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Abstract Recently intensive interest has been raised on approximation of the NP-

hard submodular maximization problem due to their theoretical and practical sig-

nificance. In this work, we extend this line of research by focusing on the simul-

taneous approximation of multiple submodular function maximization. We address

the existence and nonexistence results for both deterministic and randomized

approximation when the submodular functions are symmetric and asymmetric,

respectively, along with algorithmic corollaries. We offer complete characterization

of the symmetric case and partial results on the asymmetric case.
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1 Introduction

Given a ground set X, let 2X be its power set. A set function f : 2X ! R is

nonnegative if f ðAÞ > 0; 8A � X: It is symmetric if f ðAÞ ¼ f ðX � AÞ; 8A � X; or

simply f ðAÞ ¼ f ðAÞ whenever the ground set is obvious. It is submodular if

f ðAÞ þ f ðBÞ > f ðA [ BÞ þ f ðA \ BÞ; 8A; B � X:

Let fj : 2X ! R
þ (j ¼ 1; � � � ; k) be k nonnegative submodular functions. The main

focus of this work is on maximizing multiple nonnegative submodular functions,

namely, solving the following k-criteria submodular function maximization

problem:

ðPÞ : max
S�X

f1ðSÞ; � � � ; fkðSÞf g:

Sometimes we also need to refer to the jth (j 2 f1; � � � ; kg) mono-criterion problem:

Pj

� �
: max

S�X
fjðSÞ:

The main issue of solving any multi-criteria optimization is that a solution simul-

taneously maximizing all objectives may not exist in general. Therefore, many

solution concepts, such as Pareto-optimality (e.g., [23]), goal programming (e.g.,

[18]) and budgeted-constraint approach (e.g., [22, 25]), etc., have been proposed in

the literature to address this issue. The standard solution concept is Pareto opti-

mality: a solution such that no criterion could be made better off without making

some other criteria worse off. However, every solution concept has its pros and cons

and hence may be appropriate only for some of the real-life applications, resulting in

many different solution concepts still being proposed in the multi-criteria optimi-

zation area. For a detailed account of various solution concepts and their applica-

tions, please refer to [9].

In this work, we adopt a fairly recent solution concept of simultaneous

approximation, first proposed by Stein and Wein [27], initially defined for scheduling

problems, and later extended to some other problems such as MAX-CUT [2]. For our

purpose, we cast this solution concept under the framework of a game setting. While

the game can be defined analogously for any multi-criteria optimization problem, we

will focus on the k-criteria submodular function maximization problem from now on.

1.1 The k-criteria Submodular Maximum Game

Given k nonnegative submodular functions fj : 2X ! R
þ (j ¼ 1; � � � ; k) over a

common ground set X, there are k players. Each player tries to maximizes its payoff
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fjðSÞ over its strategy space S � X. Moreover, all players are only allowed to adopt

the same strategy (pure or randomized), namely we focus on the symmetric game

setting (the asymmetric setting where players can use different strategies is trivial

because of the inter-independence of the payoffs of the players).

The usual approach for dealing with this game is via various concepts of

equilibrium (such as the most famous one: Nash-equilibrium), whose main

consideration is on solution stability. However, this work will focus on a different

aspect of this game, namely, fairness. As explained shortly, the simultaneous

approximation approach can offer some insights on this aspect. Due to the

correspondence between the original k-criteria submodular function maximization

problem (P) and the game defined above, we call any pure strategy of the game as a

deterministic solution to (P), and any mixed strategy of the game as a randomized

solution of the (P). Now, we formally define the most important concepts in the

simultaneous approximation approach. Let S�j (j ¼ 1; � � � ; k) be the optimal solution

for the jth mono-criterion problem ðPjÞ.

Definition 1.1 For any a 2 ½0; 1�,

(i) A subset S � X is an a-deterministic solution for the problem (P) if

fjðSÞ > afjðS�j Þ; 8j ¼ 1; � � � ; k:

(ii) A mixed strategy T is an a-randomized solution for the problem (P) if

E½fjðTÞ� > afjðS�j Þ; 8j ¼ 1; � � � ; k:

The ratio a stipulates that how close each payoff function is to its ideal optimum,

and hence indeed can be used as a measure on how fair the eventual solution is to all

the players. Actually there is an independent body of research who used this ratio to

characterize fairness in resource allocation problems and this ratio is called the a -

fairness ratio (e.g., [13]) because ‘‘there is a concrete connection between

simultaneous optimization and fairness’’. This will be discussed in detail in Sect. 1.4

when we review existing literature.

We note that the focus on symmetric strategies is not unnatural because this

concept is well accepted in game theory and has been extensively investigated in

some game applications, such as the search and rendezvous games (e.g., [1]).

Furthermore, simultaneous approximation has direct applications in quantifying the

fairness in resource allocation problems (e.g., bandwidth allocation in computer

network) as mentioned earlier. Another application potential in terms of pure

strategies is in the design of approximation algorithms when two or more objectives

needed to be balanced to achieve a good approximation and these ideas have been

implicitly or explicitly employed in almost all approximation algorithm design

methods. However, the simultaneous mixed strategies have no direct connection

with the standard randomized algorithm in the mon-criteria optimization problems.
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For this type of solution concept, there are two fundamental issues to be

addressed:

(I) characterize a such that an a-deterministic (or randomized) solution exist;

and

(II) find a good simultaneous approximation solution in polynomial-time for

the deterministic case and randomized polynomial-time for the random-

ized case?

Note that the first issue (I), trivial for the mono-criterion problem, turns out to be

highly nontrivial for the multi-criteria problem studied in this work, which is

precisely the interest of this work.

1.2 Our Contributions

For the aforementioned issue (I), when the submodular functions are symmetric, we

provide complete characterizations of the existence and non-existence for both

deterministic and randomized solutions, respectively. When the submodular

functions are not necessarily symmetric, we provide an example to show that there

may exist no simultaneously bounded deterministic solution for more than one

criterion, and we present an existence bound for the randomized solutions. The

detailed existence and non-existence results are summarized below (See Table 1 for

small k).

1. For symmetric submodular functions,

– there exists a 1
2
-deterministic solution for k ¼ 2, and this is the best possible;

however, no simultaneously bounded deterministic solution exists for

k > 3;

Table 1 Existence bounds for small k, where the asterisk ones are tight bounds for the asymmetric case

k Symmetric (optimal) Asymmetric (upper bound)
2k�1

2k�1 max 1
k
; 2k�2

2k�1

n o

1 1 1�

2 2
3
� 0:666 7 1

2
� 0:5�

3 4
7
� 0:571 4 1

3
� 0:333 3�

4 8
15
� 0:533 3 185

674
� 0:274 5�

5 16
31
� 0:516 1 8

31
� 0:258 1

6 32
63
� 0:507 9 16

63
� 0:254 0

7 64
127
� 0:503 9 32

127
� 0:252 0

8 128
255
� 0:502 0 64

255
� 0:251 0

9 256
511
� 0:501 0 128

511
� 0:250 5

10 512
102 3
� 0:500 5 256

102 3
� 0:250 2
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– there exists a 2k�1

2k�1
-randomized solution for any k > 2, and this bound is the

best possible, namely, there exist symmetric submodular functions

ðf1; � � � ; fkÞ for any k > 2 such that no a-randomized solution exists for

any a[ 2k�1

2k�1
.

2. For asymmetric submodular functions,

– no simultaneously bounded deterministic solution exists for k > 2;

– there exists a max 1
k
; 2k�2

2k�1

n o
-randomized solution for any k > 2, and this

bound is the best possible for k ¼ 2 and k ¼ 3.

On the algorithmic consequence, these existence results also lead to poly-nomial-

time deterministic or randomized solutions, addressing the aforementioned issue

(II). Note that the simple (polynomial-time) randomized algorithm which equi-

probably select or reject any given element into the solution can be easily proved to

yield a 1
2
-randomized solution for the symmetric submodular function and a 1

4
-

randomized solution for the asymmetric case, and hence matching the existence

results shown above asymptotically when k!1. Later on, we will discuss how

these existence results can lead to improved polynomial time approximation

algorithms for the multi-criteria problems compared to the aforementioned simple

random algorithm for small criteria number k, when equipped with existing

approximation algorithms for the mono-criterion problem.

1.3 Background and Applications

Submodular optimization is one of the most important subclasses of problems in

combinatorial optimization with great practical and theoretical significance,

including many well-known combinatorial problems as special cases, such as the

cut problem in direct/undirected/hypergraphs, certain constraint satisfaction prob-

lems, entropy sampling, and the facility location problem, among others. Moreover,

submodular optimization problems are ubiquitous in almost all research disciplines,

both science and social science, in particular in economics and management [28].

Both submodular minimization and maximization in the mono-criteria case have

been extensively investigated in the literature. While submodular minimization

problem admits strongly polynomial-time algorithm [26], the problem of maximiz-

ing a single submodular function is strongly NP-hard in general as it includes the

famous MAX-CUT problem as a special case. Since the existence of optimal solution

for mono-criterion submodular maximization problem is out of question, the main

interest lies in the design of good approximation algorithm and proof of

inapproximability for the problem. This line of research has attracted a lot of

attentions recently (e.g., see [4, 12] and references therein).

Our work here extends this line of research to the multi-criteria domain, which

calls for extra attention on the existence, a non-trivial issue here, contrary to the

mono-criteria case. Moreover, we believe, the extension to the multi-criteria
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problem can better meet the practitioners’ needs in almost any application of the

mono-criteria version, and hence of greater practical significance in such problems,

originally only dealt with from a single objective point of view. With ever

increasing global competition, corporations have been rapidly adapting their

business models to be competitive not only on one aspect, but on several grounds.

This new requirement provides a fruitful application filed for multi-objective

optimization techniques to be deployed in facilitating business decision-making.

The results developed in this work, both the existence and algorithmic consequences,

can be particularly insightful in those decisions-making situations, where different

decision-makers have its own objective estimation of the objective functions, trying to

collaboratively reach a solution that is equally close to everyone; or a single-decision

maker has several similar but potentially conflicting objective functions, trying to find a

solution that is equally close to all its estimation. Historically, the a-fairness ratio has

been used in addressing fair resource allocation [13, 15], a fundamental problem in

economics. Along this same line, this fairness ratio has been applied to many other

settings in computer network, scheduling, routing and load balancing etc. (See

Sect. 1.4 for more details). To further appreciate the application potentials of the

results developed in this work, below we use another concrete example from cluster

analysis to serve as one of the motivations in pursuing this research.

Cluster analysis (or data classification), the partition of observed data into clusters

of ‘‘closely related’’ observations, has extensive applications in business management,

economics, health care system, information retrieval, bioinformatics, machine

learning, data mining, pattern recognition, image analysis, etc. While numerous

clustering methods exit in the literature, we focus one method based on the MAX-CUT

problem. In the simplest bi-partition case, the desired clusters can be obtained by

solving an MAX-CUT problem on a complete graph such that each observation is a node,

along with the edge weight being the ‘‘closeness’’ of the observations, measured

usually by some distance measures like the Euclidean distance, the Manhattan distance

(or taxicab norm or 1-norm), the maximum norm (or infinity norm), or the Hamming

distance, etc. In the mono-criteria case, we have to deal with each distance measure

separately, and the resultant clustering from one distance measure may be

dramatically different from the one based on another distance measure. Suppose we

now want to find a clustering that is equally close to all distance measures, then the

results developed in this work (particularly Theorems 3.1–3.3) are perfect fits as the

cut function is a symmetric submodular function.

1.4 Prior and Related Results

There are several extant results that are closely related to our work. The most

relevant previous work is the recent result on bi-criteria MAX-CUT problem by

Angel [2], which is a special symmetric submodualr function. They prove the

following results for this bi-criteria problem: (1) there exists a 1
2
-deterministic

solution and this is the best possible; however, no simultaneously bounded

deterministic solution exists for k > 3; (2) there exists a
ffiffi
5
p
�1

2
� 0:618-randomized

solution, and no a-randomized exists for any a[ 2
3
� 0:667.
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Our work here therefore greatly extends the above results in two directions: (1)

we consider any number of criteria k > 2; and (2) we consider any submodular

function (asymmetric or symmetric). Furthermore, as direct consequences of some

of the results obtained in this work, we resolved several open questions left therein,

when our results are specialized to the MAX-CUT problem.

The second most related result is by Goel and Meyerson [13], who studied

simultaneous approximation for maximizing symmetric concave functions or

minimizing convex function. Their main result is that for any resource allocation

problem where the set of feasible solutions is a convex set, there exists an a-

approximation solution with a being logarithmic in some natural problem parameters.

For example, for the special case of the multicommodity flow problem, we prove the

existence of a solution with a ¼ Oðlog nÞ where n is the number of nodes in the

network. Along the same line, more simultaneous approximation results for specific

problems include the satisfiability problem, spanning tree, q-hop spanning tree

problem, cut complement problem [10], routing and load balancing [14, 19], online

fair resource allocation [5, 6], scheduling problems [3], set-cover problem, k-facility-

location, TSP, and scheduling [17], network bandwidth allocation problem [8, 20].

However, our model is different from theirs as this body of work as they are based on

linear or integer programming, while we focus on set function optimization.

The third related result is given recently by Chekuri et al [7] on monotonic

submodular functions: there exists a 1� e�1ð Þ-deterministic solution for any

number of monotonic submodular functions and it can be found in polynomial time.

After some preliminary results in Sect. 2, we first consider the existence issue for the

symmetric and asymmetric cases in Sects. 3 and 4, respectively. We then present the

algorithmic corollaries in Sect. 5. Finally, we provide some concluding remarks in Sect. 6.

2 Preliminaries

We present some useful facts which will be essential in the analysis of the existence

and non-existence results later on.

2.1 Facts Useful for Existence Analysis

We establish the following properties for any nonnegative submodular function.

Lemma 2.1 Assume that f : 2X ! R
þ is any nonnegative submodular function.

Given two sets A;B � X, let ADB ¼ ðAnBÞ [ ðBnAÞ be the symmetric difference. Then

f ðADBÞ þ f ðBÞ þ f ðADBÞ þ f ðBÞ > f ðAÞ þ f ðAÞ:

Proof By the submodularity of f :

f ðADBÞ þ f ðBÞ > f ððADBÞ \ BÞ þ f ððADBÞ [ BÞ ¼ f ðB� AÞ þ f ðA [ BÞ;
f ðADBÞ þ f ðBÞ > f ððADBÞ \ BÞ þ f ððADBÞ [ BÞ ¼ f ðB� AÞ þ f ðA [ BÞ;

implying that
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f ðADBÞ þ f ðBÞ þ f ðADBÞ þ f ðBÞ > ðf ðB� AÞ þ f ðA [ BÞÞ
þ ðf ðB� Aþ f ðA [ BÞÞ
> ðf ð;Þ þ f ðAÞÞ þ ðf ðAÞ þ f ðXÞÞ
> f ðAÞ þ f ðAÞ:

where, the second inequality follows from the submodularity, and the last inequality

follows from the nonnegativity. h

Assuming symmetry in the above leads to the result below for symmetric

submodular function.

Lemma 2.2 Assume that f : 2X ! R
þ is any nonnegative symmetric submodular

function. Given two sets A;B � X, let ADB be the symmetric difference. Then

f ðADBÞ þ f ðBÞ > f ðAÞ:

2.2 Facts Useful for Non-existence Analysis

We introduce some notational conventions for easy presentation. Consider a

complete graph K2k with vertex set Vk ¼ f0; 1; � � � ; 2k � 1g. Vertices in V are

embedded into the k-dimensional space R
k such that each i 2 Vk is associated with

the (row) vector i ¼ ði1; � � � ; ikÞ 2 R
k, where i‘ 2 f0; 1g for ‘ ¼ 1; � � � ; k. Geomet-

rically, the vertices in V can be viewed as the corners of the k-dimensional

hypercube (see Fig. 1 for an illustration when k ¼ 3). For any vector, we define

its 1-norm jj 	 jj1 as the sum of its coordinates in the vector. From now on, we

will use boldface letters to represent vectors. For example, given Vk, we denote

Vk ¼ fi : i 2 Vkg as the corresponding set of vertices represented with the vectors.

Remark 2.3 An alternative (algebraic) way of looking at the vector i ¼ ði1; � � � ; ikÞ
is that the coordinates can be obtained as follows: First, each integer i 2 Vk can be

converted to its binary number representation (keep k-digits by adding leading zeros

if necessary), which then can be viewed as a vector with components being the

binary digits of integer i. For example, when k ¼ 3, i ¼ 2 2 V3 can be converted to

a binary number 010, which can be viewed as a (row) vector 2 ¼ ði1; i2; i3Þ ¼
ð0; 1; 0Þ 2 R

3.

For any i; j 2 Vk, we define the component-wise modulo operation:

qij ¼ iþ j ðmod 2Þ ¼ i1 þ j1 ðmod 2Þ; � � � ; ik þ jk ðmod 2Þð Þ:

Let Qk ¼ fqij : i; j 2 Vkg. Then we have the following fact about Qk.

Fact 2.4 Qk is a multiset consisting of 2k copies of each element from Vk.

Proof It is easy to see that Vk is closed under this modulo operation, namely for

any i; j 2 Vk, qij 2 Vk. Moreover, each element in i 2 Vk, after module operation
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with 0, belongs to Qk. Therefore, Qk is a multiset consisting of only elements from

Vk. We now prove that each element occurs exactly 2k times. Imagine all elements

in Vk as a sequence: p ¼ ð0; � � � ; 2k�1Þ. For any i 2 Vk, consider the following

sequence generated after the modulo operation: pi ¼ ð0þ i ðmod 2Þ; � � � ;
2k�1þ i ðmod 2ÞÞ. Then it is easy to see that pi is a permutation of p, and

moreover, different i’s will generate different permutations, implying the desired

multiplicity result since there are 2k such different i’s in Vk. h

3 Symmetric Submodular Functions

We provide a complete characterization for both deterministic and randomized

cases for the symmetric submodular functions in Sects. 3.1 and 3.2, respectively.

3.1 Existence and Non-existence of Deterministic Solution

We consider the bi-criteria problem first, and then show that, by an example, no

simultaneously bounded deterministic solution exists for three and more criteria.

Theorem 3.1 Assume that there are two criteria, namely, k ¼ 2, and assume the

submodular functions in problem (P) are nonnegative and symmetric. Then we

have:

(i) For any instance of problem (P), there exists a 1
2
-deterministic solution

for the problem (P).

(ii) Moreover, there exist two nonnegative and symmetric submodular

functions such that no a-deterministic solution exists such that a[ 1
2
.

)1,0,0(:1 )1,0,1(:5

)1,1,0(:3 )1,1,1(:7

)0,0,0(:0 )0,0,1(:4 ),,(

)010(:2 )0,1,1(:6)0,1,0(:2 )0,1,1(:6

Fig. 1 Geometric representation of V3 ¼ f0; 1; 2; 3; 4; 5; 6; 7g and the corresponding set of vector-
represented vertices V3 ¼ fð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 0Þ; ð0; 1; 1Þ; ð1; 0; 0Þ; ð1; 0; 1Þ; ð1; 1; 0Þ; ð1; 1; 1Þg
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Proof

(1) Let A1 and A2 be the optimal solutions for the two mono-criterion problems

ðP1Þ and ðP2Þ, respectively. We construct the desired deterministic solution A

as follows:

A ¼
A1; if 2f2ðA1Þ > f2ðA2Þ;
A2; if 2f1ðA2Þ > f1ðA1Þ;
A1DA2; otherwise:

8
<

:

Evidently, we obtain a 1
2
-deterministic solution in the first case, and a 1

2
-

deterministic solution in the second case. In the third case, we have

2f2ðA1Þ\f2ðA2Þ and 2f1ðA2Þ\f1ðA1Þ, together with Lemma 2.2 from

Sect. 2.1, implying that, for the first objective,

f1ðA1DA2Þ þ f1ðA2Þ > f1ðA1Þ;

or equivalently

f1ðA1DA2Þ > f1ðA1Þ � f1ðA2Þ > f1ðA1Þ �
1

2
f1ðA1Þ ¼

1

2
f1ðA1Þ:

Analogously, for the second objective, we can prove

f2ðA1DA2Þ >
1

2
f2ðA2Þ:

Therefore in the third case we obtain a 1
2
-deterministic solution.

(2) To prove the non-existence results, we consider the cut function in undirected

graph. The following example belongs to [3]. Consider the complete graph K3

in Fig. 2a. The optimal cut value for both objectives are two while no feasible

cut has values strictly better than one on both objectives.
h

For more than two criteria (i.e., k > 3), the following example, an extension of

the above example, shows that in general no simultaneously bounded deterministic

solution exists for symmetric submodular functions.

Example 3.2 (Unbounded deterministic solution for the symmetric case when k >

3 ) Consider the MAX-CUT problem on an undirected cycle graph Ck ¼ ð1; � � � ; kÞ,
whose cut functions are symmetric and submodular. The weights for these k criteria

are specified by a k-dimensional vector. Assign respectively weight vector ei

ði ¼ 1; � � � ; k) to the k edges, where ei is the all-zero vector except on the ith

coordinate (See Fig. 2b for the case of k ¼ 3). The optimum cut value for each

criterion is one while any deterministic cut achieves zero on at least one coordinate.

Thus, no simultaneously bounded deterministic solution exists.

3.2 Existence and Non-existence of Randomized Solution

First, we prove the existence result in Theorem 3.3. Then, in Theorem 3.4, we prove

that the result in Theorem 3.3 is the best possible via the MAX-CUT problem as the
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cut function is a special symmetric submodular function. The readers may find it

beneficial to refer to the illustrative examples for the case of k ¼ 3 in Sects. 3.2.3

and 3.2.4 while reading the proofs of these two theorems, as these proofs are highly

non-trivial from an ex ante point of view.

Theorem 3.3 Assume the submodular functions are nonnegative, symmetric and

submodular in problem (P). Then there exists an a-randomized solution such that

a ¼ 2k�1

2k
�1;

and this quantity approaches to 0.5 when k!1.

Proof Let A ¼ fA1; � � � ;Akg, where each Aj (j ¼ 1; � � � ; k) is the optimal solution

for the mono-criterion problem (Pj). W.l.o.g., assume the optimal objective values

are all equal to one, namely f‘ðA‘Þ ¼ 1 (‘ ¼ 1; � � � ; k). For any nonempty subset

X ¼ fAi1 ; � � � ;Ai‘g � A (1 6 i1 6 . . . 6 i‘ 6 k and 1 6 ‘ 6 k), define the symmet-

ric difference solution

Si1...i‘ ¼ Ai1D � � �DAi‘ :

Let S be the set of all such symmetric difference sets corresponding to the 2k � 1

nonempty sets of A and obviously jSj ¼ 2k � 1. The desired randomized solution S

is obtained by equiv-probably selecting all the sets in S. The desired expected value

of S follows from the submodularity of fj (j ¼ 1; � � � ; k) after appropriate pairing and

harnessing the properties of symmetric difference. Due to symmetry, we only prove

the desired result for f1.

ð2k � 1ÞE½ f1ðSÞ� ¼
Xn

i¼1

f1ðSiÞ þ
X

i;j : 16i\j6n

f1ðSijÞ

þ
X

i;j;k : 16i\j\k6n

f1ðSijkÞ þ � � � þ f1ðS1���kÞ:

Any term Si1���i‘ above, satisfying that i1 ¼ 1 and ‘ > 2, can be equivalently written

as Si1���i‘ ¼ A1DSi2���i‘ :¼ A1DB. Considering the pair of cuts A1DB and B,

Lemma 2.2 from Sect. 2.1 implies that

f1ðA1DBÞ þ f1ðBÞ > f1ðA1Þ ¼ 1:

Note that we have in total 2k�1 � 1 such pairs, together with f1ðA1Þ ¼ 1, implying

the desired result

ð2k�1ÞE½f1ðSÞ� > 2k�1:

h

Theorem 3.4 For the k-criteria MAX-CUT problem, there exists an instance such

that no b-randomized solution exists such that b[ a.
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Proof Consider the complete graph K2k with vertex set V from Sect. 2.2. Each

edge will be assigned with a weight (row) vector in R
k such that its ‘th coordinate is

the weight for the ‘th mono-criterion problem. We then show that for this weighted

complete graph, no random solution has a ratio strictly better than a with respect to

the cut function.

For any edge ði; jÞ such that i\j 2 V , define the weight vector for edge ði; jÞ as

follows:

wij ¼
qij

jjqijjj1
:

Note that the sum of weights jjwijjj1 on each edge ði; jÞ is equal to one, implying that

the max cut value in K2k with respect to unit weights is equal to 2k�12k�1 ¼ 22ðk�1Þ.
Let S be any random cut in this weighted graph. And denote E½cutjðSÞ� to be the

expected cut value of S for criterion ‘. Then

E
Xk

‘¼1

cut‘ðSÞ
" #

6 22ðk�1Þ: ð3:1Þ

We devote the rest of the argument to the proof of the next claim.

Claim 3.5 The max cut value for each criteria is at least ð2k � 1Þ2k�1=k.

This claim, together with (3.1), implies the desired result

a 6
1

k

Xk

j¼1

E½cutjðSÞ�
cutjðS�Þ

¼

1
k

E
Pk

j¼1

cutjðSÞ
" #

cutjðS�Þ
6

2k�12k�1=k

ð2k � 1Þ2k�1=k
¼ 2k�1

2k � 1
:

We prove Claim 3.5 for the ‘th criterion by demonstrating a cut ðS‘; �S‘Þ with the

value equal to ð2k � 1Þ2k�1=k as follows:

For each vertex i 2 V , i 2 S‘ iff i‘ ¼ 1, that is, the ‘th coordinate of the

corresponding vector is one.

(a)  Two criteria (b)  Three criteria

Fig. 2 Non-existence example for the symmetric cases a Two criteria b Three criteria
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Evidently jS‘j ¼ 2k�1. Let Q‘ be the set of all qij’s such that qij ¼ iþ
j ðmod 2Þ for any i 2 S‘ and any j 2 �S‘. We need the following claim for Q‘ to

calculate the cut value of ðS‘; �S‘Þ.

Claim 3.6 Q‘ is a multiset consisting of 2k�1 copies of distinct elements from S‘.

Due to symmetry, we only prove Claim 3.6 for ‘ ¼ 1. Let V 0 ¼ f0; 1; � � � ;
2k�1 � 1g. Then for each q0 2 V 0, q0 2 R

k�1, let Q0 ¼ fq0ij : q0ij ¼ i0 þ j0mod 2;

8i0; j0 2 V 0g. Then Q0 is a multiset consisting of 2k�1 copies of distinct elements

from V 0 from Fact 2.4 in Sec. 2.2. Claim 3.6 now follows by noting that (1) for any

i0; j0 2 V 0, we can obtain an i 2 S‘ ¼ S1 as i ¼ ð1; i0Þ 2 R
k and a j 2 �S‘ ¼ �S1 as

j ¼ ð0; j0Þ 2 R
k, and vice versa. And (2) iþ j ðmod 2Þ ¼ ð1; i0 þ j0 ðmod 2ÞÞ.

We now calculate the cut value for the ‘ criterion:

X

i2S;j2 �S
ðwijÞ‘ ¼

X

q2Q‘

q‘
jjqjj1

¼ 2k�1
Xk

c¼1

Cc�1
k�1

c
¼ 2k�1ð2k � 1Þ

k
:

In the above, the second equality follows from Claim 3.6 that each q has a multi-

plicity of 2k�1, and a simple counting argument that the number of different q 2 Q
whose ‘th coordinator is equal to one and the corresponding edge is assigned value

1 ¼ c, equal to Cc�1
k�1, namely fq 2 Q‘ : q‘ ¼ 1; jjqjj1 ¼ cgg

�� �� ¼ Cc�1
k�1. h

3.2.1 Discussion on the Results

Note that the results in Theorems 3.3 and 3.4 improve/extend the result in [2] for

the special bi-criteria maximum cut problem. First, for the upper bound, our result

specialized to the bicriteria maximum cut problem given an improved bound 2=3 �
0:667 over ð

ffiffiffi
5
p
� 1Þ=2 � 0:618, and the new bound is the best possible considering

the lower bound example given in [2]. The latter lower bound is also extended in

this work to any number of criteria, and hence answering affirmatively the main

open question left in [2] (See Corollary 5.2 in Sect. 5.1 for more details).

3.2.2 Remarks on the Proofs of Theorems 3.3 and 3.4

One may wonder why we choose the symmetric difference operator D in the

construction of existence proof (Theorem 3.3) or how we came up with the instance

in the non-existence proof (Theorem 3.4). These constructions are highly non-trivial

ex ante—at least to us when we started the investigation.

We initially attempted to use computer programs to find the exact ratio for small

k. For example we found that the exact ratio for k ¼ 2 is 2
3
, and the lower bound

instance we used can be decomposed into a sequence of special 2-factors in graph

theory. This led us to the theory of cycle decomposition, an active research area in

graph theory. By applying some existing results in the cycle decomposition theory,

we were able to prove a non-existence result that a 6 k
2k�1

, which turns out to be the

tight bound for k ¼ 2. At the same time, our extensive calculation also helped us
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finding some patterns in the existence proof, which pointed the direction towards the

balanced cuts in an auxiliary graph. Now the case of k ¼ 2 is completely resolved

since the two bounds coincide. However, when we tried to extend the existence

proof to larger k, the ratio we obtained did not agree with the non-existence bound
k

2k�1
, which prompted us to do more computations and try to locate the right

instance. Only after numerous attempts, luck struck us and offered us the instance

we have been desperately looking for.

From an ex post point of view, the proofs in their present forms seem natural

(though still non-trivial). However, our luck did not go that far to allow us to solve

the asymmetric case in Sect. 4, which is very intriguing from an ex ante point of

view as of now, and we have to leave it as one of the main open questions from this

work (See Sect. 6 for more discussions).

3.2.3 An Illustration of the Proof of Theorem 3.3 for k ¼ 3

For Theorem 3.3, when k ¼ 3, we have

S ¼ fA1;A2;A3;A1DA2;A1DA3;A2DA3;A1DA2DA3g:

To show, for j ¼ 1, that ð2k � 1ÞE½f1ðSÞ� > 2k�1, or, when k ¼ 3, E½ f1ðSÞ� > 4
7
, we

form the following pairs: ðA1DA2;A2Þ, ðA1DA3;A3Þ, and ðA1DA2DA3;A2DA3Þ. Then

the desired inequality follows from the following results:

f1ðA1Þ ¼ 1;

f1ðA1DA2Þ þ f1ðA2Þ > f1ðA1Þ ¼ 1;

f1ðA1DA3Þ þ f1ðA3Þ > f1ðA1Þ ¼ 1;

f1ðA1DA2DA3Þ þ f1ðA2DA3Þ > f1ðA1Þ ¼ 1;

where the first one follows from the assumption that all optimal objective values are

one, and the last three follow from Lemma 2.2.

3.2.4 An Illustration of the Proof of Theorem 3.4 for k ¼ 3

For Theorem 3.4, when k ¼ 3, Table 2 shows the results from the module

operation: qij ¼ iþ j ðmod 2Þ, along with edge weights table in Table 3.

Since the sum of weights on each edge is one (Table 3), we know that the max

cut value in K2k with respect to unit weights is equal to 2k�12k�1 ¼ 22ðk�1Þ, which is

equal to 16 when k ¼ 3. The desired result follows if the max cut value for each

criteria is at least ð2k � 1Þ2k�1=k, which is 28=3 for k ¼ 3. Note that S ¼
f4; 5; 6; 7g for the first criterion, f2; 3; 6; 7g for the second, and T ¼ f1; 3; 5; 7g for

the third are such cuts, generated respectively by f100; 101; 110; 111g,
f010; 011; 110; 111g, and f001; 011; 101; 111g. Table 4 illustrates Claim 3.6.
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4 Asymmetric Submodular Functions

We consider deterministic and randomized cases for the asymmetric submodular

functions.

Table 2 Module operation on V3 in Theorem 3.3

qij 0 1 2 3 4 5 6 7

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

0 (0,0,0) – (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

1 (0,0,1) – (0,1,1) (0,1,0) (1,0,1) (1,0,0) (1,1,1) (1,1,0)

2 (0,1,0) – (0,0,1) (1,1,0) (1,1,1) (1,0,0) (1,0,1)

3 (0,1,1) – (1,1,1) (1,1,0) (1,0,1) (1,0,0)

4 (1,0,0) – (0,0,1) (0,1,0) (0,1,1)

5 (1,0,1) – (0,1,1) (0,1,0)

6 (1,1,0) – (0,0,1)

7 (1,1,1) –

Table 3 Edge weights derived from Table 2

wij 0 1 2 3 4 5 6 7

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

0 (0,0,0) – (0,0,1) (0,1,0) 0; 1
2
; 1

2

� �
(1,0,0) 1

2
; 0; 1

2

� �
1
2
; 1

2
; 0

� �
1
3
; 1

3
; 1

3

� �

1 (0,0,1) – 0; 1
2
; 1

2

� �
(0,1,0) 1

2
; 0; 1

2

� �
(1,0,0) 1

3
; 1

3
; 1

3

� �
1
2
; 1

2
; 0

� �

2 (0,1,0) – (0,0,1) 1
2
; 1

2
; 0

� �
1
3
; 1

3
; 1

3

� �
(1,0,0) 1

2
; 0; 1

2

� �

3 (0,1,1) – 1
3
; 1

3
; 1

3

� �
1
2
; 1

2
; 0

� �
1
2
; 0; 1

2

� �
(1,0,0)

4 (1,0,0) – (0,0,1) (0,1,0) 0; 1
2
; 1

2

� �

5 (1,0,1) – 0; 1
2
; 1

2

� �
(0,1,0)

6 (1,1,0) – (0,0,1)

7 (1,1,1) –

Table 4 Module operation on V 02 (left) and the resultant Module operation on V3 (right) in the proof of

Claim 3.6 for the first criterion in Theorem 3.4

q0ij 0 1 2 3 qij 0 1 2 3

(0,0) (0,1) (1,0) (1,1) (0,0,0) (0,0,1) (0,1,0) (0,1,1)

0 (0,0) (0,0) (0,1) (1,0) (1,1) 4 (1,0,0) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

1 (0,1) (0,1) (0,0) (1,1) (1,0) ¼) 5 (1,0,1) (1,0,1) (1,0,0) (1,1,1) (1,1,0)

2 (1,0) (1,0) (1,1) (0,0) (0,1) 6 (1,1,0) (1,1,0) (1,1,1) (1,0,0) (1,0,1)

3 (1,1) (1,1) (1,0) (0,1) (0,0) 7 (1,1,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0)
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4.1 Existence and Non-existence of Deterministic Solution

The following example shows that in general, no simultaneously bounded

deterministic solution exists for asymmetric submodular functions when k > 2.

Example 4.1 (Unbounded deterministic solution for asymmetric case for any

k > 2) Consider the MAX-CUT problem on a directed cycle graph Ck ¼ ð1; � � � ; kÞ,
whose cut functions are asymmetric and submodular. Assign respectively weight

vector ei ði ¼ 1; � � � ; k) to the k edges, where ei is the all-zero vector except on the

ith coordinate. The optimum cut value for each criterion is one while any

deterministic cut achieves zero on at least one coordinate. Thus, no simultaneously

bounded deterministic solution exists.

4.2 Existence and Non-existence of Randomized Solution

The algorithm that evenly choose all the k optimal solutions for the mono-criterion

problems offers a 1
k
; � � � ; 1

k

� �
-randomized solution for any nonnegative set function.

And the following example shows that they are the best possible for k 6 3.

Example 4.2 For k ¼ 2, consider the two nodes graphs with two arcs going in

opposite directions between them. One with weight ð1; 0Þ and another ð0; 1Þ. For

k ¼ 3, consider the directed cycle C3 with weights ð1; 0; 0Þ, ð0; 1; 0Þ and ð0; 0; 1Þ.

The above simple random algorithm will not offer us the best bound for k > 4, as

shown in the theorem below.

Theorem 4.3 Assume the submodular functions are nonnegative and submodular

in problem (P). Then there exists an a-randomized solution such that

a ¼ 2k�2

2k � 1
;

and this quantity approaches to 0.25 when k!1.

Proof Let A ¼ fA1; � � � ;Akg be the maximum cut for problem (P). W.l.o.g.,

assume the optimal cut values are all equal to one. For any nonempty subset X ¼
fAi1 ; � � � ;Ai‘g � A (1 6 i1 6 . . . 6 i‘ 6 k and 1 6 ‘ 6 k), we define the symmetric

difference cut along with its complement

Si1...i‘ ¼ Ai1D � � �DAi‘ ;

Si1...i‘ ¼ Ai1D � � �DAi‘ :

�

In total we have 2
�
2k � 1

�
such symmetric difference cuts corresponding to the

2k � 1 nonempty sets of A and their complements. The desired randomized cut S is

obtained by equiv-probably selecting these 2
�
2k � 1

�
cuts. The desired expected

value of S follows from the submodularity of fj (j ¼ 1; � � � ; k) after appropriate

pairing and harnessing the properties of symmetric difference. Due to symmetry, we

only prove the desired result for f1.
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ð2k � 1ÞE½f1ðSÞ� ¼
Xn

i¼1

ðf1ðSiÞ þ f1ðSiÞÞ þ
X

i;j : 16i\j6n

ðf1ðSijÞ þ f1ðSijÞÞ

þ
X

i;j;k : 16i\j\k6n

ðf1ðSijkÞ þ f1ðSijkÞÞ þ � � �

þ ðf1ðS1���nÞ þ f1ðS1���kÞÞ:

Any terms Si1���i‘ and Si1���i‘ above, satisfying that i1 ¼ 1 and ‘ > 2, can be equiva-

lently written as Si1���i‘ ¼ A1DSi2���i‘ :¼ A1DB, and Si1���i‘ ¼ A1DB, respectively.

Considering the pair of cuts A1DB and B, and the pair of cuts A1DB and B,

Lemma 2.1 from Sect. 2.1 implies that

f1ðA1DBÞ þ f1ðBÞ þ f1ðA1DBÞ þ f1ðBÞ > f1ðA1Þ þ f1ðA1Þ > 1:

Note that we have in total 2k�1 � 1 such pairs, together with f1ðA1Þ þ f1ðA1Þ > 1,

implying the desired result

2ð2k � 1ÞE½f1ðSÞ� > 2k�1:

h

5 Algorithmic Corollaries

We now discuss the issue of how to find a deterministic or randomized feasible

solution for the multi-criteria problem in polynomial-time. We first consider the

deterministic solution case, and then followed with the randomized solution.

5.1 Polynomial-time Algorithm for Deterministic Solution

We only consider the bi-criteria symmetric case as there is no simultaneously

bounded deterministic solution for symmetric case with more than three objectives

and the asymmetric case. Theorem 3.1 implies that there exists a polynomial time

algorithm which can find an a
2
-deterministic solution by calling any given a-

approximation algorithm for the mono-criterion problem. In particular, under the

value-oracle model, the best possible algorithm for symmetric submodular

maximization has an approximation ratio 1
2

([12]), implying that:

Corollary 5.1 In the bi-criteria symmetric submodular maximization problem,

assume that the submodular function is given under the oracle model. Then there

exists a polynomial-time algorithm which can find a 1
4
-deterministic solution.

We may get better bound if the submodular function is given under succinct

representation, where the submodular functions depend only on a constant number

of elements, such as the cut function in graph and hypergraphs. In particular, for the

bi-criteria weighted max-cut problem, it was already proved in [3] that there exists a
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polynomial-time algorithm which can find a 0:439; 0:439ð Þ-deterministic solution

by calling the 0:879-approximation algorithm by Goemans and Williamson [16].

5.2 Polynomial-time Algorithm for Randomized Solution

It is well-known that the randomized algorithm which equi-probably selects or

rejects any given element into the solution is a 1
2
-approximation algorithm for the

mono-criterion symmetric submodular function maximization problem and a 1
4
-

approximation for the asymmetric case. Moreover, the 1
2
-approximation cannot be

improved under the value oracle model ([12]).

It is not difficult to see that, for the multi-criteria problem, the same simple

randomized algorithm yields a 1
2
; � � � ; 1

2

� �
-randomized solution for the symmetric

case and a 1
4
-randomized solution for asymmetric case.

Note that the existence results proved here cannot yield better bounds than the

aforementioned simple random algorithm under the oracle model. But it can offer

better bounds under the succinct representation model for smaller k. In particular,

for the symmetric case, Theorem 3.3 together with the 0.879-approximation

algorithm in [16] imply that

Corollary 5.2 For the k-criteria MAX-CUT problem, there exists a polynomial-time

algorithm which can find a 0.586 0-randomized solution for k ¼ 2, and a 0.502 3-

randomized solution for k ¼ 3.

The last bound actually answered affirmatively the open question posted in [3]

for three criteria: ‘‘the existence of a polynomial time randomized algorithm that has

a performance ratio strictly better than 1
2

for three and more criteria is open.’’.

For the asymmetric case, Theorem 4.3 together with the 0:874-approximation

algorithm in [11, 21] imply that

Corollary 5.3 For the k-criteria MAX-DI-CUT problem, there exists a polynomial-

time algorithm which can find a 0.291 3-randomized solution for k = 2.

6 Concluding Remarks

An obvious open question left here is to find the tight randomized ratio for the

asymmetric submodular function when k > 4. To offer a taste of how challenging

this open question might be, we report a tight result for the special 4-criteria MAX-

DI-CUT problem:

– There exists a 185
674
� 0:274 48-randomized solution for the 4-criteria MAX-DI-CUT

problem, and this bound is tight as shown by the instance in Fig. 3.

This is proved with the aid of symbolic calculation via Maple and Matlab and the

same code goes out of memory for k > 5.
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Note that the last bound 0.274 4 implies that general bound earlier for any

asymmetric submodular function in Theorem 4.3 is not tight, as it only offers

maxf1
4
; 4

15
g � 0:266 7. Therefore one possible first step in resolving the aforemen-

tioned open question is to find such a tight bound for the special directed cut

function when k > 5.

Acknowledgments The first author would like to thank Dr. Daqing Yang for the beneficial discussion.

References

[1] Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, New York (2003)

[2] Angel, E., Bampis, E., Gourve, L.: Approximation algorithms for the bi-criteria weighted MAX-

CUT problem. Discret. Appl. Math. 154, 1685–1692 (2006)

[3] Azar, Y., Epsteinb, L., Richtera, Y., Woegingerc, G.J.: All-norm approximation algorithms.

J. Algorithms 52(2), 120–133 (2004)

[4] Austrin, P.: Improved inapproximability for submodular maximization. In: Proceedings of

APPROX., pp. 12–24 (2010)

[5] Buchbinder, N., Naor, J.: Fair online load balancing. In: Proceedings of SPAA, pp. 291–298 (2006)

[6] Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual

approach. In: Proceedings of FOCS, pp. 293–304 (2006)

[7] Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent randomized rounding via exchange properties

of combinatorial structures. In: Proceedings of FOCS, pp. 575–584 (2010)

[8] Cho, S., Goel, A.: Pricing for fairness: distributed resource allocation for multiple objectives.

Algorithmica 57, 873–892 (2010)

[9] Climacao, J. (ed.): Multicriteria Analysis. Springer, New York (1997)

274480
3701185 7

0011
27448.0

1854674
5.7

3 2 3
0111 0101 0001

2

1011

1111

0110 0010

0000

1101

1111

1001 0100

0000

1110

1010

10000

1100

000

Fig. 3 Non-existence proof for k ¼ 4: where only cross-layer edges are shown and each of the three
vertical layers is a clique and the edges are omitted here. Namely nodes (0111,1011, 1101, 1110) form the
left-clique, nodes (0011, 0101, 0110, 1001, 1010, 110) form the middle-clique and nodes (0001, 0010,
0100, 1000) form the right-clique. Moreover, the numbers indicate the sum of weight on each edge, which
is evenly distributed to the four criteria. Namely 3 is the edge weight within the left-clique and the right-
clique, 7 is the edge weight within the middle-clique, 7.5 is the weight between the middle-clique and
left-cliques (right-clique), and 2 is the edge weight between the left-clique and the right-clique

Submodular Function Maximization 289

123



[10] Escoffier, B., Gourves, L., Monnot, J.: Fair solutions for some multiagent optimization problems.

J. Auton. Agent Multi-agent Syst. 26(2), 184–201 (2013)

[11] Feige, U., Goemans, M.X.: Approximating the value of two-prover systems, with applications to

MAX-2SAT and MAX-DICUT. In: Proceedings of ISTCS, pp. 182–189 (1995)

[12] Feige, U., Mirrokni, V., Vondrak, J.: Maximizing nonmonotone submodular functions. In: Pro-

ceedings of FOCS, pp. 461–471 (2007)

[13] Goel, A., Meyerson, A.: Simultaneous optimization via approximate majorization for concave

profits or convex costs. Algorithmica 44(4), 301–323 (2006)

[14] Goel, A., Meyerson, A., Plotkin, S.: Combining fairness with throughput: online routing with

multiple objectives. J. Comput. Syst. Sci. 63(1), 62–79 (2001)

[15] Goel, A., Meyerson, A., Weber, T.A.: Fair welfare maximization. Econ. Theory 41, 465–494

(2009)

[16] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and

satisability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

[17] Golovin, D., Gupta, A., Tangwongsan, K.: All norms and all L-p norms approximation algorithms.

In: Proceedings of FSTTCS (2008)

[18] Jones, D.F., Tamiz, M.: Practical Goal Programming. International Series in Operations Research

and Management Science. Springer, New York (2010)

[19] Kleinberg, J., Rabani, Y., Tardos, E.: Fairness in routing and load balancing. J. Comput. Syst. Sci.

63(1), 2–20 (2001)

[20] Kumar, A., Kleinberg, J.: Fairness measures for resource allocation. In: Proceedings of FOCS,

pp. 75–85 (2000)

[21] Livnat, D., Lewin, M., Zwick, U.: Improved rounding techniques for the MAX 2-SAT and MAX

DI-CUT problems. In: Proceedings of IPCO, pp. 67–82 (2002)

[22] Mittal, S., Schulz, A.S.: A general framework for designing approximation schemes for combi-

natorial optimization problems with many objectives combined into one. In: Proceedings of

APPROX., pp. 179–192 (2008)

[23] Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of

web sources. In: Proceedings of FOCS, pp. 86–92 (2000)

[24] Rasala, A.: Existence theorems for scheduling to meet two objectives. Technical Report. PCSTR,

pp. 99–347 (1999)

[25] Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Many birds with one stone:

multi-objective approximation algorithms. In: Proceedings of STOC, pp. 438–447 (1993)

[26] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combina-

torics, vol. 24(B). Springer, New York (2003)

[27] Stein, C., Wein, J.: On the existence of schedules that are near-optimal for both makespan and total

weighted completion time. Oper. Res. Lett. 21, 115–122 (1997)

[28] Topkis, D.: Supermodularity and Complementarity, 1st edn. Princeton University Press, Princeton

(1998)

290 D.-L. Du et al.

123


	Simultaneous Approximation of Multi-criteria Submodular Function Maximization
	Abstract
	Introduction
	The k-criteria Submodular Maximum Game
	Our Contributions
	Background and Applications
	Prior and Related Results

	Preliminaries
	Facts Useful for Existence Analysis
	Facts Useful for Non-existence Analysis

	Symmetric Submodular Functions
	Existence and Non-existence of Deterministic Solution
	Existence and Non-existence of Randomized Solution
	Discussion on the Results
	Remarks on the Proofs of Theorems 3.3 and 3.4
	An Illustration of the Proof of Theorem 3.3 for k=3
	An Illustration of the Proof of Theorem 3.4 for k=3


	Asymmetric Submodular Functions
	Existence and Non-existence of Deterministic Solution
	Existence and Non-existence of Randomized Solution

	Algorithmic Corollaries
	Polynomial-time Algorithm for Deterministic Solution
	Polynomial-time Algorithm for Randomized Solution

	Concluding Remarks
	Acknowledgments
	References


