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Abstract
In many fields of applications, linear regression is the most widely used statistical method to
analyze the effect of a set of explanatory variables on a response variable of interest. Classi-
cal least squares regression focuses on the conditional mean of the response, while quantile
regression extends the view to conditional quantiles. Quantile regression is very convenient,
whereas classical parametric assumptions do not hold and/or when relevant information lies
in the tails and therefore the interest is inmodeling the conditional distribution of the response
at locations different from the mean. A situation common to most regression applications is
the presence of strong correlations between predictors. This leads to the well-known problem
of collinearity. While the effects of collinearity on least squares estimates are well investi-
gated, this is not the case for quantile regression estimates. This paper aims to explore the
collinearity problem in quantile regression. First, a simulation study analyses the problem
concerning different degrees of collinearity and various response distributions. Then the
paper proposes using regression on latent components as a possible solution to collinearity
in quantile regression. Finally, a case study shows the assessment of the quality of service in
the presence of highly correlated predictors.

Keywords Collinearity · Least squares regression · Quantile regression · Principal
component regression

1 Introduction

Regression is by far the most widely used statistical methodology in empirical applica-
tions in several fields, ranging from economic and social sciences to life sciences. Even if

B C. Davino
cristina.davino@unina.it

R. Romano
rosaroma@unina.it

D. Vistocco
domenico.vistocco@unina.it

1 Department of Economics and Statistics, University of Naples Federico II, Naples, Italy

2 Department of Political Science, University of Naples Federico II, Naples, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40300-022-00230-3&domain=pdf
http://orcid.org/0000-0003-1154-4209


154 C. Davino et al.

plenty of variants have been proposed, encompassing parametric, semi- and non parametric
approaches, conditional linear models retain their appeal for the ease interpretation and the
availability of tools and strategies suitable to deal with different types of data and/or validity
of theoretical assumptions. Today more than ever, in the era of big data, it is common prac-
tice to collect numerous variables to use as predictors of a response variable of interest. For
instance, many of the customer satisfaction surveys conducted by businessess and industries
collect numerous variables to predict how consumers perceive and evaluate the quality of
a product/service. If, on the one hand, the use of numerous explanatory variables offers a
more accurate view on the response variable, on the other engenders redundant information
deriving from correlation among predictors. The collinearity among predictors is one of
the main problems associated with multiple linear regression (MLR) [5, 45]. In particular,
it affects least squares estimates, standard errors, computational accuracy, fitted values and
predictions [19, 34]. Several are the methods generally used to diagnose collinearity. Among
these, the condition index and the variance inflation factor [15]. Several are also the pro-
posals to address the problem. They range from methods based on calculating various types
of components (partial least squares regression (PLS) and principal component regression
(PCR)) to a technique based on penalizing the solution using the L2 norm [24, 37]. The most
well-known here is ridge regression [35]. Other examples are the more general Tikhonov
regression [43] and the elastic net [50], which also penalizes the L1 norm (in addition to the
L2 norm) to reduce the variables. In principle, any of these methods could be used since there
is no consensus about which one is best in general: they are good in different situations.

Quantile regression (QR) extends least squares regression (LSR)beyond conditionalmean.
It fits conditional quantiles of the response variable with a general linear model that assumes
no parametric form for the conditional distribution of the response [11, 17]. QR is a valuable
tool when the conditions of linear regression are not met (i.e., linearity, homoscedasticity,
independence, or normality) [29], as well as the interest is in modeling the effect of regressors
at different locations of the response. This interest is present in several applications. In the
decades since the introduction of quantile regression, the potential of this method has been
appreciated more and more and in the most diverse fields of application (see [32] and [47]
for a review of the research areas). In addition to the numerous applications in the economic
framework that characterised the first years of the methodology’s dissemination ( [6, 16, 22]),
contributions in social and behavioral sciences (among many [9, 12]) as well as in medicine
and survival analysis ( [23]), consumer and customer satisfaction analysis [8, 10] are also
widespread.

The contributions in the literature dealing with possible solutions to the problem of mul-
ticollinearity in QR focus, essentially, on variants of the ridge regression or the proposal
of variable selection techniques. While the former [3, 49] shrink the coefficients, the latter
introduces many different types of penalties to achieve a proper variable selection (among
many, see [1, 28, 46]). The present paper faces the multicollinearity problem from a different
perspective, where the whole set of variables is preserved but eliminating any redundancy
that is unnecessary and detrimental to the estimation process. The use of a method of synthe-
sising the original variables before proceeding to a quantile regression has been proposed by
other authors but with different methods and aims. On the one hand, Fan et al. [13] combine
Principal Component Analysis and QR with a different purpose as the authors propose the
use of principal component factors as input variables for a stepwise cluster analysis prior to a
QR. On the other hand, Fang et al. [14], Ando and Tsay (2011) [2] and Giglio et al. [18] use
very different dimensionality reductionmethods and in different contexts, respectively proper
orthogonal decomposition for time series, quantile regression model with factor-augmented
predictors for panel data and factor models for time series quantile regression.
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The principal component regression (PCR) [39] inspires the present work to solve the
problem of collinearity. It is used a lot for standard regression and is well understood theoret-
ically. PCR is a transparent technique concerning the effects involved and easy to implement.
An additional advantage of PCR is the graphical representation of the results. The repre-
sentation of the regression coefficients on the principal components (loading plot) allows
understanding which are the most critical variables in constructing the principal components
and, therefore, in predicting the response variable. Furthermore, the representation of the
scores (coordinates of the observations on the principal components) allows the detection of
similarities and differences between the different statistical units and can be used for outlier
detection [39]. PCR essentially consists of two steps, the first of which applies a PCA on
the predictor matrix, while the second regresses the response variable on the first principal
components (those that explain most of the variability). The present paper transfers the prin-
ciples of PCR to the context of quantile regression giving life to a newmethod called quantile
principal component regression (QPCR). The two approaches share the first step of the anal-
ysis, while they differ in the second as the QR is used in QPCR instead of the classic LSR
to regress the response variable on the principal components. QPCR is simple to implement
and can use the same graphical outputs as PCR. The primary purpose of the new method
is to apply quantile regression even in contexts where the model’s predictors are strongly
correlated with each other. To this end, the QPCR identifies components that summarise
the information in the predictors. Like all other regression methods on latent components,
the principle is to exploit the correlation structure between the predictors to precisely iden-
tify a few latent components that best summarise the set of predictors and leave aside the
remaining components that would explain residual information. Unlike the other regression
methods mentioned above, QPCR does not penalise the regression coefficients by selecting
the observed variables. Instead, it exploits the correlations between these to identify new
variables, synthesising all the observed variables that contribute to the construction of the
components to different degrees. The role of each variable in the construction of the compo-
nents lies in the loadings, generally displayed through appropriate graphical representations
(loadings plots). On the other hand, the main components themselves can be represented by
scatterplots that allow you to view the values of the statistical units on the new components
(scores plots). A comparative study of different approaches will be presented in the case study
to understand the different philosophies of QPCR compared to other treatment methods of
multicollinearity. The two approaches are not competitors but follow different strategies with
different relative results, to solve a common problem. QPCR is a good choice when the cor-
relation structure between the variables assumes the existence of latent factors, which can be
interpreted in terms of all the starting variables and used as new predictors in the regression
model taken into account. The case study presented, based on the assessment of the quality
of the service, represents an example of a context in which the QPCR is suitable: the set of
starting predictors, highly correlated with each other, can be suitably synthesized into new
variables, representing latent dimensions of observed data, and that can be effectively used
to predict online purchases.

The paper is organized as follows. Section 2 offers an essential presentation of LSR
and QR, discussing the problem of multicollinearity. Section 3 presents PCR, one of the
best known and easiest to implement solutions to the problem. Furthermore, it presents
QPCR as the extension of PCR to the context of QR. An in-depth evaluation of the effect
of collinearity among predictors in QR with some insights on the use of PCR as a possible
solution is addressed through a simulation study in Sect. 4. Section 5 concerns a case study on
the application of QR in evaluating service quality in terms of consumer satisfaction buying
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online and in-store products. Finally, concluding remarks are offered in Sect. 6 along with a
short discussion of the implications of these findings for future research.

2 Least squares regression and quantile regression: a short recap

Regression analysis is widely used for modelling the relationship between a single dependent
variable (response) and one or more independent variables (regressors or predictors). In the
following subsections, we focus on the linear model, briefly summarizing LSR and QR,
limiting the treatment to the basic notation and aspects concerning collinearity.

2.1 Least squares regression

In formal notation, the MLR model can be expressed as:

y = Xβ + e, (1)

where y is a (n × 1) vector of observations on the dependent variable, X is a (n × p) fixed
matrix of observations on the independent variables, β is a (p × 1) vector of unknown
regression coefficients, and e is a (n× 1) vector of errors assumed to be normally distributed
with E(e) = 0 and E(ee′) = σ 2In . In the following, without loss of generality, we assume
that X and y are centered columnwise.

Least squares (LS) method is commonly used to estimate the regression coefficient β. It
minimizes the least squares loss function || y − Xβ||2 whose closed-form solution provides
the LS estimates:

β̂ = (X′X)−1X′y, (2)

when X′X is nonsingular. The covariance matrix of the LS estimator is:

cov(β̂) = σ 2(X′X)−1 (3)

and can be also formulated in terms of the singular value decomposition of the X′X matrix
as:

cov(β̂) = σ 2
A∑

a=1

pa(1/λa)p′
a (4)

where the pas and λas are the eigenvectors and the eigenvalues of X′X, respectively.
The problem of collinearity concerns the case where there are linear or near-linear rela-

tionships among the predictors. In the case of exact linear relationships, i.e. if one predictor
is an exact linear combination of some others, X′X becomes singular and no unique β̂ can
be produced. If the predictors are nearly linearly dependent, X′X is nearly singular, and the
estimation equation for the regression parameters is ill-conditioned. Therefore, parameter
estimates β̂ will be unstable, as evident from Eq. (3): the variances of the regression coef-
ficients become very large, which implies that the confidence intervals tend to be larger.
Equation 4 suggests the same conclusion, but in terms of the eigenvalues of X′X. If some
eigenvalues are very small, as occurs in the presence of multicollinearity, the variances of
the regression coefficients become very large.
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Collinearity is relatively easy to detect by calculating the variance inflation factor (VIF) and
the condition number (CN) [39]. The VIF is computable for each predictor xj ( j = 1, . . . , J )
as follows

V I Fj = 1

1 − R2
j

where R2
j is the squared correlation coefficient obtained by predicting xj with the remaining

explanatory variables. The VIF represents the factor of increase of the estimator’s variance
due to the correlation between xj and the other explanatory variables. Multicollinearity is
present if one of the R2

j is close to 1. Generally, a VIF of 10 or above indicates that (multi)
collinearity is a problem [20]. The condition number can be written as

CN =
(

λ̂1

λ̂J

)1/2

where λ̂1 and λ̂J are respectively the largest and the smallest eigenvalue of the empirical
covariance matrix of X. An informal rule of thumb is that if the condition number is 15,
multicollinearity is a concern, while multicollinearity is a severe concern if it is greater than
30 (these are just informal rules of thumb but have little theoretical basis).

2.2 Quantile regression

QR extends LSR replacing the classical estimate of the conditional mean (a single value)
with estimates of conditional quantiles (several values). Therefore, it allows estimating the
whole distribution of the conditional quantiles of the response variable. A typical QR model
is formulated as:

Qθ (ŷ|X) = Xβ̂(θ), (5)

where Qθ (.|.) is the conditional quantile function for the θ -th conditional quantile with
0 < θ < 1. QR provides separatemodels for each conditional quantile θ of interest. Although
it is theoretically possible to estimate an infinite number of quantiles, a finite number is numer-
ically distinct, the so-called quantile process. QR does not pose any parametric assumption
for the error (and hence response) distribution. In line with classical linear models, each
β̂p(θ) coefficient represents the rate of change in the θ -th conditional quantile of the depen-
dent variable per unit change in the value of the p-th regressor (p = 1, . . . , P), holding the
others constant.

QR is a modified version of the L1 problem, the median regression, placing asymmetric
weights on positive and negative residuals:

β̂ (θ) = argmin
β(θ)

n∑

i=1

ρθ

(
yi − x�

i β(θ)
)

(6)

where ρθ (.) denotes the following asymmetric loss function:

ρθ (y) = [θ − I (y < 0)] y = [(1 − θ)I (y < 0) + θ I (y > 0)] |y| (7)

Such loss function is a weighted sum of absolute deviations, where a (1 − θ) weight is
assigned to the negative deviations and a θ weight is instead used for the positive deviations.
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Therefore QR estimates of Eq. (6) can be formulated as:

β̂ (θ) = argmin
β(θ)

∑

yi<x�
i β(θ)

(1 − θ)

∣∣∣yi − x�
i β(θ)

∣∣∣ +
∑

yi≥x�
i β(θ)

θ

∣∣∣yi − x�
i β(θ)

∣∣∣ (8)

QR allows the vector β̂ (θ) to variate on different θ , the median case (θ=0.5) being equivalent
to minimize the sum of absolute values of the residuals.

Asymptotic normality holds for the distribution of the estimators, where the form of the
covariance matrix depends on the model assumptions [30, 31]. An alternative to asymptotic
inference is provided by resampling methods [27] that do not require any assumption for
the error distribution. Finally, the assessment of goodness of fit exploits the general idea
leading to the typical R2 goodness of fit index in classical regression analysis. The most
commongoodness of fit index in theQR framework is called pseudo-R2 [33]. For an extensive
discussion of QRmethodological details, the reader is referred to the reference literature [11,
17, 29].

As the asymptotic distribution of the QR estimator depends on the inverse of the vari-
ance covariance matrix [29], the variance of the QR estimator increases with the degree of
correlation among the predictors.

3 Principal component regression approach

3.1 Principal component regression

The basic idea of PCR is to find some linear combinations (components or factors) of the
original variables and use them as regressors to predict y. The identification of the main
components takes place on the basis of dimensionality reduction techniques [24]. Specifically,
principal components analysis (PCA) is applied to thematrix of predictorsX in order to extract
the A most dominating principal components.

The model structure for PCR is given by the following two equations:

X = TP′ + E (9)

y = Tq + f

where T is called scores matrix and collects the A dimensions responsible for the systematic
variation in X, P and q are called loadings and describe how the variables in T relates to the
original variables in X and y, respectively [39].

The estimated scores matrix T̂ of PCR is obtained by minimizing the loss function
||X − TP||2, whose solution is obtained through the singular value decomposition of X.
The estimated scores T̂ are then used in the regression equation in place of the original
predictors:

y = T̂q + f, (10)

where LSR is used to estimate the regression coefficients in q, and f corresponds to the error
term. Note that the PCR solution, i.e. the loadings P̂ and the regression coefficients q̂, can
be combined to give the regression equation:

ŷ = ȳ + XP̂q̂, (11)

which can be interpreted in the same way as a classical LSR and where the intercept is equal
to the mean ȳ since the X matrix is centred.
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If all the components are included in the regression (A = P), the resulting model is
equivalent to the LSR model. It is worth highlighting that the variability of the estimates
is larger for the last components, corresponding to the smaller eigenvalues. By considering
only the first components, the ones associated with the larger eigenvalues, estimates are more
stable. Equation (4) shows indeed that the directions with the smaller eigenvalues have a large
impact on the variances if they are unstable, as shown in [38]. This is quite natural since they
are dominated by noise. The variances of PCR estimates are the same as for LSR except that
now the influence of the eigenvalues after component A is eliminated. This shows exactly
that PCR gives more stable regression coefficients than LSR. For this reason, the PCR aims
to use in the regression a reduced number of components that maximize the variability of X,
leaving aside those that include noise. PCR belongs to the class of regression estimators that
are biased but can simultaneously greatly reduce any large variances for regression coefficient
estimators caused by multicollinearity [25].

3.2 Quantile principal component regression

As anticipated in Sect. 1, the extension of the principal component regression to the context of
the QR is straightforward. The extraction of the main components from the predictor matrix
occurs in the same way. In contrast, the regression of the response variable on the extracted
components uses the QR instead of the LSR.

The model structure for PCR is given by the following two equations:

X = TP′ + E (12)

Qθ (ŷ|T) = Tβ̂(θ)

where Qθ (.|.) is the conditional quantile function for the θ -th conditional quantile with
0 < θ < 1.

It is worth noting that QPCR can produce the same numerical and graphical outputs as
PCR, with the only difference being that the results will be specific for each selected theta.

4 On the effects of collinearity in QR: a simulation study

4.1 Description of the simulation plan

The simulation presented in this section exploits the concept of relevant subspace and relevant
predictors. Relevant subspace essentially consists of the subspace of the predictors, space
that is relevant for the variation in the response variable. The approach is based on principal
components and exploits, in particular, the degree of dependence among the predictors on the
basis of the eigenvalue structure of their covariance matrix. More specifically, the relevant
components derive froma subset of the eigenvectors of the covariancematrix of the predictors.
They allow obtaining a set of relevant predictors preserving all relevant information for the
prediction of the response variable. The set of relevant predictor variables will have truly
non-zero regression coefficients [21, 36].

The simulation study considers different degrees of correlation among predictors and
different types of response with the aim to compare LSR and QR performance. We carried
out the analysis using the software R [40] and the simrel package [41] for linear model data
simulations. We considered a sample size of 100 observations and 3 relevant predictors. The
lastmight seema small number, but it is sufficient to illustrate the presence ofmulticollinearity
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Table 1 Percentage of cumulated
explained variance on the three
principal components (columns)
for the considered scenarios
(different values of γ on the
rows)

Comp1 Comp2 Comp3

γ = 0.0 36.33 70.20 100.00

γ = 0.5 45.44 79.60 100.00

γ = 1.0 55.19 91.56 100.00

γ = 1.5 65.17 95.88 100.00

γ = 2.0 66.17 98.10 100.00

γ = 2.5 72.16 99.19 100.00

γ = 3.0 85.03 99.77 100.00

γ = 3.5 91.79 99.91 100.00

γ = 4.0 95.43 99.97 100.00

γ = 4.5 97.47 99.99 100.00

γ = 5.0 97.87 100.00 100.00

in QR. Taking into account the small number of predictors, we set only one component
relevant for prediction. Without loss of generality, the relevant component was set at the first
position. Data were simulated so that the correspondent population model explain 70% of the
variation in the response, i.e. setting the theoretical R2 equal to 0.7. Finally, we regulated the
level of collinearity among predictors using a coefficient that control for the speed of decline
in eigenvalues (i.e. variances) of the principal components. We denote this coefficient with γ

in the following. The first eigenvalue was set equal to 1, and the subsequent decline according
to an exponential model. We considered a grid of values for γ ranging from 0 to 5, using an
increment of 0.5. In case of low values of γ we expect no or very low collinearity among
predictors, while high collinearity should be present by incrementing γ .

As an example, Table 1 reports the percentage of cumulated explained variance for the
three components (Comp1, Comp2 and Comp3 on the columns) using one random sample
for each level of γ (rows). For each value of the γ grid, the standard errors of the classical
linear regression and QR models were computed. We opted to compute LS standard errors
using the bootstrap procedure in order to have a fair comparison with QR, where bootstrap
is typically used. We carried out 1000 simulations for each value in the design grid. The
illustrated simulation schema was replicated for different types for the following types of
responses:

– classical normal i.i.d. errors, and hence the response
– normal heteroscedastic errors
– skewness in the response (errors).

4.2 Main simulation results

In the presentation of the simulation results, we focus on discussing the effects of multi-
collinearity in QR. A comparison with what happens in LSR is still presented in case the
relevant componentsmethod is adopted, namelywhen the PCs are used in place of the original
regressors. Since we considered only three regressors for our illustrative purposes, we retain
all the three components in PCR. The expected result is a different pattern in correspondence
of the last component, where the largest variance associatedwith the noise should provide less
stable estimates. In summary, the main objective is to explore the effect of multicollinearity
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Fig. 1 Distributions of the standard errors of the first predictor (equivalent for the second predictor) in case
of homoscedasticity and heteroscedasticity (rows) for LSR (first column) and QR (from the second to the last
column, for the five considered quantiles). Colours refer to the results obtained using the original regressors
(darker densities) or the principal components (lighter densities) in the model

in QR both when the original regressors are considered in the model and when PCs are used.
Such results are compared with classical PCR for the different types of response considered.

The distribution of the standard errors of the coefficients for the estimated models are
summarized in Figs. 1, 2 and 3. The three figures display all the settings of the simulation
design, and in particular the data generation scheme (homogeneous vs heterogeneous errors
in Figs. 1 and 2, skewed errors in Fig. 3), the type of regressors included in the model
(original regressors versus PCs), and the estimated model (classical LS versus QR for several
quantiles). The representations are organized in the following way: the horizontal panels
refer to the type of errors while the columns display the different estimated models. At
each intersection two different situations are compared: the standard errors estimated when
the original regressors are considered in the model (darker histograms) and the ones when
PCs are used (lighter histograms). The different values of γ (from 0, no collinearity, to 5,
highest collinearity) are depicted on the vertical axis, the values of the standard errors being
represented on the horizontal axis. The results corresponding to the first two variables (X1
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Fig. 2 Distributions of the standard errors of the third predictor in case of homoscedasticity and heteroscedas-
ticity (rows) for LSR (first column) and QR (from the second column to the last column, for the five considered
quantiles). Colours refer to the results obtained using the original regressors (darker densities) or the principal
components (lighter densities) in the model

and X2), as well as the ones associated to the first two components are identical and therefore
Fig. 1 expresses both the two coefficients (darker densities) and the two components (lighter
densities). Figure 2 depicts instead the standard errors for the regressor X3 and the third PC.

From the analysis of the plots the following findings seem relevant:

– when original regressors are used in the model, standard errors increase in value and
variability as the collinearity increases. This is more marked in QR than in LSR. The
effect is more pronounced in the extreme parts of the distribution (θ = 0.1 and θ = 0.9)

– the previous consideration is amplified in the heteroscedastic case
– when PCs are used in place of the original regressors, multicollinearity does not affect

the variability of the estimates both in the homoscedastic and heteroscedastic case. This
is true for all the values of γ regulating the level of collinearity among predictors

– the distributions of the standard errors for X3 and the third PC (Fig. 2) coincide and the
densities related to the two cases perfectly overlap
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Fig. 3 Distributions of the standard errors of the three predictors (rows) in case of skewness for LSR (first
column) and QR (from the second to the last column, for the five considered quantiles). Colours refer to the
results obtained using the original regressors (darker densities) or the principal components (lighter densities)
in the model

– the variability of the estimators for X3 and the third PC is more pronounced than shown
in Fig. 1, especially in the heteroscedastic case. This result was expected considering
that the third component explains a residual part of the variability. In PCR, in fact, it is
appropriate to use only a subset of components that explain a sufficient part of variability,
or even the first component that is the most relevant

– PCR estimator, even if biased, is a reduced variance estimator, as highlighted in Sect. 2
– in the skewness scenario (Fig. 3), QR is less affected by the multicollinearity on the left

side of the distribution (θ = 0.1 and θ = 0.25) while standard errors increase in size
and variability on the right side. It is worthy of notice that this scenario is quite different
from the others: the range of the standard errors is much wider, as evident comparing
the values on the horizontal axis in Fig. 3 with the values in Figs. 1 and 2. Using the
PCs in place of the regressors, any multicollinearity does not affect the variability of the
estimates.

123



164 C. Davino et al.

5 A case study for the analysis of consumer purchasing behaviour of a
multi-channel retailer

The aim of the study presented in this section is to describe the effects of the presence of
multicollinearity on the results of LSR and QR through a practical case study. The empirical
analysis will show that strong linear relationships among regressors provide unstable esti-
mated regression coefficients and inadequate statistical measures. Dropping one or more of
the highly collinear regressors could be a possible solution to the collinearity problem even if
the improvement in the efficiency of the estimates not always balances the loss of information
triggered from the deletion of some variables.Moreover, the omission of relevant regressor(s)
from the model may result in a specification error. A different option, as described in Sect. 2,
consists of eliminating only the redundant information in the data by identifying a subset
of new variables through a PCA. The resulting PCs are indeed linear combinations of the
original variables but orthogonal and therefore uncorrelated. The use of a regression on the
PCswill lead to satisfactory results both for LSR andQR, allowing a reduction in the standard
errors of the estimators and, therefore, showing the real and significant contribution of the
regressors.

A completely different approach to deal with the problem of multicollinearity is the use
of penalty methods such as LASSO regression [42]. The empirical analysis discussed in this
paper is further refined by the results obtained by applying a penalty term to the regression
model. The objective is not a comparison between the LASSO regression and the proposed
quantile regression on principal components as the logic followed by the two approaches
are completely different, although in both cases it leads to overcoming the multicollinearity
problem. The results provided by the LASSO approach, however, make it possible to show
empirically the different philosophies followed by the two approaches. In the first, principal
component regression, the original space is reduced by identifying components that are linear
combinations of all variables. Penalty term methods, on the other hand, are in effect variable
selection techniques whereby they suggest a subset of the observed variables.

The empirical analysis is carried out on a data set regarding customers of a retail who offers
products both online and in-store. Data have been simulated using the guidelines provided
in [7] to reproduce a typical situation of customer relationship management where personal
information of the customers are related to their purchase habits and to the evaluation of
the quality of service/product. We aim to assess whether and to what extent the purchasing
behaviour, the level of satisfactionwith the seller and the personal characteristics of customers
influence purchases made online and whether this impact changes according to the amount of
money spent (for example, according to categories of customers who make low, medium or
high amount purchases). The use of artificial data guarantees the transparency of the analysis
process and allows the interested reader to replicate the procedure, in line with the standard
of reproducible research [26]. In this section, the simulation process proposed by [7] has been
completely pursued, limiting the analysis to consumers with at least one online purchase in
the year. Data deals with 632 customers, which are supposed to represent a random sample
from a company’s customer relationship management system.

The variables in the dataset are listed below, along with quick comments (labels in paren-
theses are used for tables and graphs):

– Age (age): the distribution is quite symmetric and ranges from 48 to 50.
– Credit score (credit.score): a typical measure that reflects the propensity of a customer

to pay the credit back. This variable has been generated as a function of age, assuming
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Fig. 4 Distribution of the quantitative variables

that older customers have higher credit scores on average. For this reasons the shape of
the distribution is very similar to age, centred on an average value of e725.

– Distance from the store (distance.to.store): most of customers lives very close to the store
and very few of them (less than 25% of the sample) very far. The variable is expressed
in meters.

– On line visits (online.visits), transactions (online.trans) and total spending (online.spend)
during a year: online activity is rather limited both in terms of frequency and amounts
spent. Half of the consumers make a maximum of 20 visits for a total of 20 transactions
on the company website. The average amount spent is equal to e269, and very high
amounts of expenditure are very limited.

– Store transactions (store.trans) and total spending (store.spend) during a year: the atten-
dance of the stores ismore limited compared to thewebsite both in terms of the transaction
and purchase amounts. Also in this case, the distributions are rather asymmetrical.

– Level of satisfaction with service (sat.service) and with the selection of products
(sat.selection): the evaluation of the satisfaction, recorded through a 5-points Likert
scale, shows a quite symmetric distribution with respect to the service while the group
of customers providing a negative evaluation about the selection of products (below the
central point 3) prevails.

Distributions and univariate statistics are reported in Figs. 4 and 5 and Table 2.
Some remarks on the bivariate relationships are necessary before proceeding with the

estimation of a model that involves the simultaneous analysis of all the variables. Figures 6
and 7 show the correlation coefficients and scatter plots (respectively above and below the
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Fig. 5 Distribution of the ordinal satisfaction variables

Table 2 Central tendency statistics

Age Credit.score Distance.to.store Online.visits Online.trans

Min. 22.13 543.00 0.21 1.00 1.00

1st Qu. 31.31 691.80 3.45 7.00 2.00

Median 34.87 725.00 7.58 20.00 6.00

Mean 34.73 725.00 15.48 44.43 13.27

3rd Qu. 37.91 757.00 17.14 59.00 18.00

Max. 48.56 869.10 267.09 606.00 169.00

Online.spend Store.trans Store.spend Sat.service Sat.selection

Min. 14.73 0.00 0.00 1.00 1.00

1st Qu. 42.45 0.00 0.00 3.00 2.00

Median 122.84 1.00 31.58 3.00 2.00

Mean 269.49 1.32 47.04 3.129 2.43

3rd Qu. 361.18 2.00 66.44 4.00 3.00

Max. 3593.03 9.00 472.20 5.00 5.00

main diagonal) for the two groups of variables with very high correlations and thus herald
of multicollinearity problems.

The analysis of the VIF values (Table 3, second column) confirms that these strong cor-
relations will also condition the joint analysis of all variables. The results of the LSR model
but also of the QR for the median (Table 3, from the third column) obviously reveal a strange
behaviour of the regressors in terms of rather high error standards. The effect seems even
amplified in QR where only online.trans has a significant effect among the five variables
related to online and in-store behaviour. The effect of the multicollinearity on the estimate of
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Fig. 6 Scatterplot matrix of the variables related to the online behavior

the conditioned median of the dependent variable is evident so that the analysis of the effects
on more extreme parts of the distribution would lead to a predictable result. As it is known,
regression results for more extreme θ values often lead to higher error standards.

Using PCA and inserting PCs in place of the original regressors allows eliminating redun-
dant information in the data. By choosing the first four PCs as a synthesis of the original
variables, it is possible to maintain an interesting share of variability (76.14%) as well as
respecting the criterion of eigenvalue one (Table 4). These PCs, orthogonal to each other,
represent different aspects of the phenomenon. From the correlations between variables and
PCs (Table 5), it is in fact possible to interpret the first PC (F1.store) as the one linked to
consumers who prefer the shop for their purchases and transaction, the second to customers
who prefer online sales (F2.online). The third PC, on the other hand, contrasts customers
with respect to the level of satisfaction for the seller (F3.sat), while the fourth summarises the
personal aspects of the consumer, age and credit score (F4.personal). It therefore contrasts
mature customers, both in a personal and economic sense, with those who are younger and
have less credit credibility.

The four PCs can provide a valuable contribution to the explanation of expenses made
online. Table 6 shows the results of LSR andQR for themedian considering the four synthetic
factors as regressors. It results that all the regressors provide significant contributions to the
prediction of online.spend. In both models, the main impact is exerted by online visits and
transactions (F2.online) followed, with a negative coefficient, by shopping behaviour at the
stores. Median regression does not add interesting information to the results of classical LSR,
but the estimation of QR for a denser grid of quantiles allows differentiating the impact of the
regressors on the dependent variable. Figure 8 shows, for each regressor, the coefficient plot
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Fig. 7 Scatterplot matrix of the variables related to the in store behavior

typically used in QR. The horizontal axis displays the different quantiles, and the vertical
axis the values of regression coefficients estimated at different quantiles (from 0.01 to 0.99
with a step equal to 0.01). Moving from lower to higher quantiles, the sign of the coefficients
does not change while the size changes, in some cases of relevant amount. Results limited to
the average effect flattens the different effects that can occur when the amounts spent online
vary. For example, for large online purchases, it is very important how the consumer behaves
in terms of how she/he accesses the seller’s products (online or in-store). This means, for
example, that being able to increase access to the site and also online transactions involves
a greater impact among those who make very expensive online purchases than those who
spend small amounts.

The analysis of the data presented in this section now extends to a description of the results
obtained by applying the LASSO approach to themedian regressionmodel presented in Table
3. It is known that the output and performance of a LASSO regression depends on a tuning
parameter, named lambda: when lambda is small, the result is essentially the least squares
estimatewhile as lambda increases, themethod shrinks the coefficient estimates towards zero.
Figure 9 shows the distribution of the p-values associated with the regressors of the median
regression model obtained by considering a dense grid of lambdas (from 0.01 to 10 with
step 0.01). It is interesting to note that the method highlights a predominant, indeed unique,
role for the variable online.trans, which is the only one to have significant coefficients. In
other words, this means that, regardless of the performance of the model, the results obtained
lead to a complete loss of the information provided by the other regressors. The combined
use of PCA-regression allows, on the other hand, to preserve part of the contribution of all
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Table 3 VIF and OLS and median regression results (coefficients, standard errors and p-value)

OLS regression QR regression
VIF Estimate Std. error p-value Estimate Std. error p-value

(Intercept) − 11.98 29.64 0.69 − 13.23 6.62 0.04

Age 1.07 0.26 0.39 0.50 0.07 0.07 0.33

Credit.score 1.07 − 0.01 0.04 0.81 0.01 0.01 0.14

Distance.to.store 1.09 − 0.04 0.08 0.65 − 0.02 0.02 0.46

Online.visits 34.06 0.41 0.18 0.02 0.11 0.14 0.43

Online.trans 34.13 19.02 0.60 ≤2e−16 20.01 0.53 0.00

Store.trans 5.11 − 2.31 2.84 0.42 − 0.35 0.56 0.53

Store.spend 4.99 0.05 0.07 0.46 0.01 0.01 0.42

Sat.service 1.53 2.74 2.73 0.32 0.51 0.64 0.43

Sat.selection 1.52 0.52 2.58 0.84 0.01 0.63 0.99

Table 4 Eigenvalues, percentage and cumulative percentage of variability

Component Eigenvalue % of variability Cumulative % of variability

1 2.12 23.58 23.58

2 1.95 21.66 45.25

3 1.58 17.51 62.76

4 1.20 13.38 76.14

5 0.86 9.53 85.67

6 0.76 8.40 94.07

7 0.41 4.60 98.67

8 0.11 1.17 99.84

9 0.01 0.16 100.00

Table 5 Correlations between
variables and factors

F1 F2 F3 F4

Age 0.12 − 0.03 − 0.28 0.72

Credit.score 0.11 0.07 − 0.22 0.75

Distance.to.store − 0.31 − 0.35 − 0.20 0.08

Online.visits − 0.62 0.76 0.13 0.08

Online.trans − 0.62 0.76 0.13 0.08

Store.trans 0.78 0.51 0.20 0.00

Store.spend 0.78 0.48 0.22 0.00

Sat.service − 0.13 − 0.30 0.80 0.22

Sat.selection − 0.08 − 0.28 0.81 0.23
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Table 6 OLS and median regression results (coefficients, standard errors, p-values)

OLS regression QR regression

Coefficient Std. error p-value Coefficient Std. error p-value

(Intercept) 269.49 2.34 < 2e−16 265.39 2.32 0.00

F1.store − 160.266 1.60 < 2e−16 − 157.79 2.11 0.00

F2.online 204.64 1.66 < 2e−16 203.53 2.35 0.00

F3.satisfaction 39.54 1.77 < 2e−16 40.80 1.27 0.00

F4.personal 28.69 1.89 < 2e−16 27.11 1.13 0.00
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Fig. 8 Quantile regression coefficients
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Fig. 9 Results obtained by applying the LASSO approach to the median regression model

Table 7 Results by a cross validated quantile regression with quantile equal to the median

Estimate Std. error t value Pr(> |t |)
(Intercept) − 13.196 9.748 − 1.354 0.176

Age 0.072 0.125 0.576 0.565

Credit.score 0.0116 0.0126 0.926 0.355

Distance.to.store − 0.015 0.023 − 0.660 0.509

Online.visits 0.112 0.157 0.717 0.474

Online.trans 20.010 0.557 35.892 <2e−16

Store.trans − 0.352 0.882 − 0.399 0.690

Store.spend 0.010 0.022 0.461 0.645

Sat.service 0.509 0.911 0.559 0.576

Sat.selection 0.004 0.909 0.005 0.996

regressors. In fact, the factors extracted by PCA represent a linear combination of all the
initial regressors, albeit with different weights.

Table 7 provides results obtained estimating a cross-validated quantile regression with
quantile equal to the median. The use of cross-validation to identify the best lambda is quite
common in LASSO regression [48], and it has been extended in quantile regression setting
byWang et al. [44]. Results in Table 7 shows a very penalised model where just the regressor
online.trans is significantly different from zero.

6 Conclusion

This paper presents a thorough study of the effect of collinearity in QR using both artificial
and empirical data.

Simulations results suggest different effects of collinearity in case of the different settings
considered in the simulation design, and in particular several degrees of collinearity and
different distributions of the response. Empirical findings show that as collinearity increases,
standard errors in LS increase, but those inQR increasemore. The larger increase is evenmore
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evident in the heteroscedastic case. In case PCR is adopted, the stability of the results was
confirmed in the different scenarios. Multicollinearity is properly solved using as regressors
only the components that maximize the variability. The effect of the collinearity is similar in
LSR and QR from the case study on the evaluation of the quality of services. The case study
on empirical data also shows how to estimate a quantile regression model appropriately when
some explanatory variables correlate highly with each other. Therefore, the steps to follow
in the analysis should be as follows:

1. Descriptive bivariate analysis to analyze the correlations between pairs of variables;
2. Use of traditional multicollinearity diagnostic methods, such as VIF and NC, to identify

the predictors responsible for multicollinearity;
3. Implementation of the QPCR, first identifying the relevant principal components and

then regressing the explanatory variable on them;
4. Analysis of the correlations between original variables and principal components (load-

ings) to trace the most relevant explanatory variables.

The main findings of the study is the relevance of collinearity also in QR and the use of
PCR as a possible solution, as already well experienced in LSR. The opportunity of having
more stable results even for the most extreme quantiles can be a really significant advantage
considering the QR feature of modelling the tails of the distribution of the response. The
present study focused on the effect of collinearity on standard errors. Future research will
focus on the effect of collinearity also in terms of prediction ability, considering both in-
sample and out of sample prediction and in terms of estimate bias. Moreover, a comparison
between QR on the principal components and the use of penalized regression will be also
explored.
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