorem 4.1], Yildirim shows ming<, fa(u) — fé{inz < 5 (Omax — f), which
can also be easily implied by our result (2.1).
The following example shows that the upper bound (2.1) can be tight.

Example 2.3 [7, Example 2] Consider the quadratic polynomlal =022 Asf
is convex, one can check that f = ,ll (attained at x = Le) and f = 1 (attained at any
standard unit vector). To compute Sam,r), we write r as r = kn + s, where kK > 0 and
0 < s<n. Then one can check that

1 1s(n—s)

Sfamn = " + )

n

By (1.3), we have
r—2) _L b 1 S(}’Z—S)
fA(nr _fmm - r—1 (f_J:> _7‘2(

r—1) n

Hence, for this example, the upper bound (2.1) is tight when s = 0.

3 The Cubic Case

For any cubic polynomial f, we consider the difference fa(,,) — félrm and show the
following result.

Theorem 3.1 For any cubic polynomial f and r > 3, one has

. 4 7
fA(n,r) _fn(11n3) < . 2)(](_.[) (31)

SN
Proof We can write any cubic polynomial f as

f= Zfzx + Z(fuxlx Jthjx xj) Z SijkXiXjXe.

i<j i<j<k
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Then by (1.3), one can check that

“—Q#f;:ﬁ:%{ r(3)- <3Zfa 23 s )}

i<j

gL {335 T (9 (2) )

1 n
+— min 2 iﬁ

szel(n r) P

2 fA(n rIxIé%X{S E fix? +;(fy+gu xlxj}—k mng fix;.

(3.2)

Evaluating f at ¢; and (e;+¢;)/2 yields, respectively, the relations:
[<h<T, (3.3)

fi+fi+fi+ gy < 8. (34)

Using (3.4) and the fact that >_»_ x; = I, one can obtain

> (i +gi)xig < > _(8F —fi — f)xix; = 8F > xixj — Zf,xl —x).  (3.5)

i<j i<j i<j i=
By (3.2), (3.3), (3.5) and the fact that Z?:l x; = 1, one can get
D=2 =2 — dif 2) mi X
(r=1)(r = 2)fin rfamy) — 4rf + (r+ ))ICIEHAI: ;fx
> Pfagy) — 4f + (r+2)f.

Hence, one has

(F— 1)(}’ )(Anr _fmm ) 4l’f (3r—2) A(n,r) (}’+2) 4r(f f)
O

Now we observe that our result (3.1) refines the relevant upper bound obtained
from [5, 7]. De Klerk et al. [5] show the following result.

Theorem 3.2 [5, Theorem 3.3] Suppose f € H,3 and r > 3. Then

4r -
f fmm \(r_l)(r_z)(f_[)7 (3 6)
fA(nVr) _[gé(f_f) (3 7)
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Recently, De Klerk et al. [7, Corollary 2 ] refine (3.7) to

4 4\ -

fA(n,r) _]jg (;_ﬁ>(f_f) (38)
Similar to the quadratic case (in Sect. 2), our new upper bound (3.1) implies the
upper bound obtained by adding up (3.6) and (3.8). However, we do not find any
example showing the upper bound (3.1) is tight. Thus, it is still an open question to
show the tightness of the upper bound (3.1).

4 The Square-free Case

Consider the square-free (aka multilinear) polynomial f = 3 ;1 111—a fix! € Hya.
We have the following result for the difference fa(.») — f, (r=d),

min

Theorem 4.1 For any square-free polynomial f = Zl:Ig[n},\l\:dexI and r > d,

one has
(r—d) r =
fA(n,r) _fmin < (rd - 1) (f _Jj) (41)
Proof From (1.3), one can easily check that
= min Y A% =L min s
. = min — = — min o).
min ocl(n,r) FACh 1 =d ! rd rd acl(n,r)

As a result, one can obtain

A
fA(n,r) rd

For d = 1, the result (4.1) is clear.
Now we assume d > 2. Considering f > 0 (asf(e;) = 0 forany i € [n]), we obtain

- v d d -
fA(n,r) _frgﬁnd) = (1 _E)fA(n,r) < (1 _:_4>J_C < (:_4_ 1) (f _]_c) (4'2)

O
The following example shows that our upper bound (4.1) can be tight.

Example 4.2 [7, Example 4] Consider the square-free polynomial f = —x;x;. One
can check f =0, f = —1, and

Fao = f%, i.fri'seven,
(2r) — +ﬁ, if r isodd.
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By (1.3), we have

(r—2) L (f —jj), if r iseven,
facr —fuin” =94 N\ /4 o
) (f—]ﬁ), if r isodd.

For this example, the upper bound (4.1) is tight when r is even. In fact, from (4.2),
one can easily see that the upper bound (4.1) is tight as long as fa(,,) =f — f holds.

5 The General Case

Now, we consider an arbitrary polynomial f = Zﬁe](n, d) f/gxﬁ € H, 4. We need the

following notation to formulate our result. Consider the univariate polynomial ¢ —
2 (in the variable f), which can be written as

d—1
- = (=) (5.1)
k=1
for some positive scalars aj,as, - - -, a4—1. Moreover, one can easily check that
d—1
D ag it =(t+d—1) =1 (5.2)

k=1

We can show the following error bound for the range fa(.,) — f; (r=d),

min
Theorem 5.1 For any polynomial f € H, 4 and r > d, one has

. d—1)4—r (2d -1\ , -
fA(ﬂJ‘) _fl‘Elind) < % ( d )dd(f —f) (5.3)

Note that when f is quadratic, cubic or square-free, we have shown better upper
bounds in Theorems 2.1, 3.1 and 4.1.

In the proof, we will need the following Vandermonde-Chu identity (see [13] for
a proof, or alternatively use induction on d > 1):

d
(Zx,-) = Z Z—:xg Vx € R", (5.4)
=1

acl(nd) "
which is an analogue of the multinomial theorem (37, x[)d = Z«el(n,d) %x“. Now
we prove Theorem 5.1.
Proof (of Theorem 5.1) From (1.3), we have

p

rd (r—d) Otﬁ ocﬂ — 0=
—f5 Y = min fg—— fi

2win D fig= Do M

r )\ pérma) r Bel(nd) r
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From this, we obtain the inequality:

M- o — b
_f i >f ny) — Max f . 5.5
l"d min Almr) a€l(n,r) /)’EI;EZ’) b rd ( )
We now focus on the summation Zﬁd(n,d)fﬁ(zxﬁ —db).
For any f§ € I(n,d) and x € R", we can write the polynomial x* — x as
W — = Z (—1)d7|y‘71c,/;x7’, (5.6)
7ilyl<d—1

for some nonnegative scalars cf (which is an analogue of (5.1)). We now claim that
for any fixed k € [d — 1], the following identity holds:

n k
S S = (1 (Zx,-) .5
i=1

vel(nk) pel(nd) B

For this, observe that the polynomials at both sides of (5.7) are homogeneous of
degree k. Hence (5.7) will follow if we can show that the equality holds after
summing each side over k € [d — 1]. In other words, it suffices to show the identity:

d-1 d-1 n ¢
55 3 S-S (Y]

k=1 yel(nk) pel(n.d) k=1

By the definition of a,_; in (5.1), the right side of the above equation is equal to
(o, x) = (3, x)%. Hence, we only need to show

d d
d' i . n n =
E _'(_l)d*M 1c{jx*’ — <§ xi) —<E xl-) . (5.8)
el(nd) ‘B i=1 i=1
Summing over (5.6), we obtain

S A )= Y By

B B
pel(n,d) ﬁ pel(n,d) y:|y|<d—1 ﬂ
1

d! el oy
- o (=)

k=1 yel(nk) pel(nd) "

d—1

k=1 yel(nk) p

We can now conclude the proof of (5.8) (and thus of (5.7)). Indeed, by using the
multinomial theorem and the Vandermonde-Chu identity (5.4), we see that the left-
most side in the above relation is equal to (37, x,)¢ — (321, x;)%.

We partition [d—1] as [d—1]=1,Ul, where I,:={k:ked-
1],d —kisodd} and I, :={k:k € [d —1],d-kis even}. Then, from (5.6), the
summation gy, o fp(of — o) becomes
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Z fo(o — of) = 13 (-1 )df‘y‘flc{fa“/

pel(n,d) El(nd :lyl<d—1

Zfﬁ dMlﬂ

=1 yel(n.k) pel(n,d)

<( s i) 3 5 zﬁ.,

kel, yel(n.k) pel(nd)

(i ) S Gl

kel, yel(nk) pel(nd)

Q_%

By (5.7), we obtain

S st oy < (s 1) S o8 ($54)

pel(n.d)

] ﬁ' n
(ﬂéﬁw a) &\ )

Combining with (5.5), we get
de(r=d) 5 d _ k
Pmin = P S <lielndfﬁ d') ;ad i+ (ﬁel n fp d') ;ad K

That is,

r d) d__ d B!
r= (fAnr - mm )g (r__r)A(n,r)+ <ﬁ€1 f[d'>zadkrk

kel,
a I‘
(ﬁelnd d')z -k

kel,
Since 14 — 14 = 347 1(—1)**ay_1r*, we obtain

d—1

r—d) d—k k
r_(fAnr - mm ) < (71) dd—k" fA(n,r </361 nd d') Zad kr

k=1 kel,

_< yin d,)zadkr

kel,

= ( max fﬁd') Zad e de i
pel(nd kel kel,
( 5d,>zad W = faur) Y daxr.

kel, kel,

According to (1.5), one has minge;(, ) fp% <famr € MaXpger(na)fp % Therefore, we
have
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d-1
d _ pr=d) < E
M (far) —fam ) < (ﬁgll(i)‘(d)fﬂd! ﬁe]ndfﬂd') de k.

=1
That is,

Zk 1ad krk ﬁ' B!
Famn) Foin min S rd /erI}E}L)Z)f dl pel ndfﬁ d!

Finally, together with Theorem 1.2 and (5.2), we can conclude the result of
Theorem 5.1. O

Now, we compare the following theorem by De Klerk et al. [5] with our new
result (5.3).

Theorem 5.2 [5, Theorem 1.3] Suppose f € H, 4 and r > d. Then

-t < (5-0) () oo, (59)

fun -1 (1-5) (7 - (5.10)

By adding up (5.9) and (5.10), we obtain
d
gy (TN (2= s
fA(n.r) fmm S <l’d rd)< d d (f f) (511)

Lemma 5.3 When r is large enough, the upper bound (5.3) refines the upper
bound (5.11).

d-1 X
Proof It suffices to show that o= 1s larger than Zk:‘r,_,adfkr
M

large. Since 5 — 15 = (rdfT)/r—, we only need to compare r

when r is sufficiently

d\2

d % and
d—1 k (rd)? . d-

> i_i @a—xr*. For the term ¥ — “=-, one can check that the coefficient of 7/ is 0 and

the coefficient of #~! is 2a; > 0. On the other hand, in the summation $¢_| a4 %,

()

-

the coefficient of ¥~ ! is a; > 0. Therefore, when r is sufficiently large, rd— is

larger than Zz;ll aq_xr*, by which we conclude the proof. U
We illustrate the result in Lemma 5.3 in the case of quartic polynomials.

Example 5.4 Consider a polynomial f € H, 4 written as

f= fo +Z( X+ 8 X, + hyxix )+ D i + giexio e

i<j i<j<k

+ hijkxixjxk) + E S XiXjXiex;.

i<j<k<l

In this case, (5.3) reads
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(r—4) 6rr +11r +6 TN 4=
fA(n,r) _fmin < (r — 1)(}" — 2)(r — 3) (4)4 (f —]j), (512)

while (5.11) reads

_ 12/2 —58r + 144 — 1283 L 132 36 /7 _
— = < - 5.1
fA(";’) fmln ~ (r_ 1)(7‘—2)(7‘—3) (4) (f f) ( . 3)

One can check that (5.12) refines (5.13) when r > 10.

Remark 5.5 We now consider the convergence rate of the sequence

_ ¢lr=a)
o, ::fA(”J) fmm = 1’2"”

F=1
Suppose the degree of fis fixed. By (5.3), we have o, = O(%). As in Example 4.2,
o = Q(%) holds, we can conclude that the dependence of «, on r in (5.3) is tight, in

the sense that there does not exist any ¢ > O such that o, = O(r,%)
In [7], De Klerk et al. consider the convergence rate of the sequence

ﬁr::Mj r=1,2,--

f=f

They consider several examples, and all of them satisfy f§, = O(r]_z) However, it is
still an open question to determine the asymptotic convergence rate of f3, in general.
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