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Abstract We consider the problem of minimizing a fixed-degree polynomial over

the standard simplex. This problem is well known to be NP-hard, since it contains

the maximum stable set problem in combinatorial optimization as a special case. In

this paper, we revisit a known upper bound obtained by taking the minimum value

on a regular grid, and a known lower bound based on Pólya’s representation the-

orem. More precisely, we consider the difference between these two bounds and we

provide upper bounds for this difference in terms of the range of function values.

Our results refine the known upper bounds in the quadratic and cubic cases, and they

asymptotically refine the known upper bound in the general case.

Keywords Polynomial optimization over the simplex � Global optimization �
Nonlinear optimization

Mathematics Subject Classification 90C30 � 90C60

1 Introduction and Preliminaries

Consider the problem of minimizing a homogeneous polynomial f 2 R½x� of degree

d on the (standard) simplex

Dn :¼ fx 2 R
n
þ :
Xn

i¼1

xi ¼ 1g:
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That is the global optimization problem

f :¼ min
x2Dn

f ðxÞ; or f :¼ max
x2Dn

f ðxÞ: ð1:1Þ

Here we focus on the problem of computing the minimum f of f over Dn. This

problem is well known to be NP-hard, as it contains the maximum stable set

problem as a special case (when f is quadratic). Indeed, given a graph G ¼ ðV ;EÞ
with adjacency matrix A, Motzkin and Straus [8] show that the maximum stability

number aðGÞ can be obtained by

1

aðGÞ ¼ min
x2DjVj

xTðI þ AÞx;

where I denotes the identity matrix. Moreover, one can w.l.o.g. assume f is

homogeneous. Indeed, if f ¼
Pd

s¼0 fs, where fs is homogeneous of degree s, then

minx2Dn
f ðxÞ ¼ minx2Dn

f 0ðxÞ, setting f 0 ¼
Pd

s¼0 fs

Pn
i¼1 xi

� �d�s
:

For problem (1.1), many approximation algorithms have been studied in the

literature. In fact, when f has fixed degree d, there is a polynomial time

approximation scheme (PTAS) for this problem, see [1] for the case d ¼ 2 and [5, 7]

for d > 2. For more results on its computational complexity, we refer to [3, 6].

We consider the following two bounds for f : an upper bound fDðn;rÞ obtained by

taking the minimum value on a regular grid and a lower bound f
ðr�dÞ
min based on

Pólya’s representation theorem. They both have been studied in the literature, see

e.g., [1, 5, 7] for fDðn;rÞ and [5, 14, 15] for f
ðr�dÞ
min . The two ranges fDðn;rÞ � f and

f � f
ðr�dÞ
min have been studied separately and upper bounds for each of them have

been shown in the above-mentioned works.

In this paper, we study these two ranges at the same time. More precisely, we

analyze the larger range fDðn;rÞ � f
ðr�dÞ
min and provide upper bounds for it in terms of

the range of function values f � f . Of course, upper bounds for the range fDðn;rÞ �
f
ðr�dÞ
min can be obtained by combining the known upper bounds for each of the two

ranges fDðn;rÞ � f and f � f
ðr�dÞ
min . Our new upper bound for fDðn;rÞ � f

ðr�dÞ
min refines

these known bounds in the quadratic and cubic cases and provides an asymptotic

refinement for general degree d.

1.1 Notation

ThroughoutHn;d denotes the set of all homogeneous polynomials in n variables with

degree d. We let ½n� :¼ f1; 2; � � � ; ng. We denote R
n
þ as the set of all nonnegative

real vectors, and N
n as the set of all nonnegative integer vectors. For a 2 N

n, we

define jaj :¼
Pn

i¼1 ai and a! :¼ a1!a2! � � � an!. We denote Iðn; dÞ :¼ fa 2 N
n :

jaj ¼ dg. We let e denote the all-ones vector and ei denote the ith standard unit

vector. We denote R½x� as the set of all multivariate polynomials in n variables (i.e.

x1; x2 � � � ; xn) and denote Hn;d as the set of all multivariate homogeneous
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polynomials in n variables with degree d. For a 2 N
n, we denote xa :¼

Qn
i¼1 xai

i ,

while for I � ½n�, we let xI :¼
Q

i2I xi. Moreover, we denote xd :¼ xðx� 1Þðx�
2Þ � � � ðx� d þ 1Þ for integer d > 0 and xa :¼

Qn
i¼1 x

ai

i for a 2 N
n. Thus, xd ¼ 0 if x

is an integer with 0 6 x 6 d � 1.

1.2 Upper Bounds Using Regular Grids

One can construct an upper bound for f by taking the minimum of f on the regular

grid

Dðn; rÞ :¼ fx 2 Dn : rx 2 N
ng;

for an integer r > 0. We define

fDðn;rÞ :¼ min
x2Dðn;rÞ

f ðxÞ:

Obviously, f 6 fDðn;rÞ 6 f and fDðn;rÞ can be computed by jDðn; rÞj ¼ nþr�1
r

� �
eval-

uations of f. In fact, when considering polynomials f of fixed degree d, the

parameters fDðn;rÞ (with increasing values of r) provide a PTAS for (1. 1), as was

proved by Bomze and de Klerk [1] (for d ¼ 2), and by de Klerk et al. [5] (for

d > 2). Recently, de Klerk et al. [7] provide an alternative proof for this PTAS and

refine the error bound for fDðn;rÞ � f from [5] for cubic f.

In addition, some researchers study the properties of the regular grid Dðn; rÞ. For

instance, given a point x 2 Dn, Bomze et al. [2] show a scheme to find the closest point

to x on Dðn; rÞ with respect to some class of norms including ‘p-norms for p > 1.

1.3 Lower Bounds Based on Pólya’s Representation Theorem

Given a polynomial f 2 Hn;d, Pólya [12] shows that if f is positive over the simplex

Dn, then the polynomial ð
Pn

i¼1 xiÞrf has nonnegative coefficients for any r large

enough (see [13] for an explicit bound for r). Based on this result of Pólya, an

asymptotically converging hierarchy of lower bounds for f can be constructed as

follows: for any integer r > d, we define the parameter f
ðr�dÞ
min as

f
ðr�dÞ
min :¼ max k s:t:

Xn

i¼1

xi

 !r�d

f � k
Xn

i¼1

xi

 !d
0

@

1

A

has nonnegative coefficients.

ð1:2Þ

Notice that f can be equivalently formulated as

f ¼ max k s:t: f ðxÞ � k
Xn

i¼1

xi

 !d

> 0 8x 2 R
n
þ:
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Then, one can easily check the following inequalities:

f
ð0Þ
min 6 f

ð1Þ
min 6 � � � 6 f 6 fDðn;rÞ 6 f :

Parrilo [9, 10] first introduces the idea of applying Pólya’s representation theorem to

construct hierarchical approximations in copositive optimization. De Klerk et al. [5]

consider f
ðr�dÞ
min and show upper bounds for f � f

ðr�dÞ
min in terms of f � f . Furthermore,

Yildirim [15] and Sagol and Yildirim [14] analyze error bounds for f
ðr�2Þ
min for

quadratic f.

Now we give an explicit formula for the parameter f
ðr�dÞ
min , which follows from

[13, relation (3)]; note that the quadratic case of this formula has also been observed

in [11, 14, 15].

Lemma 1.1 For f ¼
P

b2Iðn;dÞ fbxb 2 Hn;d, one has

f
ðr�dÞ
min ¼ min

a2Iðn;rÞ

X

b2Iðn;dÞ
fb

ab

rd
: ð1:3Þ

Proof By using the multinomial theorem ð
Pn

i¼1 xiÞd ¼
P

a2Iðn;dÞ
d!
a! xa, we obtain

Xn

i¼1

xi

 !r�d

f � k
Xn

i¼1

xi

 !r

¼
X

c2Iðn;r�dÞ

ðr � dÞ!
c!

xc

0
@

1
A

X

b2Iðn;dÞ
fbxb

0
@

1
A

� k
X

a2Iðn;rÞ

r!

a!
xa

0
@

1
A

¼
X

a2Iðn;rÞ

X

b2Iðn;dÞ
fba

b 1

rd

0
@

1
A r!

a!
xa � k

X

a2Iðn;rÞ

r!

a!
xa

0
@

1
A

¼
X

a2Iðn;rÞ

X

b2Iðn;dÞ
fba

b 1

rd
� k

0
@

1
A r!

a!
xa:

Hence, by Definition (1.2), we obtain

f
ðr�dÞ
min ¼ max k s:t:

X

b2Iðn;dÞ
fba

b 1

rd
� k > 0 8a 2 Iðn; rÞ

¼ min
X

b2Iðn;dÞ
fba

b 1

rd
s:t: a 2 Iðn; rÞ:

h

Similarly as fDðn;rÞ, by (1.3), the computation of f
ðr�dÞ
min requires jIðn; rÞj ¼ nþr�1

r

� �

evaluations of the polynomial
P

b2Iðn;dÞ fba
b 1

rd.
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1.4 Bernstein Coefficients

For any polynomial f ¼
P

b2Iðn;dÞ fbxb 2 Hn;d, we can write it as

f ¼
X

b2Iðn;dÞ
fbxb ¼

X

b2Iðn;dÞ
fb

b!

d!

� �
d!

b!
xb: ð1:4Þ

For any b 2 Iðn; dÞ, we call fb
b!
d! the Bernstein coefficients of f (this terminology has

also been used in [4, 7]), since they are the coefficients of the polynomial f when f is

expressed in the Bernstein basis fd!
b! x

b : b 2 Iðn; dÞg of Hn;d. Applying the multi-

nomial theorem together with (1.4), one can obtain that when evaluating f at a point

x 2 Dn, f ðxÞ is a convex combination of the Bernstein coefficients fb
b!
d!. Therefore,

we have

min
b2Iðn;dÞ

fb
b!

d!
6 f 6 fDðn;rÞ 6 f 6 max

b2Iðn;dÞ
fb

b!

d!
: ð1:5Þ

For the analysis in Sect. 5, we need the following result of [5], which bounds the

range of the Bernstein coefficients of f in terms of its range of values f � f .

Theorem 1.2 [5, Theorem 2.2] For any polynomial f ¼
P

b2Iðn;dÞ fbxb 2 Hn;d,

one has

max
b2Iðn;dÞ

fb
b!

d!
� min

b2Iðn;dÞ
fb

b!

d!
6

2d � 1

d

� �
ddðf � f Þ:

1.5 Contribution of the Paper

In this paper, we consider upper bounds for fDðn;rÞ � f
ðr�dÞ
min in terms of f � f . More

precisely, we provide tighter upper bounds in the quadratic, cubic and square-free

(aka multilinear) cases and in the general case d > 2, our upper bounds are

asymptotically tighter when r is large enough. We will apply the formula (1.3)

directly for the quadratic, cubic and square-free cases, while for the general case we

will use Theorem 1.2.

There are some relevant results in the literature. De Klerk et al. [5] give upper

bounds for fDðn;rÞ � f (the upper bound for cubic f has been refined by de Klerk et al.

[7]) and for f � f
ðr�dÞ
min in terms of f � f , and by adding them up one can easily derive

upper bounds for fDðn;rÞ � f
ðr�dÞ
min . Furthermore, for quadratic polynomial f, Yildirim

[15] considers the upper bound mink6r fDðn;kÞ for f (for r > 2) and upper bounds the

range mink6r fDðn;kÞ � f
ðr�dÞ
min in terms of f � f . Our results in this paper refine the

results in [5, 7, 15] for the quadratic and cubic cases (see Sects. 2 and 3

respectively), while for the general case, our result refines the result of [5] when r is

sufficiently large (see Sect. 5).

A Refined Error Analysis for Fixed-Degree Polynomial 383

123



1.6 Structure

The paper is organized as follows. In Sects. 2 and 3, we consider the quadratic and

cubic cases, respectively and refine the relevant results obtained from [5, 7, 15].

Then, we look at the square-free (aka multilinear) case in Sect. 4. Moreover, in Sect.

5, we consider general (fixed-degree) polynomials and compare our new result with

the one of [5].

2 The Quadratic Case

For any quadratic polynomial f, we consider the range fDðn;rÞ � f
ðr�2Þ
min and derive the

following upper bound in terms of f � f .

Theorem 2.1 For any quadratic f ¼ xTQx and r > 2, one has

fDðn;rÞ � f
ðr�2Þ
min 6

1

r � 1
ðQmax � fDðn;rÞÞ 6

1

r � 1
ðf � f Þ; ð2:1Þ

where Qmax :¼ maxi2½n�Qii.

Proof By (1.3), we have

f
ðr�2Þ
min ¼ min

a2Iðn;rÞ

1

rðr � 1Þ f ðaÞ �
Xn

i¼1

Qiiai

" #
:

Hence, r�1
r

f
ðr�2Þ
min ¼ mina2Iðn;rÞ f ða

r
Þ �

Pn
i¼1 Qii

ai

r
1
r

� �
: We obtain

r � 1

r
f
ðr�2Þ
min > min

a2Iðn;rÞ
f ða

r
Þ � max

a2Iðn;rÞ

1

r

Xn

i¼1

Qii

ai

r
¼ fDðn;rÞ �

1

r
Qmax: ð2:2Þ

One can easily obtain the first inequality in (2.1) by (2.2). For the second inequality

in (2.1), we use the fact that Qmax 6 f (since Qii ¼ f ðeiÞ 6 f for i 2 ½n�) as well as

the fact that fDðn;rÞ > f . h

Now we point out that our result (2.1) refines the relevant result of [5]. De Klerk

et al. [5] show the following theorem.

Theorem 2.2 [5, Theorem 3.2] Suppose f 2 Hn;2 and r > 2. Then

f � f
ðr�2Þ
min 6

1

r � 1
ðf � f Þ; ð2:3Þ

fDðn;rÞ � f 6
1

r
ðf � f Þ: ð2:4Þ
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By adding up (2.3) and (2.4), one gets

fDðn;rÞ � f
ðr�2Þ
min 6

1

r � 1
þ 1

r

� �
ðf � f Þ;

which is implied by our result (2.1).

Moreover, in [15], Yildirim considers one hierarchical upper bound of f (when f

is quadratic), which is defined by mink6r fDðn;kÞ: One can easily verify that

f
ðr�2Þ
min 6 f 6 min

k6r
fDðn;kÞ 6 fDðn;rÞ:

In [15, Theorem 4.1], Yildirim shows mink6r fDðn;kÞ � f
ðr�2Þ
min 6

1
r�1
ðQmax � f Þ, which

can also be easily implied by our result (2.1).

The following example shows that the upper bound (2.1) can be tight.

Example 2.3 [7, Example 2] Consider the quadratic polynomial f ¼
Pn

i¼1 x2
i . As f

is convex, one can check that f ¼ 1
n

(attained at x ¼ 1
n

e) and f ¼ 1 (attained at any

standard unit vector). To compute fDðn;rÞ, we write r as r ¼ knþ s, where k > 0 and

0 6 s\n. Then one can check that

fDðn;rÞ ¼
1

n
þ 1

r2

sðn� sÞ
n

:

By (1.3), we have

fDðn;rÞ � f
ðr�2Þ
min ¼ 1

r � 1
f � f
� 	

� 1

r2ðr � 1Þ
sðn� sÞ

n
:

Hence, for this example, the upper bound (2.1) is tight when s ¼ 0.

3 The Cubic Case

For any cubic polynomial f, we consider the difference fDðn;rÞ � f
ðr�3Þ
min and show the

following result.

Theorem 3.1 For any cubic polynomial f and r > 3, one has

fDðn;rÞ � f
ðr�3Þ
min 6

4r

ðr � 1Þðr � 2Þ ðf � f Þ: ð3:1Þ

Proof We can write any cubic polynomial f as

f ¼
Xn

i¼1

fix
3
i þ

X

i\j

ðfijxix
2
j þ gijx

2
i xjÞ þ

X

i\j\k

fijkxixjxk:
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Then by (1.3), one can check that

ðr�1Þðr�2Þ
r2

f
ðr�3Þ
min ¼ min

a2Iðn;rÞ
f

a
r

� 	
� 1

r3
3
Xn

i¼1

fia
2
i �2

Xn

i¼1

fiaiþ
X

i\j

ðfijþgijÞaiaj

 !( )

> fDðn;rÞ �
1

r
max

a2Iðn;rÞ
3
Xn

i¼1

fi
ai

r

� 	2

þ
X

i\j

ðfijþgijÞ
ai

r

� 	 aj

r

� 	( )

þ 1

r2
min

a2Iðn;rÞ
2
Xn

i¼1

fi
ai

r

> fDðn;rÞ �
1

r
max
x2Dn

3
Xn

i¼1

fix
2
i þ
X

i\j

ðfijþgijÞxixj

( )
þ 1

r2
min
x2Dn

2
Xn

i¼1

fixi:

ð3:2Þ

Evaluating f at ei and ðeiþejÞ=2 yields, respectively, the relations:

f 6 fi 6 f ; ð3:3Þ

fi þ fj þ fij þ gij 6 8f : ð3:4Þ

Using (3.4) and the fact that
Pn

i¼1 xi ¼ 1, one can obtain

X

i\j

ðfij þ gijÞxixj 6

X

i\j

ð8f � fi � fjÞxixj ¼ 8f
X

i\j

xixj �
Xn

i¼1

fixið1� xiÞ: ð3:5Þ

By (3.2), (3.3), (3.5) and the fact that
Pn

i¼1 xi ¼ 1, one can get

ðr � 1Þðr � 2Þf ðr�3Þ
min > r2fDðn;rÞ � 4rf þ ðr þ 2Þmin

x2Dn

Xn

i¼1

fixi

> r2fDðn;rÞ � 4rf þ ðr þ 2Þf :

Hence, one has

ðr � 1Þðr � 2Þ fDðn;rÞ � f
ðr�3Þ
min

� 	
6 4rf � ð3r � 2ÞfDðn;rÞ � ðr þ 2Þf 6 4rðf � f Þ:

h

Now we observe that our result (3.1) refines the relevant upper bound obtained

from [5, 7]. De Klerk et al. [5] show the following result.

Theorem 3.2 [5, Theorem 3.3] Suppose f 2 Hn;3 and r > 3. Then

f � f
ðr�3Þ
min 6

4r

ðr � 1Þðr � 2Þ ðf � f Þ; ð3:6Þ

fDðn;rÞ � f 6
4

r
ðf � f Þ: ð3:7Þ
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Recently, De Klerk et al. [7, Corollary 2 ] refine (3.7) to

fDðn;rÞ � f 6
4

r
� 4

r2

� �
ðf � f Þ: ð3:8Þ

Similar to the quadratic case (in Sect. 2), our new upper bound (3.1) implies the

upper bound obtained by adding up (3.6) and (3.8). However, we do not find any

example showing the upper bound (3.1) is tight. Thus, it is still an open question to

show the tightness of the upper bound (3.1).

4 The Square-free Case

Consider the square-free (aka multilinear) polynomial f ¼
P

I:I�½n�;jIj¼d fIx
I 2 Hn;d.

We have the following result for the difference fDðn;rÞ � f
ðr�dÞ
min .

Theorem 4.1 For any square-free polynomial f ¼
P

I:I�½n�;jIj¼d fIx
I and r > d,

one has

fDðn;rÞ � f
ðr�dÞ
min 6

rd

rd
� 1

� �
f � f
� 	

: ð4:1Þ

Proof From (1.3), one can easily check that

f
ðr�dÞ
min ¼ min

a2Iðn;rÞ

X

I:I�½n�;jIj¼d

fI
aI

rd
¼ 1

rd
min

a2Iðn;rÞ
f ðaÞ:

As a result, one can obtain

f
ðr�dÞ
min

fDðn;rÞ
¼ rd

rd
:

For d ¼ 1, the result (4.1) is clear.

Now we assume d > 2. Considering f > 0 (as f ðeiÞ ¼ 0 for any i 2 ½n�), we obtain

fDðn;rÞ � f
ðr�dÞ
min ¼ 1� rd

rd

� �
fDðn;rÞ 6 1� rd

rd

� �
f 6

rd

rd
� 1

� �
f � f
� 	

: ð4:2Þ

h

The following example shows that our upper bound (4.1) can be tight.

Example 4.2 [7, Example 4] Consider the square-free polynomial f ¼ �x1x2. One

can check f ¼ 0; f ¼ � 1
4
, and

fDð2;rÞ ¼
� 1

4
; if r is even,

� 1
4
þ 1

4r2 ; if r is odd.
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By (1.3), we have

fDð2;rÞ � f
ðr�2Þ
min ¼

1
r�1

f � f
� 	

; if r is even,

1
r
þ 1

r2

� �
f � f
� 	

; if r is odd.

8
<

:

For this example, the upper bound (4.1) is tight when r is even. In fact, from (4.2),

one can easily see that the upper bound (4.1) is tight as long as fDðn;rÞ ¼ f � f holds.

5 The General Case

Now, we consider an arbitrary polynomial f ¼
P

b2Iðn;dÞ fbxb 2 Hn;d. We need the

following notation to formulate our result. Consider the univariate polynomial td �
td (in the variable t), which can be written as

td � td ¼
Xd�1

k¼1

ð�1Þd�k�1
ad�ktk; ð5:1Þ

for some positive scalars a1; a2; � � � ; ad�1. Moreover, one can easily check that

Xd�1

k¼1

ad�ktk ¼ ðt þ d � 1Þd � td: ð5:2Þ

We can show the following error bound for the range fDðn;rÞ � f
ðr�dÞ
min .

Theorem 5.1 For any polynomial f 2 Hn;d and r > d, one has

fDðn;rÞ � f
ðr�dÞ
min 6

ðr þ d � 1Þd � rd

rd

2d � 1

d

� �
ddðf � f Þ: ð5:3Þ

Note that when f is quadratic, cubic or square-free, we have shown better upper

bounds in Theorems 2.1, 3.1 and 4.1.

In the proof, we will need the following Vandermonde-Chu identity (see [13] for

a proof, or alternatively use induction on d > 1):

Xn

i¼1

xi

 !d

¼
X

a2Iðn;dÞ

d!

a!
xa 8x 2 R

n; ð5:4Þ

which is an analogue of the multinomial theorem ð
Pn

i¼1 xiÞd ¼
P

a2Iðn;dÞ
d!
a! xa: Now

we prove Theorem 5.1.

Proof (of Theorem 5.1) From (1.3), we have

rd

rd
f
ðr�dÞ
min ¼ min

a2Iðn;rÞ

X

b2Iðn;dÞ
fb

ab

rd
�
X

b2Iðn;dÞ
fb

ab � ab

rd

8
<

:

9
=

;:
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From this, we obtain the inequality:

rd

rd
f
ðr�dÞ
min > fDðn;rÞ � max

a2Iðn;rÞ

X

b2Iðn;dÞ
fb

ab � ab

rd
: ð5:5Þ

We now focus on the summation
P

b2Iðn;dÞ fbðab � abÞ.
For any b 2 Iðn; dÞ and x 2 R

n, we can write the polynomial xb � xb as

xb � xb ¼
X

c:jcj6d�1

ð�1Þd�jcj�1
cb
c xc; ð5:6Þ

for some nonnegative scalars cb
c (which is an analogue of (5.1)). We now claim that

for any fixed k 2 ½d � 1�, the following identity holds:

X

c2Iðn;kÞ

X

b2Iðn;dÞ

d!

b!
ð�1Þd�jcj�1

cb
c xc ¼ ð�1Þd�k�1

ad�k

Xn

i¼1

xi

 !k

: ð5:7Þ

For this, observe that the polynomials at both sides of (5.7) are homogeneous of

degree k. Hence (5.7) will follow if we can show that the equality holds after

summing each side over k 2 ½d � 1�. In other words, it suffices to show the identity:

Xd�1

k¼1

X

c2Iðn;kÞ

X

b2Iðn;dÞ

d!

b!
ð�1Þd�jcj�1

cb
c xc ¼

Xd�1

k¼1

ð�1Þd�k�1
ad�k

Xn

i¼1

xi

 !k

:

By the definition of ad�k in (5.1), the right side of the above equation is equal to

ð
Pn

i¼1 xiÞd � ð
Pn

i¼1 xiÞd. Hence, we only need to show

Xd�1

k¼1

X

c2Iðn;kÞ

X

b2Iðn;dÞ

d!

b!
ð�1Þd�jcj�1

cb
c xc ¼

Xn

i¼1

xi

 !d

�
Xn

i¼1

xi

 !d

: ð5:8Þ

Summing over (5.6), we obtain

X

b2Iðn;dÞ

d!

b!
xb � xb
� 	

¼
X

b2Iðn;dÞ

X

c:jcj6d�1

d!

b!
ð�1Þd�jcj�1

cb
c xc

¼
Xd�1

k¼1

X

c2Iðn;kÞ

X

b2Iðn;dÞ

d!

b!
ð�1Þd�jcj�1

cb
c xc:

We can now conclude the proof of (5.8) (and thus of (5.7)). Indeed, by using the

multinomial theorem and the Vandermonde-Chu identity (5.4), we see that the left-

most side in the above relation is equal to ð
Pn

i¼1 xiÞd � ð
Pn

i¼1 xiÞd:
We partition ½d � 1� as ½d � 1� ¼ Io [ Ie, where Io :¼ fk : k 2 ½d �

1�; d� k is oddg and Ie :¼ fk : k 2 ½d � 1�; d-k is eveng. Then, from (5.6), the

summation
P

b2Iðn;dÞ fbðab � abÞ becomes
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X

b2Iðn;dÞ
fbðab � abÞ ¼

X

b2Iðn;dÞ
fb

X

c:jcj6d�1

ð�1Þd�jcj�1
cb
c a

c

¼
Xd�1

k¼1

X

c2Iðn;kÞ

X

b2Iðn;dÞ
fbð�1Þd�jcj�1

cb
c a

c

6 max
b2Iðn;dÞ

fb
b!

d!

� �X

k2Io

X

c2Iðn;kÞ

X

b2Iðn;dÞ

d!

b!
cb
c a

c

� min
b2Iðn;dÞ

fb
b!

d!

� �X

k2Ie

X

c2Iðn;kÞ

X

b2Iðn;dÞ

d!

b!
cb
c a

c:

By (5.7), we obtain

X

b2Iðn;dÞ
fbðab � abÞ 6 max

b2Iðn;dÞ
fb

b!

d!

� �X

k2Io

ad�k

Xn

i¼1

ai

 !k

� min
b2Iðn;dÞ

fb
b!

d!

� �X

k2Ie

ad�k

Xn

i¼1

ai

 !k

:

Combining with (5.5), we get

rdf
ðr�dÞ
min > rdfDðn;rÞ � max

b2Iðn;dÞ
fb

b!

d!

� �X

k2Io

ad�krk þ min
b2Iðn;dÞ

fb
b!

d!

� �X

k2Ie

ad�krk:

That is,

rdðfDðn;rÞ � f
ðr�dÞ
min Þ 6 ðrd � rdÞfDðn;rÞ þ max

b2Iðn;dÞ
fb

b!

d!

� �X

k2Io

ad�krk

� min
b2Iðn;dÞ

fb
b!

d!

� �X

k2Ie

ad�krk:

Since rd � rd ¼
Pd�1

k¼1ð�1Þd�k
ad�krk, we obtain

rdðfDðn;rÞ � f
ðr�dÞ
min Þ 6

Xd�1

k¼1

ð�1Þd�k
ad�krkfDðn;rÞ þ max

b2Iðn;dÞ
fb

b!

d!

� �X

k2Io

ad�krk

� min
b2Iðn;dÞ

fb
b!

d!

� �X

k2Ie

ad�krk

¼ max
b2Iðn;dÞ

fb
b!

d!

� �X

k2Io

ad�krk þ fDðn;rÞ
X

k2Ie

ad�krk

� min
b2Iðn;dÞ

fb
b!

d!

� �X

k2Ie

ad�krk � fDðn;rÞ
X

k2Io

ad�krk:

According to (1.5), one has minb2Iðn;dÞ fb
b!
d! � fDðn;rÞ 6 maxb2Iðn;dÞ fb

b!
d!. Therefore, we

have
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rdðfDðn;rÞ � f
ðr�dÞ
min Þ 6 max

b2Iðn;dÞ
fb

b!

d!
� min

b2Iðn;dÞ
fb

b!

d!

� �Xd�1

k¼1

ad�krk:

That is,

fDðn;rÞ � f
ðr�dÞ
min 6

Pd�1
k¼1 ad�krk

rd
max

b2Iðn;dÞ
fb

b!

d!
� min

b2Iðn;dÞ
fb

b!

d!

� �
:

Finally, together with Theorem 1.2 and (5.2), we can conclude the result of

Theorem 5.1. h

Now, we compare the following theorem by De Klerk et al. [5] with our new

result (5.3).

Theorem 5.2 [5, Theorem 1.3] Suppose f 2 Hn;d and r > d. Then

f � f
ðr�dÞ
min 6

rd

rd
� 1

� �
2d � 1

d

� �
ddðf � f Þ; ð5:9Þ

fDðn;rÞ � f 6 1� rd

rd

� �
2d � 1

d

� �
ddðf � f Þ: ð5:10Þ

By adding up (5.9) and (5.10), we obtain

fDðn;rÞ � f
ðr�dÞ
min 6

rd

rd
� rd

rd

� �
2d � 1

d

� �
ddðf � f Þ: ð5:11Þ

Lemma 5.3 When r is large enough, the upper bound (5.3) refines the upper

bound (5.11).

Proof It suffices to show that rd

rd � rd

rd is larger than

Pd�1

k¼1
ad�krk

rd when r is sufficiently

large. Since rd

rd � rd

rd ¼ ðrd � ðr
dÞ2
rd Þ=rd , we only need to compare rd � ðr

dÞ2
rd and

Pd�1
k¼1 ad�krk. For the term rd � ðr

dÞ2
rd , one can check that the coefficient of rd is 0 and

the coefficient of rd�1 is 2a1 [ 0. On the other hand, in the summation
Pd�1

k¼1 ad�krk,

the coefficient of rd�1 is a1 [ 0. Therefore, when r is sufficiently large, rd � ðr
dÞ2
rd is

larger than
Pd�1

k¼1 ad�krk, by which we conclude the proof. h

We illustrate the result in Lemma 5.3 in the case of quartic polynomials.

Example 5.4 Consider a polynomial f 2 Hn;4 written as

f ¼
Xn

i¼1

fix
4
i þ

X

i\j

fijx
3
i xj þ gijx

2
i x2

j þ hijxix
3
j

� 	
þ
X

i\j\k

ðfijkx2
i xjxk þ gijkxix

2
j xk

þ hijkxixjx
2
kÞ þ

X

i\j\k\l

fijklxixjxkxl:

In this case, (5.3) reads
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fDðn;rÞ � f
ðr�4Þ
min 6

6r2 þ 11r þ 6

ðr � 1Þðr � 2Þðr � 3Þ
7

4

� �
44ðf � f Þ; ð5:12Þ

while (5.11) reads

fDðn;rÞ � f
ðr�4Þ
min 6

12r2 � 58r þ 144� 193
r
þ 132

r2 � 36
r3

ðr � 1Þðr � 2Þðr � 3Þ
7

4

� �
44ðf � f Þ: ð5:13Þ

One can check that (5.12) refines (5.13) when r > 10.

Remark 5.5 We now consider the convergence rate of the sequence

ar :¼
fDðn;rÞ � f

ðr�dÞ
min

f � f
r ¼ 1; 2; � � �

Suppose the degree of f is fixed. By (5.3), we have ar ¼ Oð1
r
Þ. As in Example 4.2,

ar ¼ Xð1
r
Þ holds, we can conclude that the dependence of ar on r in (5.3) is tight, in

the sense that there does not exist any e [ 0 such that ar ¼ Oð 1
r1þeÞ.

In [7], De Klerk et al. consider the convergence rate of the sequence

br :¼
fDðn;rÞ � f

f � f
r ¼ 1; 2; � � �

They consider several examples, and all of them satisfy br ¼ Oð 1
r2Þ. However, it is

still an open question to determine the asymptotic convergence rate of br in general.
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[12] Pólya, G.: Collected Papers, vol. 2, pp. 309–313. MIT Press, Cambridge (1974)

[13] Powers, V., Reznick, B.: A new bound for Pólya’s theorem with applications to polynomials
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