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Abstract
Ground facilities relying on traditional radiometric tracking are reaching saturation 
due to the growth of satellites launched into space. As such, autonomous navigation 
is one of the main enabling technologies for sustainable deep-space missions. This 
paper tackles the deep-space optical navigation problem exploiting multiple beacons 
to estimate the observer position independently from ground. The paper derives the 
least-squares solution and the analytical covariance to the deep-space navigation 
problem exploiting multiple beacons. The perturbations in the line-of-sight direc-
tions as well as in the objects ephemeris are incorporated into the covariance formu-
lation. Then, the geometrical interpretation of the perturbations models, the naviga-
tion solution, and the navigation covariance are elaborated. The sensitivity of the 
navigation accuracy to the number of beacons is assessed by virtue of a test case, 
showing the correspondence between the numerical and the analytical solutions. 
Eventually, the paper shows the comparison of the navigation accuracy exploiting 
multiple beacons against two optimal beacons.

Keywords Autonomous navigation · Deep-Space Navigation

1 Introduction

Traditional ground-based navigation methods are becoming unsustainable as 
the space sector is evolving. Orbit determination techniques exploiting radio-
metric tracking are the most reliable and accurate methods, but are capable of 
processing only one spacecraft per tracking window [23]. This is because a two-
way signal is exchanged between a ground facility and the satellite to determine 
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the relative range and range-rate, thus requiring a considerable amount of time 
related to the antenna utilization, the signal processing, and the signal trip in 
space. Moreover, the costs related to the flight dynamics teams and facilities uti-
lization account for a large budget of mission costs [12]. This is in contrast with 
the current wave of deep-space missions enabled by systems miniaturization that 
promote fast, diverse, low-cost, and highly autonomous deep-space exploration 
[18, 19, 24].

Autonomous navigation methods exploit observations from the environment 
to estimate components of the spacecraft state in deep-space [22]. Many autono-
mous navigation methods have been proposed so far. The X-ray pulsars naviga-
tion relies on the repetitive signals coming from X-ray pulsars to estimate the 
observer distance with respect to the solar system barycenter [2, 21]. The opti-
cal navigation in proximity of a celestial object exploits the target knowledge to 
determine the observer position, finding applications in the lunar environment 
(e.g., full-disk navigation [6, 8, 15], terrain relative navigation [7]), small body 
proximity (e.g., landmark navigation [3]), and satellite proximity (e.g., pose esti-
mation [17]). The optical navigation in deep-space leverages on the acquisition 
of the line-of-sight (LoS) directions to deep-space objects with known ephem-
eris to determine the observer position [4, 10, 11, 14].

This work focuses on the autonomous optical navigation in deep-space. Pre-
vious works from the authors have shown that a minimum of two beacons line-
of-sight directions are required for the deep-space navigation solution, and a 
selection criteria to assess the optimal couple of beacons that yields the high-
est accuracy in the navigation solution has been derived [9]. Inspired by this 
mechanism, the authors want to investigate the quality of the navigation solution 
in presence of multiple beacons and compare it with the two optimal beacons 
case. Thus, this paper formulates the deep-space optical navigation problem in 
presence of multiple beacons and derives its least squares solution. Perturbation 
models for the objects line-of-sight directions and ephemeris are introduced to 
derive the analytical solution covariance. The geometrical interpretation of the 
perturbations models is presented and shown to visualize the observer solution 
covariance in presence of multiple beacons. The sensitivity of the solution accu-
racy with the number of tracked beacons is validated by virtue of a test case, 
where the analytical and the numerical solutions are compared when tracking a 
number of planets and asteroids as deep-space beacons. Eventually, the naviga-
tion accuracy exploiting multiple beacons is compared to the one with two opti-
mal beacons.

The paper is structured as follows. The deep-space optical navigation prob-
lem, solution, and covariance are described in Sect. 2. The geometrical interpre-
tation of the perturbation models and their impact on the navigation covariance 
are elaborated and shown in Sect. 3. The validation of the navigation covariance 
for increasing number of beacons and in case of perturbed inputs is reported in 
Sect. 4 by virtue of a test case. Section 5 shows the comparison of the navigation 
accuracy exploiting multiple beacons with the two optimal beacons case. Final 
remarks are given in Sect. 6.
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2  Deep‑Space Optical Navigation

2.1  Problem Formulation

The deep-space optical navigation problem consists of the estimation of an observer 
position exploiting the line-of-sight directions to a number of objects, or beacons, 
acquired by on-board optical sensors such as navigation camera and star trackers. The 
problem geometry is shown in Fig. 1. Here, at a given epoch and in an inertial frame, 
an observer is located at an unknown position r with respect to the Solar System Bar-
ycenter (SSB). A number n of known deep-space objects are present, too. Given the 
i–th object, its inertial position is denoted ri , while its relative position with respect to 
the observer is denoted �i . Thus, the observer inertial position can be written as

Note that, in Eq.  1, r is unknown, ri are known by ephemeris models, and �i are 
unknown. The latter can be expanded as 𝝆i = �i�̂�i , where �i is the unknown range 
between the observer and the i–th object, and �̂�i is the observer-to-object LoS, that 
can be measured on board. The objective of the deep-space optical navigation is to 
compute r given �̂�i , i = 1, .., n.

2.2  Least Squares Solution

Considering beacons i and j in Eq. 1 it is possible to write

Equation 2 is a system of n2 equations. Without any loss of generality, we restrict the 
analysis to unique couples of beacons; therefore

Equation 3 is a system of n(n − 1)∕2 equations. It can be pre-multiplied by �̂�⊤
i
 and 

�̂�⊤
j
 yielding

(1)r = ri − �i i = 1, .., n

(2)ri − �i �̂�i = rj − �j �̂�j i = 1, .., n, j = 1, .., n

(3)ri − 𝜌i �̂�i = rj − 𝜌j �̂�j i = 1, .., n, j > i

OBJ 1

OBSERVER

OBJ nSSB

OBJ i

Fig. 1  Deep-space optical navigation geometry
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Equation 4 is a system of n(n − 1) equations. Now, note that �̂�⊤
i
�̂�i = �̂�⊤

j
�̂�j = 1 , and 

denoting �ij the angle between �̂�i and �̂�j , we have

Thus, plugging Eqs. 5 into 4 and rearranging terms, we have

Equation 6 can be put in matrix form as

Stacking together the equations from Eq. 7 we arrive to

Where �ij is the 2 × n matrix that maps Hij to H

Where, denoted c the column number, �ci = 1 if c = i , and �cj = 1 if c = j , while they 
are 0 otherwise. Now, note that H is a rectangular matrix with size n(n − 1) × n , x is 
the unknown vector of size n, and b is the input vector of size n(n − 1) . Pre-multiply-
ing Eq. 8 by H⊤ leads to

From which the least squares solution can be determined as

(4)
�̂�⊤
i
ri − 𝜌i �̂�

⊤
i
�̂�i = �̂�⊤

i
rj − 𝜌j �̂�

⊤
i
�̂�j

�̂�⊤
j
ri − 𝜌i �̂�

⊤
j
�̂�i = �̂�⊤

j
rj − 𝜌j �̂�

⊤
j
�̂�j

i = 1, .., n j > i

(5)�̂�⊤
i
�̂�j = �̂�⊤

j
�̂�i = cos 𝛾ij

(6)
−𝜌i + cos 𝛾ij 𝜌j = �̂�⊤

i
(rj − ri)

cos 𝛾ij 𝜌i − 𝜌j = �̂�⊤
j
(ri − rj)

i = 1, .., n, j > i

(7)

[
−1 cos 𝛾ij

cos 𝛾ij − 1

]

�����������������
Hij

[
𝜌i
𝜌j

]
=

[
�̂�⊤
i
(rj − ri)

�̂�⊤
j
(ri − rj)

]

�������������
bij

i = 1, .., n j > i

(8)

⎡⎢⎢⎢⎢⎣

H12 �12

⋮

Hij �ij

⋮

Hn−1,n �n−1,n

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

H

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1
⋮

�i
⋮

�j
⋮

�n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏟⏟
x

=

⎡⎢⎢⎢⎢⎣

b12
⋮

bij

⋮

bn−1,n

⎤⎥⎥⎥⎥⎦
⏟⏟⏟

b

(9)�ij =

[
�1i ⋯ �ci ⋯ �ni
�1j ⋯ �cj ⋯ �nj

]

(10)H
⊤
H x = H

⊤
b

(11)x =
(
H

⊤
H
)−1

H
⊤
b

The Journal of the Astronautical Sciences  (2022) 69:368–384 371



Note that the solution in Eq. 11 is function of the observation geometry ( cos �ij in 
H ), the line-of-sight directions knowledge ( �̂�i, �̂�j in b ) and the ephemeris knowledge 
( ri, rj in b).

2.3  Perturbation Models

The solution to the deep-space optical navigation problem in Eq.  11 is affected by 
uncertainties in the line-of-sight measurements and objects ephemeris. Thus, we need 
to model their perturbations to derive the solution covariance. Regarding the perturbed 
LoS modeling, in presence of small perturbations, the QUEST measurement model can 
be used to consider the errors in the line-of-sight directions [13]. The QUEST measure-
ment model is a linear additive model, thus it considers the perturbed LoS direction as 
a linear sum of the true line-of-sight with a white noise process, that is

where �̂��
i
 is the perturbed LoS direction, �̂�i is the true one, and vi is a white-noise 

process whose components have zero mean and standard deviation �i . Denoting E 
the expected value operator, then [5]

Equations 12 and 13 hold for small rotations, where the spherical surface generated 
by a rotation of the tip of �̂�i is locally approximated by the tangent plane. Thus, vi 
lies on this plane and is orthogonal to �̂�i , i.e.,

Note that this model alters the unitary norm of the LoS direction, yet it is a viable 
approximation in presence of small angles and widely exploited in literature [5]. 
When dealing with large angles, a multiplicative model can be exploited [16].

Regarding the objects ephemeris modeling, note that the ephemeris of every object 
in the Solar System are known up to a given accuracy. The planets ephemeris are accu-
rately known since they have been extensively observed in the past, while smaller bod-
ies like asteroids and comets have larger uncertainties. Thus, without loss of generality, 
this work considers a spherical uncertainty model for the objects positions in deep-
space. This leads to the definition of the perturbed object position r�

i
 as

where wi is the position uncertainty of the i–th object inertial position ri estimated 
by ephemeris. The uncertainty is modeled as a range in all the direction, thus lead-
ing to a spherical perturbation. So,

where wi is the uncertainty radius and I the identity matrix.

(12)�̂��
i
= �̂�i + vi i = 1, .., n

(13)E
[
vi

]
= 0 E

[
viv

⊤
i

]
= 𝜎i

2
[
I − �̂�i�̂�

⊤
i

]
= 𝜎2

i
Li i = 1, .., n

(14)�̂�⊤
i
vi = 0

(15)r
�
i
= ri + wi i = 1, .., n

(16)E[wi] = 0 E
[
wiwi

⊤
]
= wi

2
I i = 1, .., n
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2.4  Covariance Analysis

The perturbation models can be exploited to derive the solution covariance. In presence 
of perturbed line-of-sight directions and ephemeris uncertainty, the perturbed input to 
the system in Eq. 7 reads

 where

Thus, stacking together bij from Eq. 17, we arrive to

where b� is the perturbed input, b the exact input, and �b the input error. Note that 
the input error has null mean ( E[�b] = 0 ) and known covariance ( E[�b�b⊤] = B ). 
The expression of the input error covariance B is developed in Appendix A.

Now, plugging Eqs. 19 into 11, we have

(17)
b
𝜖
ij
=

⎡
⎢⎢⎣
�̂�𝜖⊤

i

�
r𝜖
j
− r𝜖

i

�

�̂�𝜖⊤

j

�
r𝜖
i
− r𝜖

j

�
⎤
⎥⎥⎦
=

�
�̂�⊤
i
(rj − ri)

�̂�⊤
j
(ri − rj)

�

�������������
bij

+

�
mij

mji

�

���
𝜟bij

i = 1, .., n j > i

(18)

𝜟bij =

[
mij

mji

]
=

[
�̂�⊤
i
(wj − wi) + v⊤

i
(rj − ri) + v⊤

i
(wj − wi)

�̂�⊤
j
(wi − wj) + v⊤

j
(ri − rj) + v⊤

j
(wi − wj)

]
i = 1, .., n j > i

(19)
b
� =

⎡
⎢⎢⎢⎢⎢⎣

b
�
12

⋮

b
�
ij

⋮

b
�
n−1,n

⎤
⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

b12
⋮

bij

⋮

bn−1,n

⎤⎥⎥⎥⎥⎦
⏟⏟⏟

b

+

⎡⎢⎢⎢⎢⎣

�b12
⋮

�bij
⋮

�bn−1,n

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏟⏞⏞⏟

�b

(20)
x
𝜖 = (H⊤

H)−1H⊤
b

�������������
x

+ (H⊤
H)−1H⊤𝛥b

�����������������
𝛥x

Fig. 2  Geometrical interpretations: (a) Object acquisition; (b) LoS perturbation; (c) Ephemeris perturba-
tion; (d) Combined perturbations
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where x� is the perturbed solution and �x the solution error. Thus, the solution error 
covariance is

Note that the solution covariance is function of the observation geometry ( H ), the 
objects ephemeris knowledge (w inside B ) and the line-of-sight uncertainty ( � inside 
B).

3  Geometrical Interpretation

3.1  Perturbation Models

The geometrical interpretation of the perturbation models is shown in Fig. 2. In 
particular, Fig. 2a shows the acquisition of an object line-of-sight by an observer 
in deep-space. The acquired line-of-sight �̂𝜖 is a measurement of the true line-
of-sight �̂ affected by a given angular error � . The measurement generates an 
uncertainty cone with aperture � whose vertex is placed at the observer location. 
Thus, the object can be anywhere inside this cone, since its relative distance to 
the observer is still unknown. As depicted in Fig. 2a, the cone reduces to a trian-
gle in the planar case.

When solving the navigation problem with exact ephemeris but perturbed 
line-of-sight direction, the object position is known and the observer position is 
unknown. The uncertainty cone can be seen as reversed, so that it originates at 
the known object position and emanates toward the observer, as shown in Fig. 2b. 
The observer can be in any point inside this cone.

Figure  2c shows instead the observer uncertainty region in case of exact 
line-of-sight but uncertain ephemeris. Here, the object position is known up to 
a given accuracy (w) about its location. A spherical uncertainty, which reduces 
to a circular uncertainty in the planar case, is assumed for simplicity. The exact 
line-of-sight direction toward the observer, applied to every point of this sphere, 
generates a cylindrical uncertainty region with a radius equal to the ephemeris 
uncertainty. The observer can be anywhere inside this cylinder.

Eventually, Fig.  2d shows the observer uncertainty region in case of com-
bined line-of-sight and ephemeris errors. In the three-dimensional case, a cone 
due to the perturbed line-of-sight originates from each point of the ephemeris 
uncertainty. The envelope of this volume, that is the grey area in Fig. 2d for the 
two–dimensional case, is the observer uncertainty region.

With respect to Fig.  2b, c, and d, the maximum observer uncertainty (here 
denoted � ) is proportional to the object-observer distance ( � ), the object angular 
uncertainty ( � ), and the object position uncertainty (w), which is function of its 
ephemerides knowledge. From simple geometry and by inspection of Fig. 2d, the 
maximum observer error is:

(21)P = E
[
𝛥x𝛥x⊤

]
= (H⊤

H)−1H⊤
B H (H⊤

H)−⊤

(22)� = � tan � + w
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Considering a deep-space scenario with � spanning between 0.1 and 1 AU and an 
angular uncertainty � of 15 arcseconds, the contribution of the measurement error 
spans between 103 km and 104 km.

Considering a reference deep-space velocity of 30 km/s (Earth–like), ephemeri-
des errors of 1 second and 10 seconds lead to w = 30 km and w = 300 km, respec-
tively. In general, the planets ephemerides are very accurate, thus w can be neglected 
in this case. This is not valid for asteroids, as their ephemerides can be refined only 
for short periods of observations. Thus, the measuruement error is predominant with 
respect to the ephemerides error in case of planets acquisition; the same can not be 
said in case of asteroids acquisitions.

3.2  Navigation Solution

Equation  8 requires at least two non-parallel objects to admit a solution. From a 
geometrical point of view, this is because every line-of-sight is a semi-direction 
that originates from the observer position and goes toward the objects locations, as 
shown in Fig. 3a. When reversing the problem, the semi-directions originate from 
the objects positions and ideally cross at the observer location. When the two direc-
tions are parallel ( � = 0 or � = 180 deg in Fig.  3b), the observer can be in any 
point along this direction, thus leading to an undetermined solution. For non parallel 
directions ( � ≠ 0 or � ≠ 180 deg) the LoS directions encounter at the observer posi-
tion, as happens in Fig. 3b.

Figure 4 shows the navigation solution covariance when considering the uncertain-
ties in the objects ephemeris and the line-of-sight directions for the two beacons case 
(Fig. 4a) and in the multiple beacons case (Fig. 4b). Each beacon casts an uncertainty 
region toward the observer as the one depicted in Fig. 2d. The uncertainty regions are 
function of the objects ephemeris knowledge and line-of-sight directions accuracy. The 
uncertainty regions encounter in proximity of the observer position and their intersec-
tion is the observer position uncertainty. Figure 4a shows the observer uncertainty in 
case of two beacons and, by comparing it with Fig. 4b, it can be seen how in principle 
multiple beacons can further delimit the observer uncertainty region, provided that the 
beacons are well shifted apart.

Fig. 3  Geometrical interpreta-
tions of the navigation solution. 
(a) Line-of-sight acquisitions; 
(b) Navigation solution

OBS

OBJ 1

OBJ 2

OBS

OBJ 1

OBJ 2
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4  Test Case

The accuracy of the deep-space navigation exploiting multiple beacons is assessed by 
virtue of a test case. The aim is to evaluate the navigation accuracy exploiting both 
the analytical and the numerical covariances for an increasing number of beacons. The 
analytical covariance is computed exploiting Eq. 21, while the numerical covariance 
is computed evaluating Eq. 11 with perturbed inputs and then computing the solution 
standard deviation.

The test case scenario is explained in the following. An observer is assumed to be on 
a heliocentric deep-space orbit whose elements in terms of semi-major axis a, eccen-
tricity e, inclination i, pericenter anomaly � , right ascension of the ascending node � , 
and true anomaly � are reported in Table 1. Also, it is assumed that the observer can 
always acquire the line-of-sight directions of up to ten objects, that are five planets 
(Mercury, Venus, Earth, Mars, and Jupiter) and five asteroids (Ceres, Vesta, Kallisto, 
Eros, and Steins). These objects have been chosen arbitrarily. The objects ephemeris 
are read by the SPICE toolkit [1] for the time frame 2025–2040.

During the deep-space orbit, the observer is assumed to acquire the beacons line-
of-sight directions once every two days. The beacons and the uncertainties related to 
the acquisitions are summarized in Table 2. The planets line-of-sight directions have 
been affected by a 3 � standard deviation of 15 arcseconds, while the line-of-sight direc-
tions to the asteroids by a 3 � standard deviation of 30 arcseconds. Similarly, the planets 
positions have been affected by a 3 � standard deviation of 1 km, while the asteroids 
positions have been affected by a 3 � standard deviation of 100 km. These values have 
been assumed liberally to run the test case; more educated values shall be used in case 
of specific simulations. Note that the LoS accuracy accounted for has a contribution 
due to attitude determination, object centroiding error, and a small margin. The LoS 
directions to the deep-space objects are usually acquired via centroiding techniques on 
the same images acquired for attitude determination, which can be more accurate than 
9 arcseconds even with miniaturized sensors [10]. Centroding techniques achieve sub-
pixel accuracy in the order of 0.1 pixels [20], this translates to 3.5 arcseconds for a 

Fig. 4  Observer position uncer-
tainty region in case of perturba-
tions: (a) Two beacons case; (b) 
Multiple beacons case

OBS

OBJ 1

OBJ 2

OBS

OBJ 1

OBJ 2
OBJ 3

Table 1  Observer heliocentric 
orbital parameters

a [AU] e [-] i [deg] � [deg] � [deg] � [deg] Epoch

3.3767 0.55 24.35 94.41 1.75 10.11 01 Jan 2025
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typical star tracker (10 deg field-of-view, 1 Mpix sensor). A margin has been included 
for unmodeled effects (e.g., thermoelastic deformation of the spacecraft). Larger per-
turbations for the asteroids have been assumed owing to their smaller size with respect 

Table 2  Beacons and related 
uncertainties

Type Beacon Object LoS Position

Planet 1 Mercury 15 arcsec 1 km
2 Venus 15 arcsec 1 km
3 Earth 15 arcsec 1 km
4 Mars 15 arcsec 1 km
5 Jupiter 15 arcsec 1 km

Asteroid 6 Ceres 30 arcsec 100 km
7 Vesta 30 arcsec 100 km
8 Kallisto 30 arcsec 100 km
9 Eros 30 arcsec 100 km
10 Steins 30 arcsec 100 km

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
103

104

105

106
2 B
3 B
4 B
5 B
6 B

7 B
8 B
9 B
10 B

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
103

104

105

106
2 B
3 B
4 B
5 B
6 B

7 B
8 B
9 B
10 B

Fig. 5  Observer uncertainties as function of the number of tracked beacons: (a) Observer position error; 
(b) Observer standard deviation
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to planets; this affects both their detectability in deep-space images and their ephemeris 
determination by ground stations. Moreover, note that the beacons apparent magnitude 
and angular separation from the Sun have been neglected because the focus of the test 
case is on the covariance analysis as function of the number of beacons.

Figure 5 shows the observer position error �r (Fig. 5a) and standard deviation �r 
(Fig. 5b) for the whole trajectory as function of the number of tracked beacons. The 
number of beacons follows the list in Table 2, so that the two beacons case consid-
ers Mercury and Venus, the three beacons case considers Mercury, Venus, and the 
Earth, and so on. While sharing a similar trend owing to the problem geometry, it 
can be seen how the two limiting case of two and ten beacons (2 B and 10 B, respec-
tively) are shifted apart of almost two or three orders of magnitude in terms of both 
position error and standard deviation. Moreover, note how multiple beacons cases 
present smaller variations in position error and standard deviation with respect to 
few beacons cases. This is because the navigation solution is more robust to vari-
ations in the observation geometry, as sketched in Fig. 4b. Worth to mention is the 
improvement of the navigation solution due to the addition of Jupiter, it being a 
well-posed navigation beacon for the considered spacecraft orbit. A different order-
ing of Table 2 would lead to different trends with the increasing number of beacons.

The mean of the position error across the whole trajectory ( 𝛿r ) is shown in Fig. 6a 
as function of the number of tracked beacons ( nb ). It can be seen how the mean 
of the solution error decreases as the number of beacons increases. The beacons 
ordering in Table 2 affect the performances of the method; a different ordering with 
well-posed beacons first would directly lead to more accurate performances, with 
the other beacons slightly refining the solution accuracy. Similarly, Fig. 6b shows 
the standard deviation of the navigation solution across the whole trajectory ( �r ) as 
function of the number of tracked beacons, which decreases as nb increases. Also, 
the analytical covariance computed by Eq. 21 is shown and is in good agreement 
with the numerical covariance. All in all, given the same observation geometry, 

2 4 6 8 10
103

104

105

106

2 4 6 8 10
103

104

105

106
Analytical Cov

Fig. 6  Observer position accuracy as a function of the number of tracked beacons: (a) Mean Error; (b) 
Standard Deviation
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both the navigation error and covariance decrease as the number of tracked beacons 
increases.

5  Least Squares and Optimal Beacons

The minimum number of beacons to solve Eq. 8 is two, and, in this case, the naviga-
tion problem reduces to a simple triangulation problem. In presence of n available 
beacons, it is beneficial to select the couple of beacons that yields the highest navi-
gation accuracy. These are known as optimal beacons [9]. The trace of the solution 
covariance in Eq. 21 is used as a figure of merit to select the beacons. This is

(23)Jkl =
2
(
w2
k
+ w2

l

)

sin2 𝛾kl
+

1 + cos2 𝛾kl

sin4 𝛾kl
z
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kl
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Fig. 7  Simple triangulation solution exploiting fixed couples and optimal couples of beacons: (a) Mean 
error; (b) Standard deviation
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where k and l denote the k–th and l–th beacons, zkl = rl − rk , and Lkl = �2
k
Lk + �2

l
Ll . 

The optimal beacons i and j are the ones that yield Jkl minimum, thus
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Fig. 9  Separation angles among different couples of beacons

The Journal of the Astronautical Sciences  (2022) 69:368–384380



The triangulation problem is now solved exploiting fixed couples of beacons from 
Table 2 and the optimal couples of beacons from Eq. 24. Figure 7 shows the mean 
navigation error and the standard deviation of the navigation solution exploiting 
fixed and optimal couples of beacons. It can be seen how the optimal beacons selec-
tion yields the minimum in both the mean error and standard deviation with respect 
to fixed couples. The optimal couples tracking windows are shown in Fig. 8. Jupiter, 
Mars, and the Earth are the most exploited beacons owing to the problem geometry. 
Moreover, the selection relies more on planets rather than on asteroids owing to the 
higher knowledge in their line-of-sight and position. The separation angles � among 
different couples of beacons are shown in Fig.  9 along the spacecraft trajectory. 
Here, the mean angle weighted along the trajectory �̄� shows how the couples formed 
by Jupiter are well separated on average, thus yielding superior performances.

We can now compare the navigation solution exploiting couples of optimal beacons 
to the multiple beacons with blind selection. This is shown in Fig. 10. It can be seen 
how the optimal beacons selection yields a navigation accuracy in terms of mean error 
and standard deviation comparable to the multiple beacons solution with nb > 4 . This 
is because the fifth beacon from Table 2, Jupiter, is a well-posed beacon for the prob-
lem in hand. So, having Jupiter as one of the primary beacons would lower the number 
of multiple beacons required to have a similar accuracy to the optimal beacons case. 
Thus, selecting optimal beacons is a smart way of extracting the navigation information 
employing just two beacons, and its accuracy is comparable to the multiple beacons one 
when it takes into account well-posed beacons. However, the least squares solution with 
multiple well-posed beacons is slightly more accurate than the one with optimal bea-
cons. This is because the uncertainty region generated by multiple beacons is bounded 
by the intersection of cones coming from various directions, while in the optimal bea-
cons case the uncertainty region is cut by just two cones (see Fig. 4a and b).

(24)
{i, j} = arg min

k = 1,⋯ , n

l > k

Jkl
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Fig. 10  Observer position accuracy as a function of the number of beacons compared to the optimal bea-
cons: (a) Mean Error; (b) Standard Deviation
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6  Conclusions

In this paper, the least squares solution and covariance to the deep-space optical navi-
gation problem exploiting multiple beacons have been derived. The geometrical inter-
pretation of the navigation solution and covariance as function of the number of bea-
cons has been elaborated and shown, together with the perturbations involved in the 
estimation process. The analytical and numerical covariances have been evaluated for 
an observer on a deep-space trajectory as function of the number of tracked beacons, 
showing the increased robustness and accuracy of the navigation solution with mul-
tiple beacons. A comparison between the navigation solution exploiting optimal bea-
cons and multiple beacons has shown a comparable navigation accuracy among the 
two, with a slightly more accurate solution with the multiple beacons at the cost of an 
increased number of tracked beacons.

Appendix A

This appendix shows the derivation of the B matrix. Recall �b as

 where

Note that the terms v⊤w are perturbations of higher order and can be neglected. 
Now, introducing also the indexes k and l for the sake of generality, B is the squared 
symmetric matrix of size n(n − 1)

where the generic component of B is

Note that the term aijkl is modeling the input covariance due to the ephemeris per-
turbations (w), while the term bijkl is modeling the input covariance due to the LoS 
perturbations ( � ). Now, keeping in mind Eqs. 13, 16, and 5, it can be verified that 
Eq. 28 develops as
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