Skip to main content
Log in

Effects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Repeated-sprint training in hypoxia (RSH) is a recent intervention regarding which numerous studies have reported effects on sea-level physical performance outcomes that are debated. No previous study has performed a meta-analysis of the effects of RSH.

Objective

We systematically reviewed the literature and meta-analyzed the effects of RSH versus repeated-sprint training in normoxia (RSN) on key components of sea-level physical performance, i.e., best and mean (all sprint) performance during repeated-sprint exercise and aerobic capacity (i.e., maximal oxygen uptake [\(\dot{V}{\text{O}}_{2\hbox{max} }\)]).

Methods

The PubMed/MEDLINE, SportDiscus®, ProQuest, and Web of Science online databases were searched for original articles—published up to July 2016—assessing changes in physical performance following RSH and RSN. The meta-analysis was conducted to determine the standardized mean difference (SMD) between the effects of RSH and RSN on sea-level performance outcomes.

Results

After systematic review, nine controlled studies were selected, including a total of 202 individuals (mean age 22.6 ± 6.1 years; 180 males). After data pooling, mean performance during repeated sprints (SMD = 0.46, 95% confidence interval [CI] −0.02 to 0.93; P = 0.05) was further enhanced with RSH when compared with RSN. Although non-significant, additional benefits were also observed for best repeated-sprint performance (SMD = 0.31, 95% CI −0.03 to 0.89; P = 0.30) and \(\dot{V}{\text{O}}_{2\hbox{max} }\) (SMD = 0.18, 95% CI −0.25 to 0.61; P = 0.41).

Conclusion

Based on current scientific literature, RSH induces greater improvement for mean repeated-sprint performance during sea-level repeated sprinting than RSN. The additional benefit observed for best repeated-sprint performance and \(\dot{V}{\text{O}}_{2\hbox{max} }\) for RSH versus RSN was not significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472–85.

    Article  CAS  PubMed  Google Scholar 

  2. Wilber RL. Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc. 2007;39(9):1610–24.

    Article  PubMed  Google Scholar 

  3. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.

    Article  PubMed  Google Scholar 

  4. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102–12.

    CAS  PubMed  Google Scholar 

  5. Millet GP, Faiss R, Brocherie F, et al. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013;47(Suppl 1):i6–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Girard O, Amann M, Aughey R, et al. Position statement–altitude training for improving team-sport players’ performance: current knowledge and unresolved issues. Br J Sports Med. 2013;47(Suppl 1):i8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Girard O, Brocherie F, Millet GP. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports. Br J Sports Med. 2013;47(Suppl 1):i121–3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(Suppl 1):i45–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Faiss R, Leger B, Vesin JM, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One. 2013;8(2):e56522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawada S, Ishii N. Changes in skeletal muscle size, fibre-type composition and capillary supply after chronic venous occlusion in rats. Acta Physiol (Oxf). 2008;192(4):541–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ishihara A, Itho K, Itoh M, et al. Hypobaric-hypoxic exposure and histochemical responses of soleus muscle fibers in the rat. Acta Histochem. 1994;96(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  12. Mounier R, Pedersen BK, Plomgaard P. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle. Exp Physiol. 2010;95(8):899–907.

    Article  CAS  PubMed  Google Scholar 

  13. Levine BD, Stray-Gundersen J. Dose-response of altitude training: how much altitude is enough? Adv Exp Med Biol. 2006;588:233–47.

    Article  PubMed  Google Scholar 

  14. Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.

    Article  PubMed  Google Scholar 

  15. Semenza GL, Shimoda LA, Prabhakar NR. Regulation of gene expression by HIF-1. Novartis Found Symp. 2006;272:2–8 (discussion 8–14, 33–6).

    Article  CAS  PubMed  Google Scholar 

  16. Calbet JA, Lundby C. Air to muscle O2 delivery during exercise at altitude. High Alt Med Biol. 2009;10(2):123–34.

    Article  PubMed  Google Scholar 

  17. Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol. 2001;204(Pt 18):3133–9.

    CAS  PubMed  Google Scholar 

  18. Lundby C, Calbet JA, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci. 2009;66(22):3615–23.

    Article  CAS  PubMed  Google Scholar 

  19. McLean BD, Gore CJ, Kemp J. Application of ‘live low-train high’ for enhancing normoxic exercise performance in team sport athletes. Sports Med. 2014;44(9):1275–87.

    Article  PubMed  Google Scholar 

  20. Lundby C, Robach P. Does ‘altitude training’ increase exercise performance in elite athletes? Exp Physiol. 2016;101(7):783–8.

    Article  PubMed  Google Scholar 

  21. Millet GP, Brocherie F, Faiss R, et al. Clarification on altitude training [letter]. Exp Physiol. 2017;102(1):130–1.

    Article  PubMed  Google Scholar 

  22. Montero D, Lundby C. Enhanced performance after repeated sprint training in hypoxia: false or reality? Med Sci Sports Exerc. 2015;47(11):2483.

    Article  PubMed  Google Scholar 

  23. Faiss R, Holmberg HC, Millet GP. Response [letter]. Med Sci Sports Exerc. 2015;47(11):2484.

    Article  PubMed  Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673–94.

    Article  PubMed  Google Scholar 

  26. Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—part II: recommendations for training. Sports Med. 2011;41(9):741–56.

    Article  PubMed  Google Scholar 

  27. Taylor J, Macpherson T, Spears I, et al. The effects of repeated-sprint training on field-based fitness measures: a meta-analysis of controlled and non-controlled trials. Sports Med. 2015;45(6):881–91.

    Article  PubMed  Google Scholar 

  28. Gist NH, Fedewa MV, Dishman RK, et al. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med. 2014;44(2):269–79.

    Article  PubMed  Google Scholar 

  29. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  31. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goods PS, Dawson B, Landers GJ, et al. No additional benefit of repeat-sprint training in hypoxia than in normoxia on sea-level repeat-sprint ability. J Sports Sci Med. 2015;14(3):681–8.

    PubMed  PubMed Central  Google Scholar 

  33. Montero D, Lundby C. Repeated sprint training in hypoxia versus normoxia does not improve performance: a double-blind and cross-over study. Int J Sports Physiol Perform. 2016;. doi:10.1123/ijspp.2015-0691 (Epub 2016 Aug 24).

    PubMed  Google Scholar 

  34. Brocherie F, Millet GP, Hauser A, et al. “Live high-train low and high” hypoxic training improves team-sport performance. Med Sci Sports Exerc. 2015;47(10):2140–9.

    Article  PubMed  Google Scholar 

  35. Brocherie F, Girard O, Faiss R, et al. High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res. 2015;29(1):226–37.

    Article  PubMed  Google Scholar 

  36. Galvin HM, Cooke K, Sumners DP, et al. Repeated sprint training in normobaric hypoxia. Br J Sports Med. 2013;47(Suppl 1):i74–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gatterer H, Philippe M, Menz V, et al. Shuttle-run sprint training in hypoxia for youth elite soccer players: a pilot study. J Sports Sci Med. 2014;13(4):731–5.

    PubMed  PubMed Central  Google Scholar 

  38. Kasai N, Mizuno S, Ishimoto S, et al. Effect of training in hypoxia on repeated sprint performance in female athletes. Springerplus. 2015;4:310.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Faiss R, Willis S, Born DP, et al. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Med Sci Sports Exerc. 2015;47(4):809–17.

    Article  PubMed  Google Scholar 

  40. Casey DP, Joyner MJ. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol. 2012;590(Pt 24):6321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez-Alonso J, Mortensen SP, Dawson EA, et al. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol. 2006;572(Pt 1):295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cleland SM, Murias JM, Kowalchuk JM, et al. Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise. Appl Physiol Nutr Metab. 2012;37(1):138–48.

    Article  CAS  PubMed  Google Scholar 

  43. McDonough P, Behnke BJ, Padilla DJ, et al. Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol. 2005;563(Pt 3):903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calbet JA, Lundby C. Skeletal muscle vasodilatation during maximal exercise in health and disease. J Physiol. 2012;590(24):6285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hellsten Y, Hoier B. Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem Soc Trans. 2014;42(6):1616–22.

    Article  CAS  PubMed  Google Scholar 

  46. Ridnour LA, Isenberg JS, Espey MG, et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA. 2005;102(37):13147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876–84.

    CAS  PubMed  Google Scholar 

  48. Westerblad H, Allen DG, Lannergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci. 2002;17:17–21.

    CAS  PubMed  Google Scholar 

  49. Endo M, Okada Y, Rossiter HB, et al. Kinetics of pulmonary VO2 and femoral artery blood flow and their relationship during repeated bouts of heavy exercise. Eur J Appl Physiol. 2005;95(5–6):418–30.

    Article  PubMed  Google Scholar 

  50. Leger LA, Boucher R. An indirect continuous running multistage field test: the Universite de Montreal track test. Can J Appl Sport Sci. 1980;5(2):77–84.

    CAS  PubMed  Google Scholar 

  51. Bangsbo J, Iaia FM, Krustrup P. The Yo–Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51.

    Article  PubMed  Google Scholar 

  52. Brocherie F, Millet GP, Girard O. Psycho-physiological responses to repeated-sprint training in normobaric hypoxia and normoxia. Int J Sports Physiol Perform. 2016;. doi:10.1123/ijspp.2016-0052 (Epub 2016 Aug 24).

    Google Scholar 

  53. Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89(6):548–54.

    Article  PubMed  Google Scholar 

  54. Rampinini E, Connolly DR, Ferioli D, et al. Peripheral neuromuscular fatigue induced by repeated-sprint exercise: cycling vs. running. J Sports Med Phys Fit. 2016;56(1):49–59.

    Google Scholar 

  55. Girard O, Racinais S, Kelly L, et al. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur J Appl Physiol. 2011;111(10):2547–55.

    Article  PubMed  Google Scholar 

  56. Brocherie F, Millet GP, Girard O. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. Eur J Appl Physiol. 2015;115(5):891–903.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Brocherie.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Franck Brocherie, Olivier Girard, Raphaël Faiss, and Grégoire P. Millet declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brocherie, F., Girard, O., Faiss, R. et al. Effects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis. Sports Med 47, 1651–1660 (2017). https://doi.org/10.1007/s40279-017-0685-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-017-0685-3

Keywords

Navigation