Skip to main content
Log in

Nonlinear Weighted Average and Blossoming

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new averaging rule, the nonlinear weighted averaging rule. As an application, this averaging rule is used to replace the midpoint averaging in the de Casteljau evaluation algorithm and with this scheme we can also generate transcendental functions which cannot be generated by the classical de Casteljau algorithm. We also investigate the properties of the curves of the functions generated by blossoming, where the results show that these curves and the classical Bézier curves have some similar properties, including variation diminishing property and endpoint interpolation. However, the curves obtained by blossoming using nonlinear weighted averaging rules induced by certain functions violate some properties like convex hull property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aspert, N., Ebrahimi, T., Vandergheynst, P.: Non-linear subdivision using local spherical coordinates. Comput. Aided Geom. Des. 20(EPFL–ARTICLE–86961), 165–187 (2003)

    Article  MathSciNet  Google Scholar 

  2. Berger, M.: Géométrie 1. nathan, 1990. English edition: Geometry, vol. 1 (1987)

  3. Bezier, P.: The Mathematical Basis of the UNIURF CAD System. Butterworth-Heinemann, Oxford (2014)

    Google Scholar 

  4. Cartan, H.: Cours de calcul différentiel (1977)

  5. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  6. Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to eno interpolation. Appl. Comput. Harmon. Anal. 15(2), 89–116 (2003)

    Article  MathSciNet  Google Scholar 

  7. de Casteljau, P.: Splines focales. In: Curves and Surfaces in Geometric Design, pp. 91–103. Peters AK Wellesley (1994)

  8. De Casteljau, P.D.F.: Shape Mathematics and CAD, vol. 2. Kogan Page, London (1986)

    Google Scholar 

  9. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. In: Constructive Approximation, pp. 49–68. Springer (1989)

  10. Dyn, N.: Three families of nonlinear subdivision schemes. Stud. Comput. Math. 12, 23–38 (2006)

    Article  MathSciNet  Google Scholar 

  11. Farin, G.E., Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, Burlington (2002)

    MATH  Google Scholar 

  12. Floater, M.S., Micchelli, C.A.: Nonlinear Means in Geometric Modeling. IBM Thomas J. Watson Research Division, Yorktown Heights (1997)

    MATH  Google Scholar 

  13. Gallier, J., Gallier, J.H.: Curves and Surfaces in Geometric Modeling: Theory and Algorithms. Morgan Kaufmann, Burlington (2000)

    MATH  Google Scholar 

  14. Goldman, R., Vouga, E., Schaefer, S.: On the smoothness of real-valued functions generated by subdivision schemes using nonlinear binary averaging. Comput. Aided Geom. Des. 26(2), 231–242 (2009)

    Article  MathSciNet  Google Scholar 

  15. Goldman, R.: An Integrated Introduction to Computer Graphics and Geometric Modeling. CRC Press, Cambridge (2009)

    Book  Google Scholar 

  16. Lane, J.M., Riesenfeld, R.F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 1, 35–46 (1980)

    Article  Google Scholar 

  17. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)

  18. Marinov, M., Dyn, N., Levin, D.: Geometrically controlled 4-point interpolatory schemes. In: Advances in Multiresolution for Geometric Modelling, pp. 301–315. Springer (2005)

  19. Ramshaw, L.: Blossoming: A Connect-the-Dots Approach to Splines. Digital Equipment Corporation, Palo Alto (1987)

    Google Scholar 

  20. Schaefer, S., Vouga, E., Goldman, R.: Nonlinear subdivision through nonlinear averaging. Comput. Aided Geom. Des. 25(3), 162–180 (2008)

    Article  MathSciNet  Google Scholar 

  21. Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (2016)

    Book  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful suggestions and comments. Rongin Uwitije acknowledges the support of CAS-TWAS President’s Fellowship for International Ph.D. Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uwitije, R., Wang, X., Qarariyah, A. et al. Nonlinear Weighted Average and Blossoming. Commun. Math. Stat. 8, 361–378 (2020). https://doi.org/10.1007/s40304-020-00208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-020-00208-5

Keywords

Mathematics Subject Classification

Navigation